Using Video Monitoring to Test a Fetch-Based Aeolian Sand Transport Model
Abstract
:1. Introduction
2. Methodology
2.1. Model Description
2.2. Observations
2.2.1. Field Site
2.2.2. Video Monitoring
2.3. Model Set-Up
2.4. Synthetic Runs
3. Results
4. Discussion
4.1. Model Performance
4.2. Relevance of Days with Limited Transport
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, S.A. Computing Eolian Sand Transport from Routine Weather Data. Coast. Eng. 1974, 1619–1626. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Law, M.N. Measurement and prediction of long-term sediment supply to coastal foredunes. J. Coast. Res. 1996, 12, 654–663. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology 2002, 49, 89–108. [Google Scholar] [CrossRef]
- Sherman, D.J.; Houser, C.; Baas, A.C.W. Electronic Measurement Techniques for Field Experiments in Process Geomorphology; Elsevier Ltd.: New York, NY, USA, 2013; Volume 14, pp. 195–221. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.D. Meso-scale aeolian sediment input to coastal dunes: The nature of aeolian transport events. Geomorphology 2011, 126, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.L.; Namikas, S.L. Small-scale variability in surface moisture on a fine-grained beach: implications for modeling aeolian transport. Earth Surf. Process. Landf. 2009, 34, 1333–1338. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Atherton, R.J.; Baird, A.J. Thresholds of aeolian sand transport: establishing suitable values. Sedimentology 2004, 51, 95–108. [Google Scholar] [CrossRef]
- Nield, J.M.; King, J.; Wiggs, G.F.S.; Leyland, J.; Bryant, R.G.; Chiverrell, R.C.; Darby, S.E.; Eckardt, F.D.; Thomas, D.S.G.; Vircavs, L.H.; et al. Estimating aerodynamic roughness over complex surface terrain. J. Geophys. Res. Atmos. 2013, 118, 12948–12961. [Google Scholar] [CrossRef]
- Nield, J.M.; King, J.; Jacobs, B. Detecting surface moisture in aeolian environments using terrestrial laser scanning. Aeolian Res. 2014, 12, 9–17. [Google Scholar] [CrossRef]
- Svasek, J.N.; Terwindt, J.H.J. Measurements of sand transport by wind on a natural beach. Sedimentology 1974, 21, 311–322. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian transport of sediment on a beach during and after rainfall, Wildwood, NJ, USA. Geomorphology 1998, 22, 151–157. [Google Scholar] [CrossRef]
- Sherman, D.J.; Jackson, D.W.; Namikas, S.L.; Wang, J. Wind-blown sand on beaches: An evaluation of models. Geomorphology 1998, 22, 113–133. [Google Scholar] [CrossRef]
- De Winter, W.; Donker, J.; Sterk, G.; Van Beem, J.; Ruessink, G. Regional versus local wind speed and direction at a narrow beach with a high and steep foredune. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.O.; Davidson-Arnott, R.G.; Nordstrom, K.F.; Ollerhead, J.; Jackson, N.L. Indeterminacy in aeolian sediment transport across beaches. J. Coast. Res. 1996, 12, 641–653. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Hesp, P.A.; Namikas, S.L.; Ollerhead, J.; Walker, I.J. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology 2009, 105, 106–116. [Google Scholar] [CrossRef]
- Baas, A.C.W.; Sherman, D. Formation and behavior of aeolian streamers. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B. Predicting aeolian sand transport rates: A reevaluation of models. Aeolian Res. 2012, 3, 371–378. [Google Scholar] [CrossRef]
- Montreuil, A.L.; Chen, M.; Brand, E.; Strypsteen, G.; Rauwoens, P.; Vandenbulcke, A.; De Wulf, A.; Dan, S.; Verwaest, T. Dynamics of Surface Moisture Content on a Macro-tidal Beach. J. Coast. Res. 2018, 85, 206–210. [Google Scholar] [CrossRef]
- Nield, J.M.; Wiggs, G.F.S.; Squirrell, R.S. Aeolian sand strip mobility and protodune development on a drying beach: examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surf. Process. Landf. 2011, 36, 513–522. [Google Scholar] [CrossRef]
- Nield, J.M. Surface moisture-induced feedback in aeolian environments. Geology 2011, 39, 915–918. [Google Scholar] [CrossRef]
- Hage, P.M.; Ruessink, B.G.; Donker, J.J.A. Determining sand strip characteristics using Argus video monitoring. Aeolian Res. 2018, 33, 1–11. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.D.; Ollerhead, J. Application of a Remote Sensing Technique to the Study of Coastal Dunes. J. Coast. Res. 2009, 255, 1160–1167. [Google Scholar] [CrossRef]
- Hage, P.M.; Ruessink, B.G.; Donker, J.J.A. Using Argus video monitoring to determine limiting factors of aeolian sand transport on a narrow beach. J. Mar. Sci. Eng. 2018, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Van der Wal, D. Effects of fetch and surface texture on aeolian sand transport on two nourished beaches. J. Arid Environ. 1998, 39, 533–547. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I. Meso-scale modelling of aeolian sediment input to coastal dunes. Geomorphology 2011, 130, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Raubenheimer, B.; Guza, R.; Elgar, S. Tidal water table fluctuations in a sandy ocean beach. Water Resour. Res. 1999, 35, 2313–2320. [Google Scholar] [CrossRef]
- Nielsen, P. Tidal dynamics of the water table in beaches. Water Resour. Res. 1990, 26, 2127–2134. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.; Davis, G.; Winterbourne, J.; Elias, G. Wave setup and the watertable in sandy beaches. Tech. Rep. Tech. Memo-Randum 1998, 88, 1. [Google Scholar]
- Kang, H.Y.; Nielsen, P.; Hanslow, D.J. Watertable overheight due to wave runup on a sandy beach. Coast. Eng. 1994, 2115–2124. [Google Scholar]
- Brakenhoff, L.B.; Smit, Y.; Donker, J.J.; Ruessink, G. Tide-induced variability in beach surface moisture: Observations and modelling. Earth Surf. Process. Landf. 2019, 44, 317–330. [Google Scholar] [CrossRef]
- Turner, I.L.; Nielsen, P. Rapid water table fluctuations within the beach face: Implications for swash zone sediment mobility? Coast. Eng. 1997, 32, 45–59. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger Jr, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Huizer, S.; Karaoulis, M.; Oude Essink, G.; Bierkens, M. Monitoring and simulation of salinity changes in response to tide and storm surges in a sandy coastal aquifer system. Water Resour. Res. 2017, 53, 6487–6509. [Google Scholar] [CrossRef]
- Smit, Y.; Donker, J.; Ruessink, B. Spatiotemporal surface moisture variations on a barred beach and their relationship with groundwater fluctuations. Hydrology 2019, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Fernandez, I. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Res. 2010, 2, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.A. Wind stress criteria in eolian sand transport. J. Geophys. Res. 1971, 76, 8684–8686. [Google Scholar] [CrossRef]
- Wijnberg, K.M.; Terwindt, J.H.J. Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Mar. Geol. 1995, 126, 301–330. [Google Scholar] [CrossRef]
- Quartel, S.; Ruessink, B.G.; Kroon, A. Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology. Earth Surf. Process. Landf. 2007, 32, 1293–1307. [Google Scholar] [CrossRef]
- Sluijter, R.; Leenaers, H.; Camarasa, M. De Bosatlas van het klimaat; Noordhoff uitgevers Groningen: Groningen, The Netherlands, 2011; Available online: www.klimaatatlas.nl (accessed on 11 February 2020).
- Masselink, G.; Kroon, A.; Davidson-Arnott, R.G.D. Morphodynamics of intertidal bars in wave-dominated coastal settings—A review. Geomorphology 2006, 73, 33–49. [Google Scholar] [CrossRef]
- Aagaard, T.; Kroon, A.; Andersen, S.; Sørensen, R.M.; Quartel, S.; Vinther, N. Intertidal beach change during storm conditions; Egmond, The Netherlands. Mar. Geol. 2005, 218, 65–80. [Google Scholar] [CrossRef]
- Quartel, S.; Grasmeijer, B.T. Dynamiek van het strand bij Noordwijk aan Zee en Egmond aan Zee en het effect van suppleties. In Rijksinstituut voor Kust en Zee (RIKZ); Opdracht RKZ-1667; Universiteit van Utrecht: Utrecht, The Netherlands, 2007. [Google Scholar]
- De Winter, R.C.; Gongriep, F.; Ruessink, B.G. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coast. Eng. 2015, 99, 167–175. [Google Scholar] [CrossRef]
- Ruessink, B.; Schwarz, C.; Price, T.; Donker, J. A Multi-Year Data Set of Beach-Foredune Topography and Environmental Forcing Conditions at Egmond aan Zee, The Netherlands. Data 2019, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- Van Enckevort, I.M.J.; Ruessink, B.G. Effect of hydrodynamics and bathymetry on video estimates of nearshore sandbar position. J. Geophys. Res. Oceans 2001, 106, 16969–16979. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.A.; Sallenger, A.H. High-energy nearshore processes. Eos Trans. Am. Geophys. Union 1986, 67, 1369. [Google Scholar] [CrossRef]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Tuijnman, Y. Soil Moisture Dynamics and the Effects on Initiation of Aeolian Sand Transport; Utrecht University: Utrecht, The Netherlands, 2019. [Google Scholar]
- Smit, Y. Surface Moisture Dynamics on a Narrow Coastal Beach. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2019. [Google Scholar]
- Ruessink, G.; Schwarz, C.; Hage, P.; Smit, Y.; de Winter, W.; Donker, J. Predicting Potential Aeolian Sand Supply to a High and Steep Foredune. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.; Walker, I.J.; Hesp, P.A.; Ollerhead, J. Wind direction and complex sediment transport response across a beach–dune system. Earth Surf. Process. Landf. 2012, 37, 1661–1677. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.; Dawson, J. Moisture and fetch effects on rates of aeolian sediment transport, Skallingen, Denmark. In Proceedings of the Canadian Coastal Conference, Canadian Coastal Science and Engineering Association, Ottawa, ON, Canada, 5–9 November 2001; pp. 309–321. [Google Scholar]
- Schmutz, P.; Briggs, T.; Tereszkiewicz, P. The utility of an omni-directional photoelectronic sensor device to measure meso-scale variability in aeolian sediment transport activity. Aeolian Res. 2019, 36, 61–67. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Res. 2011, 3, 181–196. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Jackson, D.W.; Cooper, J.A.G.; Baas, A.C.; Beyers, J.M.; Lynch, K. Field characterization of three-dimensional lee-side airflow patterns under offshore winds at a beach-dune system. J. Geophys. Res. Earth Surf. 2013, 118, 706–721. [Google Scholar] [CrossRef] [Green Version]
- Donker, J.; van Maarseveen, M.; Ruessink, G. Spatio-temporal variations in foredune dynamics determined with mobile laser scanning. J. Mar. Sci. Eng. 2018, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Hoonhout, B.M.; Vries, S.D. A process-based model for aeolian sediment transport and spatiotemporal varying sediment availability. J. Geophys. Res. Earth Surf. 2016, 121, 1555–1575. [Google Scholar] [CrossRef]
Wind Class | Wind Velocity (m/s) |
---|---|
1 | <8.5 |
2 | 8.5–10.5 |
3 | 10.5–13.5 |
4 | ≥13.5 |
Spatial and Temporal Settings | |
Start (dd-mm-yyyy) | 01-10-2011 |
End (dd-mm-yyyy) | 31-03-2012 |
Model output time step | 10 min |
Spatial grid size | 0.5 m |
Groundwater Settings | |
Calculation time step | 2 s |
Grid size | 0.5 m |
Aquifer depth D | 11 m |
Hydraulic conductivity K | 4.63 × m/s |
Effective porosity | 0.3 |
Infiltration coefficient | 0.5 |
Minimum water table depth in run-up infiltration | 0.2 m |
Settings Van Genuchten Curve | |
Saturated water content | 20.51 % |
Residual water content | 2.92 % |
5.59 m | |
n | 3.69 |
Aeolian Transport Settings | |
4 | |
Grain size | 240 m |
Maximum surface moisture content | 10% |
Dunefoot elevation | 2.5 m |
Minimum regional wind speed at which transport is possible | 8 m/s |
Visual Transport Class | |||||||
---|---|---|---|---|---|---|---|
Wind Class | 0 | 1 | 2 | 3 | 4 | Total | Percentage |
1 | 84 | 1 | 1 | 1 | 0 | 87 | 47.5% |
2 | 20 | 4 | 4 | 1 | 10 | 39 | 21.3% |
3 | 15 | 5 | 1 | 3 | 5 | 29 | 15.8% |
4 | 7 | 4 | 1 | 3 | 13 | 28 | 15.3% |
Total | 126 | 14 | 7 | 8 | 28 | 183 | |
Percentage | 68.8% | 7.7% | 3.8% | 4.4% | 15.3% |
Visual Transport Class | |||||
---|---|---|---|---|---|
Wind Class | 0 | 1 | 2 | 3 | 4 |
1 | 1.00 | - | - | - | - |
(2 out of 84) | (0 out of 1) | (0 out of 1) | (0 out of 1) | (0 out of 0) | |
2 | 0.94 | 0.99 | 0.98 | - | 1.00 |
(11 out of 20) | (3 out of 4) | (4 out of 4) | (0 out of 1) | (10 out of 10) | |
3 | 0.77 | 0.91 | 0.91 | 0.98 | 1.00 |
(10 out of 15) | (5 out of 5) | (1 out of 1) | (3 out of 3) | (5 out of 5) | |
4 | 0.46 | 0.76 | 0.88 | 0.98 | 0.98 |
(6 out of 7) | (4 out of 4) | (1 out of 1) | (3 out of 3) | (13 out of 13) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hage, P.; Ruessink, G.; van Aartrijk, Z.; Donker, J. Using Video Monitoring to Test a Fetch-Based Aeolian Sand Transport Model. J. Mar. Sci. Eng. 2020, 8, 110. https://doi.org/10.3390/jmse8020110
Hage P, Ruessink G, van Aartrijk Z, Donker J. Using Video Monitoring to Test a Fetch-Based Aeolian Sand Transport Model. Journal of Marine Science and Engineering. 2020; 8(2):110. https://doi.org/10.3390/jmse8020110
Chicago/Turabian StyleHage, Pam, Gerben Ruessink, Zilla van Aartrijk, and Jasper Donker. 2020. "Using Video Monitoring to Test a Fetch-Based Aeolian Sand Transport Model" Journal of Marine Science and Engineering 8, no. 2: 110. https://doi.org/10.3390/jmse8020110
APA StyleHage, P., Ruessink, G., van Aartrijk, Z., & Donker, J. (2020). Using Video Monitoring to Test a Fetch-Based Aeolian Sand Transport Model. Journal of Marine Science and Engineering, 8(2), 110. https://doi.org/10.3390/jmse8020110