Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves?
Abstract
:1. Nanoparticles as Contaminants of Marine Ecosystems
2. NPs-Induced Changes in Bivalve Proteome
2.1. NP-Induced Changes of Protein Profile in Mussels
2.2. NP-Induced Changes of Protein Profile in Clams
3. Pros, Cons and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Matysiak, M.; Kapka-Skrzypczak, L.; Brzoska, K.; Gutleb, A.C.; Kruszewski, M. Proteomic approach to nanotoxicity. J. Proteom. 2016, 137, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E.; Garza, K.M. Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications. Atmos. Environ. 2009, 43, 2683–2692. [Google Scholar] [CrossRef]
- Corsi, I.; Cherr, G.N.; Lenihan, H.S.; Labille, J.; Hassellov, M.; Canesi, L.; Dondero, F.; Frenzilli, G.; Hristozov, D.; Puntes, V.; et al. Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano 2014, 8, 9694–9709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaine, S.J.; Alvarez, P.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Ciacci, C.; Fabbri, R.; Marcomini, A.; Pojana, G.; Gallo, G. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar. Environ. Res. 2012, 76, 16–21. [Google Scholar]
- Baker, T.J.; Tyler, C.R.; Galloway, T.S. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014, 186, 257–271. [Google Scholar] [CrossRef]
- Matranga, V.; Corsi, I. Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches. Mar. Environ. Res. 2012, 76, 32–40. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Bergami, E.; Monopoli, M.P.; Dawson, K.A.; Papa, S.; Corsi, I. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar. Environ. Res. 2015, 111, 34–40. [Google Scholar] [CrossRef]
- Rocha, T.L.; Gomes, T.; Sousa, V.S.; Mestre, N.C.; Bebianno, M.J. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview. Mar. Environ. Res. 2015, 111, 74–88. [Google Scholar] [CrossRef]
- Minetto, D.; Libralato, G.; Ghirardini, A.V. Ecotoxicity effects of nano-TiO2 towards marine organisms. Biol. Mar. Mediter. 2014, 21, 353. [Google Scholar]
- Canesi, L.; Corsi, I. Effects of nanomaterials on marine invertebrates. Sci. Total Environ. 2016, 565, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Dagnino, A.; Allen, J.I.; Moore, M.N.; Broeg, K.; Canesi, L.; Viarengo, A. Development of an expert system for the integration of biomarker responses in mussels into an animal health index. Biomarkers 2007, 12, 155–172. [Google Scholar] [CrossRef]
- Ringwood, A.H.; Levi-Polyachenko, N.; Carroll, D.L. Fullerene exposures with oysters: Embryonic, adult, and cellular responses. Environ. Sci. Technol. 2009, 43, 7136–7141. [Google Scholar] [CrossRef]
- Libralato, G.; Minetto, D.; Totaro, S.; Mičetić, I.; Pigozzo, A.; Sabbioni, E.; Marcomini, A.; Volpi Ghirardini, A. Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar. Environ. Res. 2013, 92, 71–78. [Google Scholar]
- Balbi, T.; Smerilli, A.; Fabbri, R.; Ciacci, C.; Montagna, M.; Grasselli, E.; Brunelli, A.; Pojana, G.; Marcomini, A.; Gallo, G.; et al. Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in increased toxicity in the marine bivalve M. galloprovincialis. Sci. Total Environ. 2014, 493, 355–364. [Google Scholar] [CrossRef]
- Kadar, E.; Simmance, F.; Martin, O.; Voulvoulis, N.; Widdicombe, S.; Mitov, S.; Lead, J.R.; Readman, J.W. The influence of engineered Fe(2)O(3) nanoparticles and soluble (FeCl(3)) iron on the developmental toxicity caused by CO(2)-induced seawater acidification. Environ. Pollut. 2010, 158, 3490–3497. [Google Scholar] [CrossRef]
- Katsumiti, A.; Gilliland, D.; Arostegui, I.; Cajaraville, M.P. Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS ONE 2015, 10, e0129039. [Google Scholar] [CrossRef]
- Marisa, I.; Matozzo, V.; Munari, M.; Binelli, A.; Parolini, M.; Martucci, A.; Marin, M.G. In vivo exposure of the marine clam Ruditapes philippinarum to zinc oxide nanoparticles: Responses in gills, digestive gland and haemolymph. Environ. Sci. Pollut. Res. 2016, 23, 15275–15293. [Google Scholar]
- Marisa, I.; Matozzo, V.; Martucci, A.; Franceschinis, E.; Brianese, N.; Marin, M.G. Bioaccumulation and effects of titanium dioxide nanoparticles and bulk in the clam Ruditapes philippinarum. Mar. Environ. Res. 2018, 136, 179–189. [Google Scholar] [CrossRef]
- Sendra, M.; Volland, M.; Balbi, T.; Fabbri, R.; Yeste, M.P.; Gatica, J.M.; Blasco, J. Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquat. Toxicol. 2018, 200, 13–20. [Google Scholar] [CrossRef]
- Volland, M.; Hampel, M.; Katsumiti, A.; Yeste, M.P.; Gatica, J.M.; Cajaraville, M.; Blasco, J. Synthesis methods influence characteristics, behaviour and toxicity of bare CuO NPs compared to bulk CuO and ionic Cu after in vitro exposure of Ruditapes philippinarum hemocytes. Aquat. Toxicol. 2018, 199, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, B.; Zhang, H.; He, Y.; Ong, C.N.; Yang, J. Metabolites change of Scenedesmus obliquus exerted by AgNPs. J. Environ. Sci. 2019, 76, 310–318. [Google Scholar]
- Abbott Chalew, T.E.; Galloway, J.F.; Graczyk, T.K. Pilot study on effects of nanoparticle exposure on Crassostrea virginica hemocyte phagocytosis. Mar. Pollut. Bull. 2012, 64, 2251–2253. [Google Scholar] [CrossRef] [PubMed]
- Marisa, I.; Marin, M.G.; Caicci, F.; Franceschinis, E.; Martucci, A.; Matozzo, V. In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: Nanoparticle characterisation, effects on phagocytic activity and internalization of nanoparticles into haemocytes. Mar. Environ. Res. 2015, 103, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Fabbri, R.; Gallo, G.; Vallotto, D.; Marcomini, A.; Pojana, G. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, nano-SiO2). Aquat. Toxicol. 2010, 100, 168–177. [Google Scholar]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef]
- Binelli, A.; Del Giacco, L.; Santo, N.; Bini, L.; Magni, S.; Parolini, M.; Madaschi, L.; Ghilardi, A.; Maggioni, D.; Ascagni, M.; et al. Carbon nanopowder acts as a Trojan-horse for benzo (α) pyrene in Danio rerio embryos. Nanotoxicology 2018, 11, 371–381. [Google Scholar] [CrossRef]
- Dondero, F.; Piacentini, L.; Marsano, F.; Rebelo, M.; Vergani, L.; Venier, P.; Viarengo, A. Gene transcription profiling in pollutant exposed mussels (Mytilus spp.) using a new low-density oligonucleotide microarray. Gene 2006, 376, 24–36. [Google Scholar] [CrossRef]
- Vioque-Fernández, A.; Alves de Almeida, E.; López-Barea, J. Assessment of Doñana National Park contamination in Procambarus clarkii: Integration of conventional biomarkers and proteomic approaches. Sci. Total Environ. 2009, 407, 1784–1797. [Google Scholar] [CrossRef] [PubMed]
- Trapp, J.; Armengaud, J.; Salvador, A.; Chaumot, A.; Geffard, O. Next-generation proteomics: Toward customized biomarkers for environmental biomonitoring. Environ. Sci. Technol. 2014, 48, 13560–13572. [Google Scholar] [CrossRef] [PubMed]
- Armengaud, J. Next-generation proteomics faces new challenges in environmental biotechnology. Curr. Opin. Biotechnol. 2016, 38, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, D.; Almunia, C.; Cogne, Y.; Pible, O.; Degli-Esposti, D.; Salvador, A.; Cristobal, S.; Sheehan, D.; Chaumot, A.; Geffard, O.; et al. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. J. Proteom. 2019, 198, 66–77. [Google Scholar] [CrossRef]
- Lafontaine, A.; Baiwir, D.; Joaquim-Justo, C.; De Pauw, E.; Lemoine, S.; Boulange-Lecomte, C.; Forget-Leray, J.; Thome, J.P.; Gismondi, E. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers? Ecotoxicol. Environ. Saf. 2017, 141, 306–314. [Google Scholar] [CrossRef]
- Schmidt, W.; Rainville, L.C.; McEneff, G.; Sheehan, D.; Quinn, B. A proteomic evaluation of the effects of the pharmaceuticals diclofenac and gemfibrozil on marine mussels (Mytilus spp.): Evidence for chronic sublethal on stress-response proteins. Drug Test Anal. 2014, 6, 210–219. [Google Scholar] [CrossRef]
- Allen, T.E.; Goodman, J.M.; Gutsell, S.; Russell, P.J. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment. Chem. Res. Toxicol. 2014, 27, 2100–2112. [Google Scholar] [CrossRef] [Green Version]
- Morelli, E.; Salvadori, E.; Basso, B.; Tognotti, D.; Cioni, P.; Gabellieri, E. The response of Phaeodactylum tricornutum to quantum dot exposure: Acclimation and changes in protein expression. Mar. Environ. Res. 2015, 111, 149–157. [Google Scholar] [CrossRef]
- Grassi, G.; Landi, C.; Della Torre, C.; Bergami, E.; Bini, L.; Corsi, I. Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin Paracentrotus lividus coelomic fluid highlights potential drivers of toxicity. Environ. Sci. Nano 2019, 6, 2937–2947. [Google Scholar] [CrossRef]
- Tedesco, S.; Doyle, H.; Redmond, G.; Sheehan, D. Gold nanoparticles and oxidative stress in Mytilus edulis. Mar. Environ. Res. 2008, 66, 131–133. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, S.; Doyle, H.; Blasco, J.; Redmond, G.; Sheehan, D. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comp. Biochem. Phys. C 2010, 151, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, S.; Doyle, H.; Blasco, J.; Redmond, G.; Sheehan, D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol. 2010, 100, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Volland, M.; Torreblanca, A.; Blasco, J.; Hampel, M. Itraq-based proteomics analysis of citrate gold nanoparticle exposure effects in the marine clam Ruditapes phlippinarum. In Proceedings of the Iberoamerican Congress on Environmental Contamination and Toxicology (CICTA 2015), Vila Real, Portugal, 14–17 July 2015. [Google Scholar]
- Gavidia Josa, R.; Volland, M.; Blasco, J.; Torreblanca, A.; Hampel, M. Statistical modeling of proteome expression data in Manila clam, Ruditapes philipinarum, exposed to citrate capped gold nanoparticles (AuNP), as a model contaminant of environmental nanoparticle contamination. In Proceedings of the Scotland and Valencia workshop on Bayesian Statistics (ScoVa16 Workshop, VABAR), Valencia, Spain, 28–29 January 2016. [Google Scholar]
- Gomes, T.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. Aquat. Toxicol. 2013, 136, 79–90. [Google Scholar] [CrossRef]
- Bouallegui, Y.; Younes, R.B.; Oueslati, R.; Sheehan, D. Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: A redox proteomic investigation. Aquat. Toxicol. 2018, 200, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Bouallegui, Y.; Ben Younes, R.; Oueslati, R.; Sheehan, D. Redox proteomic insights into involvement of clathrin-mediated endocytosis in silver nanoparticles toxicity to Mytilus galloprovincialis. PLoS ONE 2018, 13, e0205765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duroudier, N.; Cardoso, C.; Mehennaoui, K.; Mikolaczyk, M.; Schäfer, J.; Gutleb, A.C.; Cajaraville, M.P. Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons. Aquat. Toxicol. 2019, 210, 56–68. [Google Scholar] [CrossRef]
- Gomes, T.; Chora, S.; Pereira, C.G.; Cardoso, C.; Bebianno, M.J. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: An exploratory biomarker discovery. Aquat. Toxicol. 2014, 155, 327–336. [Google Scholar] [CrossRef]
- Hu, W.; Culloty, S.; Darmody, G.; Lynch, S.; Davenport, J.; Ramirez-Garcia, S.; Sheehan, D. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere 2014, 108, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Barranger, A.; Langan, L.M.; Sharma, V.; Rance, G.A.; Aminot, Y.; Weston, N.J.; Readman, J.W. Antagonistic Interactions between Benzo [a] pyrene and Fullerene (C60) in Toxicological Response of Marine Mussels. Nanomaterials 2019, 9, 987. [Google Scholar] [CrossRef] [Green Version]
- Cancio, I.; Ibabe, A.; Cajaraville, M.P. Seasonal variation of peroxisomal exyme activities and peroxisomal structure in mussels Mytilus galloprovincialis and its relationship with the lipid content. Comp. Biochem. Physiol. Part C 1999, 123, 135–144. [Google Scholar]
- Go, Y.M.; Jones, D.P. The redox proteome. J. Biol. Chem. 2013, 288, 26512–26520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, A.; Tedesco, S.; Vasconcelos, V.; Cristobal, S. Proteomic research in bivalves: Towards the identification of molecular markers of aquatic pollution. J. Proteom. 2012, 75, 4346–4359. [Google Scholar] [CrossRef] [PubMed]
- Diz, A.P.; Truebano, M.; Skibinski, D.O.F. The consequences of sample pooling in proteomics: An empirical study. Electrophoresis 2009, 30, 2967–2975. [Google Scholar] [CrossRef] [PubMed]
- Renuse, S.; Chaerkady, R.; Pandey, A. Proteogenomics. Proteomics 2011, 11, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Riva, C.; Binelli, A.; Rusconi, F.; Colombo, G.; Pedriali, A.; Zippel, R.; Provini, A. A proteomic study using zebra mussels (D. polymorpha) exposed to benzo(α)pyrene: The role of gender and exposure concentrations. Aquat. Toxicol. 2011, 104, 14–22. [Google Scholar] [CrossRef]
- Armengaud, J.; Trapp, J.; Pible, O.; Geffard, O.; Chaumot, A.; Hartmann, E.M. Non-model organisms, a species endangered by proteogenomics. J. Proteome 2014, 105, 5–18. [Google Scholar] [CrossRef]
- Charnot, A.; Gouveia, D.; Armengaud, J.; Almunia, C.; Chaumot, A.; Lemoine, J.; Geffard, O.; Salvador, A. Multiplexed assay for protein quantitation in the invertebrate Gammarus fossarum by liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 3969–3991. [Google Scholar] [CrossRef]
- Trapp, J.; Geffard, O.; Imbert, G.; Gaillard, J.-C.; Davin, A.-H.; Chaumot, A.; Armengaud, J. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol. Cell Proteom. 2014, 13, 3612–3625. [Google Scholar] [CrossRef] [Green Version]
- Rabilloud, T.; Chevallet, M.; Luche, S.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: Past, present and future. J. Proteom. 2010, 73, 2064–2077. [Google Scholar] [CrossRef] [Green Version]
- Faugere, J.; Gouveia, D.; Ayciriex, S.; Chaumot, A.; Almunia, C.; François, A.; Armengaud, J.; Lemoine, J.; Geffard, O.; Degli-Esposti, D.; et al. High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics. J. Proteom. 2020, 226, 103901. [Google Scholar] [CrossRef]
- Baggerman, G.; Vierstraete, E.; De Loof, A.; Schoofs, L. Gel-based versus gel-free proteomics: A review. Comb. Chem. High Throughput Screen. 2005, 8, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Searle, B.C.; Swearingen, K.E.; Barnes, C.A.; Schmidt, T.; Gessulat, S.; Küster, B.; Wilhelm, M. Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat. Commun. 2020, 11, 1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murgarella, M.; Puiu, D.; Novoa, B.; Figueras, A.; Posada, D.; Canchaya, C. A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis. PLoS ONE 2016, 11, e0151561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocher, B.; Bultelle, F.; Chan, P.; Foll, F.L.; Letendre, J.; Monsinjon, T.; Olivier, S.; Péden, R.; Poret, A.; Vaudry, D.; et al. 2-DE Mapping of the blue mussel gill proteome: The usual suspects revisited. Proteomes 2015, 3, 3–41. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Varela, Z.; Franco, D.; Fernández, J.A.; Aboal, J.R. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. Environ. Pollut. 2020, 267, 115473. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.; Miracle, A.; Perkins, E.J.; Daston, G.P. (Eds.) Genomics in Regulatory Ecotoxicology: Applications and Challenges; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
NPs | Concentration | NPs Size | Exposure Time | Model Species | Tissue | Technique | Reference |
---|---|---|---|---|---|---|---|
Mussels | |||||||
Au | 750 µg/L | 13 nm | 24 h | Mytilus edulis | Gills Digestive gland | 1-DE SDS-PAGE | [40] |
Au | 750 µg/L | ~5 nm | 24 h | Mytilus edulis | Digestive gland | 1-DE SDS-PAGE, 2-DE (IEF/SDS-PAGE) | [41] |
Au | 750 µg/L | ~15 nm | 24 h | Mytilus edulis | Digestive gland | 1-DE SDS-PAGE, 2-DE (IEF/SDS-PAGE) | [42] |
Ag | 10 µg/L | <100 nm | 15 days | Mytilus galloprovincialis | Gills Digestive gland | 2-DE (IEF/SDS-PAGE); MALDI-TOF/TOF MS/MS | [45] |
Ag | 100 µg/L | <50 nm | 3–6–12 h 12 h | Mytilus galloprovincialis | Gills Digestive gland | 1-DE | [46] |
Ag | 100 µg/L | <100 nm | 3–6–12 h 12 h | Mytilus galloprovincialis | Gills Digestive gland | 1-DE | [46] |
Ag | 100 µg/L | <50 nm | 12 h | Mytilus galloprovincialis | Gills Digestive gland | 2-DE (IEF/SDS-PAGE); MALDI-TOF/TOF MS/MS | [47] |
Ag + PVP/PEI | 10 µg/L | 5 nm | 2 days | Mytilus galloprovincialis Female only | Digestive gland | 2-DE (IEF/SDS-PAGE); MALDI-TOF | [48] |
CuO | 10 µg/L | <50 nm | 15 days | Mytilus galloprovincialis | Gills Digestive gland | 2-DE (IEF/SDS-PAGE); MALDI-TOF/TOF MS/MS | [49] |
CuO | 400–700–1000 µg/L | ~100 nm | 1 h | Mytilus edulis | Gills | 2-DE (IEF/SDS-PAGE); MALDI-TOF/TOF MS/MS | [50] |
C60 | 0.01–0.1–1 mg/L | 653 ± 87 nm | 3 days | Mytilus galloprovincialis | Digestive gland | LC-HRMS | [51] |
Clams | |||||||
Au | 0.75 µg/L | 21.5 ± 2.9 nm | 1 days 7 days | Ruditapes philippinarum | Digestive gland | iTRAQ-8plex | [43] |
Au | 0.75 µg/L | ~20 nm | not available | Ruditapes philippinarum | not declared | iTRAQ-8plex MS/MS | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Felice, B.; Parolini, M. Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves? J. Mar. Sci. Eng. 2020, 8, 1033. https://doi.org/10.3390/jmse8121033
De Felice B, Parolini M. Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves? Journal of Marine Science and Engineering. 2020; 8(12):1033. https://doi.org/10.3390/jmse8121033
Chicago/Turabian StyleDe Felice, Beatrice, and Marco Parolini. 2020. "Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves?" Journal of Marine Science and Engineering 8, no. 12: 1033. https://doi.org/10.3390/jmse8121033
APA StyleDe Felice, B., & Parolini, M. (2020). Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves? Journal of Marine Science and Engineering, 8(12), 1033. https://doi.org/10.3390/jmse8121033