Assessing Different Flood Risk and Damage Approaches: A Case of Study in Progreso, Yucatan, Mexico
Abstract
:1. Introduction
2. Theoretical Considerations
3. Study Area
4. Materials and Methods
4.1. Flooding Assessment
4.2. Flood Risk Assessment
4.3. Flood Damage Assessment
5. Results
5.1. Flood Vulnerability of the Norte for Progreso
5.2. Flood Risk Assessment of the Norte for Progreso
5.3. Flood Damage Assessment of the Norte for Progreso, Yucatan
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rey, W.; Mendoza, E.T.; Salles, P.; Zhang, K.; Teng, Y.-C.; Trejo-Rangel, M.A.; Franklin, G.L. Hurricane flood risk assessment for the Yucatan and Campeche State coastal area. Nat. Hazards 2019, 96, 1041–1065. [Google Scholar] [CrossRef]
- Appendini, C.M.; Hernández-Lasheras, J.; Meza-Padilla, R.; Kurczyn, J.A. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico. Clim. Dyn. 2018, 51, 3747–3763. [Google Scholar] [CrossRef]
- Rey, W.; Salles, P.; Mendoza, E.T.; Torres-Freyermuth, A.; Appendini, C.M. Assessment of coastal flooding and associated hydrodynamic processes on the Southeast coast of Mexico, during Central American Cold Surge events. Nat. Hazards Earth Syst. Sci. 2018, 18, 1681–1701. [Google Scholar] [CrossRef] [Green Version]
- Reding, P.J. The Central American Cold Surge: An Observational Analysis of the Deep Southward Penetration of North American Cold Fronts. M.S. Thesis, Department of Meteorology, Texas A&M University, College Station, TX, USA, 1992; p. 177. [Google Scholar]
- Schultz, D.M.; Bracken, W.E.; Bosart, L.F.; Hakim, G.J.; Bedrick, M.A.; Dickinson, M.J.; Tyle, K.R. The 1993 Superstorm Cold Surge: Frontal Structure, Gap Flow, and Tropical Impact. Mon. Weather Rev. 1997, 125, 5–39. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.; Bracken, W.; Bosart, L. Planetary and synoptic scale signatures associated with Central American cold surges. Mon. Weather Rev. 1998, 126, 5–27. [Google Scholar] [CrossRef]
- López-Méndez, J.V. Análisis del Evento Meteorológico del 2007 relacionado con la Inundación de Tabasco. M.S. Thesis, Centro de Ciencias de la Atmosfera, Ciudad Universitaria, National Autonomous University of Mexico, Mexico city, Mexico, 2009; p. 117. Available online: http://bibliotecas.unam.mx (accessed on 17 February 2020).
- Rosengaus-Moshinsky, M.; Jiménez-Espinosa, M.; Vázquez-Conde, M.T. Atlas Climatológico de Ciclones Tropicales en México; Centro Nacional de Prevención de Desastres, Instituto Mexicano de Tecnología del Agua: Ciudad de México, México, 2002; p. 108. ISBN 9706286330. [Google Scholar]
- Appendini, C.M.; Meza-padilla, R.; Abud-russell, S.; Proust, S.; Barrios, R.E.; Secaira-Fajardo, F. Effect of climate change over landfalling hurricanes at the Yucatan Peninsula. Clim. Chang. 2019, 157, 469–482. [Google Scholar] [CrossRef]
- Kopp, R.E.; Deconto, R.M.; Bader, D.A.; Hay, C.C.; Radley, M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Earth’s Future Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earths Futur. 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.M.R.; Wong, T.E.; Ruckert, K.L.; Keller, K. Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.E.; Bakker, A.M.R.; Keller, K. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim. Chang. 2017, 144, 347–364. [Google Scholar] [CrossRef]
- Le Bars, D.; Drijfhout, S.; De Vries, H. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environ. Res. Lett. 2017, 12, 044013. [Google Scholar] [CrossRef]
- Holleman, R.C.; Stacey, M.T. Coupling of Sea Level Rise, Tidal Amplification, and Inundation. J. Phys. Oceanogr. 2014, 44, 1439–1455. [Google Scholar] [CrossRef]
- Paprotny, D.; Terefenko, P. New estimates of potential impacts of sea level rise and coastal floods in Poland. Nat. Hazards 2017, 85, 1249–1277. [Google Scholar] [CrossRef] [Green Version]
- Rey, W.; Salles, P.; Torres-freyermuth, A.; Ruiz-Salcines, P.; Teng, Y.; Appendini, C.M. Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events. J. Mar. Sci. Eng. 2020, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Ciavola, P.; Masselink, G.; McCall, R.; Plater, A.J. Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate. Nat. Hazards Earth Syst. Sci. 2016, 16, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Salman, A.M.; Li, Y. Flood Risk Assessment, Future Trend Modeling, and Risk Communication: A Review of Ongoing Research. Nat. Hazards Rev. 2018, 19, 04018011. [Google Scholar] [CrossRef]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Kuspilić, N.; Gilja, G.; Ocvirk, E. Calculation of Flood Event Exceedance Probability and Related Flood Risk. In Proceedings of the 6th Croatian Water Conference with International Participation, Opatija, Croatia, 20–23 May 2015; Croatian Waters on the Investment Wave: Opatija, Croatia, 2015; pp. 1–9. [Google Scholar]
- Merz, B.; Thieken, A.H.; Gocht, M. Flood Risk Mapping At the Local Scale: Concepts and Challenges. In Advances in Natural and Technological Hazards Research; Begum, S., Stive, M.J.F., Hall, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 231–251. ISBN 978-1-4020-4200-3. [Google Scholar]
- Genovese, E. A Methodological Approach to Land Use-Based Flood Damage Assessment in Urban Areas: Prague Case Study; Technical EUR Reports; EUR: Luxembourg, Luxembourg, 2006. [Google Scholar]
- Panagoulia, D.; Dimou, G. Sensitivity of flood events to global climate change. J. Hydrol. 1997, 191, 208–222. [Google Scholar] [CrossRef]
- Panagoulia, D.; Mamassis, N.; Gkiokas, A. Deciphering the floodplain inundation maps in Greece. In Proceedings of the 8th International Conference Water Resources Management in an Interdisciplinary and Changing Context, Porto, Portugal, 26–29 June 2013; European Water Resources Association: Porto, Portugal, 2013; pp. 323–330. [Google Scholar]
- Dinh, Q.; Balica, S.; Popescu, I.; Jonoski, A. Climate change impact on flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the Mekong Delta Climate change impact on flood hazard, vulnerability and risk of the Long Xuyen. Int. J. River Basin Manag. 2012, 10, 103–120. [Google Scholar] [CrossRef]
- Ward, P.J.; De Moel, H.; Aerts, J.C.J.H. How are flood risk estimates affected by the choice of return-periods? Nat. Hazards Earth Syst. Sci. 2011, 11, 3181–3195. [Google Scholar] [CrossRef] [Green Version]
- Penning-Rowsell, E.; Fordham, M.; Correia, F.; Gardiner, J.; Green, C.; Hubert, G.; Ketteridge, A.-M.; Klaus, J.; Parker, D.; Peerbolte, B.; et al. Flood hazard assessment, modelling and management: Results from the EUROflood project. In Floods Across Europe: Flood Hazard Assessment, Modelling and Management; Penning-Rowsell, E., Fordham, M., Eds.; University Press: London, UK, 1994; pp. 37–72. [Google Scholar]
- Wind, H.G.; Nierop, T.M.; De Blois, C.J.; De Kok, J.L. Analysis of flood damages from the 1993 and 1995 Meuse floods. Water Resour. Res. 1999, 35, 3459–3465. [Google Scholar] [CrossRef]
- Tingsanchali, T.; Karim, M.F. Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol. Process. 2005, 19, 2055–2069. [Google Scholar] [CrossRef]
- Leandro, J.; Schumann, A.; Pfister, A. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. J. Hydrol. 2016, 535, 356–365. [Google Scholar] [CrossRef]
- Seenath, A.; Wilson, M.; Miller, K. Hydrodynamic versus GIS modelling for coastal flood vulnerability assessment: Which is better for guiding coastal management? Ocean Coast. Manag. 2016, 120, 99–109. [Google Scholar] [CrossRef]
- UNDRR Terminology on Disaster Risk Reduction. Available online: https://www.unisdr.org/we/inform/terminology (accessed on 9 July 2019).
- Balica, S.F.; Wright, N.G.; van der Meulen, F. A flood Vulnerability Index for Coastal Cities and Its Use in Assessing Climate Change Impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef] [Green Version]
- Mebarki, A.; Valencia, N.; Salagnac, J.L.; Barroca, B. Flood hazards and masonry constructions: A probabilistic framework for damage, risk and resilience at urban scale. Nat. Hazards Earth Syst. Sci. 2012, 12, 1799–1809. [Google Scholar] [CrossRef]
- CENAPRED. Guía Básica Para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos: Fenómenos Hidrometeorológicos; CENAPRED: Mexico city, Mexico, 2006; ISBN 970-628-905-4. [Google Scholar]
- Perry, E.; Swift, J.; Gamboa, J.; Reeve, A.; Sanborn, R.; Marin, L.; Villasuso, M. Geologic and environmental aspects of surface cementation, north coast, Yucatan, Mexico. Geology 1989, 17, 818–821. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Espinoza, B.; Salles, P.; Zavala-Hidalgo, J. On the wind power potential in the northwest of the Yucatan Peninsula in Mexico. Atmósfera 2014, 27, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Jiménez, A.; Euán-Ávila, J. Morphodynamics of carbonate beaches in the Yucatán Peninsula. Ciencias Mar. 2009, 35, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, C.; Mariño-Tapia, I.J.; Herrera-Silveira, J.A. Dispersion in the Yucatan coastal zone: Implications for red tide events. Cont. Shelf Res. 2010, 30, 127–137. [Google Scholar] [CrossRef]
- Appendini, C.M.; Torres-Freyermuth, A.; Oropeza, F.; Salles, P.; López, J.; Mendoza, E.T. Wave modeling performance in the Gulf of Mexico and Western Caribbean: Wind reanalyses assessment. Appl. Ocean Res. 2013, 39, 20–30. [Google Scholar] [CrossRef]
- Medellín, G.; Brinkkemper, J.A.; Torres-Freyermuth, A.; Appendini, C.M.; Mendoza, E.T.; Salles, P. Run-up parameterization and beach vulnerability assessment on a barrier island: A downscaling approach. Nat. Hazards Earth Syst. Sci. 2016, 16, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Andersen, O.B. Global ocean tides from ERS 1 and TOPEX/POSEIDON altimetry. J. Geophys. Res. 1995, 100, 25249–25259. [Google Scholar] [CrossRef]
- Abascal, J.; Sheinbaum, J.; Candela, J.; Ochoa, J.; Badan, A. Analysis of flow variability in the Yucatan Channel. J. Geophys. Res. 2003, 108, 1–18. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Ho, F.P.; Tracey, R.J.; Myers, V.A.; Foat, N.S. Storm Tide Frequency Analysis for the Open Coast of Virginia, Maryland, and Delaware; NOAA Technical Memorandum NWS HYDRO-32, Department of Commerce: Silver Spring, MD, USA, 1976. [Google Scholar]
- Jenkinson, A.F. Estimation of Maximum Floods. In Report of a Working Group of the Commission for Hydrometeorology; World Meteorological Organization: Geneve, Switzerland, 1969; p. 208. [Google Scholar]
- Chini, N.; Stansby, P.K. Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast. Eng. 2012, 65, 27–37. [Google Scholar] [CrossRef]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Hall, J.; Disse, M.; Schumann, A. Fluvial flood risk management in a changing world. Nat. Hazards Earth Syst. Sci. 2010, 509–527. [Google Scholar] [CrossRef] [Green Version]
- Balica, S.F.; Popescu, I.; Beevers, L.; Wright, N.G. Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environ. Model. Softw. 2013, 41, 84–92. [Google Scholar] [CrossRef]
- INEGI Censo de Población y Vivienda. 2010. Available online: http://www.beta.inegi.org.mx/proyectos/ccpv/2010/ (accessed on 25 May 2017).
- INEGI Mexico Consumer Price Index. Available online: http://www.beta.inegi.org.mx/app/indicesdeprecios/CalculadoraInflacion.aspx (accessed on 13 November 2018).
- UNISDR. UNISDR-Terminology on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2009; p. 30. [Google Scholar]
- Hernández, M.L.; Carreño, M.L.; Castillo, L. Methodologies and tools of risk management: Hurricane risk index (HRi). Int. J. Disaster Risk Reduct. 2018, 31, 926–937. [Google Scholar] [CrossRef]
- Pelling, M. What determines vulnerability to floods; a case study in Georgetown, Guyana. Environ. Urban. 1997, 9, 203–226. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Jenks, G.F. Generalization in statistical mapping. Ann. Assoc. Am. Geogr. 1963, 53, 15–26. [Google Scholar] [CrossRef]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters Second Edition; Routledge: London, UK; New York, NY, USA, 2004; Volume 2, ISBN 0-415-25216-4. [Google Scholar]
- Few, R. Flooding, vulnerability and coping strategies: Local responses to a global threat. Prog. Dev. Stud. 2003, 3, 43–58. [Google Scholar] [CrossRef]
- Pelling, M. The political ecology of flood hazard in urban Guyana. Geoforum 1999, 30, 249–261. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Dréze, J.; Sen, A. Action for Social Security: Foundations and Strategy. In Public Action for Social Security in Developing Countries; Ahmed, E., Dréze, J., Hills, J., Sen, A., Eds.; Clarendon: Oxford, UK, 1991; pp. 1–49. ISBN 9780199682676. [Google Scholar]
- Lin, N.; Emanuel, K.A.; Smith, J.A.; Vanmarcke, E. Risk assessment of hurricane storm surge for New York City. J. Geophys. Res. 2010, 115, D18. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Patro, S.; Chatterjee, C.; Mohanty, S.; Singh, R.; Raghuwanshi, N.S. Flood inundation modeling using MIKE FLOOD and remote sensing data. J. Indian Soc. Remote Sens. 2009, 37, 107–118. [Google Scholar] [CrossRef]
- Smith, K. Environmental Hazards: Assessing Risk and Reducing Disaster; Routledge: London, UK, 1996. [Google Scholar]
Type of Housing | Description | Assigned Value ($USD) |
---|---|---|
I | Most humble type of home, consisting of a single multifunctional room with the minimum indispensable household goods. | $1041.00. |
II | The second type corresponds to low class homes which can be described as self-built homes or houses constructed with materials from the surrounding area, often without structural elements. With regards to household goods, it is assumed that the different rooms have their own furniture and are more or less defined. | $4163.00 |
III | Can also be classified as low class, similar to type II, but with more resistant roofs, most often built without structural elements. Household goods correspond to those which are necessary for the different rooms, as in the previous level; however, they are considered of higher quality and therefore a higher cost. | $12,530.00 |
IV | The typical middle class house, i.e., it can be compared to a house of social interest, most often built with structural elements. The household goods selected correspond to those of a typical house belonging to a family of professionals who work and live with no economic complications | $24,978.00 |
V | Residency built with finishes and decorative elements that substantially increase its value. The household goods consist of high quality items with many elements of comfort. | $37,467.00 |
Water Depth (m) | Hazard | Vulnerability | FRI | FRI_FD | Hazard/Vulnera Bility/FRI/FRI_FD Zones | |
---|---|---|---|---|---|---|
>2 | 0.4–1 | 0.61–1 | 0.33 | 0.081–0.333 | 0.244–1 | Very high |
1–2 | 0.2–0.4 | 0.37–0.6 | 0.33 | 0.025–0.080 | 0.074–0.240 | High |
0.5–1 | 0.1–0.2 | 0.21–0.36 | 0.33 | 0.007–0.024 | 0.021–0.072 | Medium |
0.2–0.5 | 0.04–0.1 | 0.075–0.2 | 0.33 | 0.003–0.007 | 0.003–0.020 | Low |
0–0.2 | 0–0.04 | 0–0.07 | 0.33 | 0–0.001 | 0–0.003 | Very low |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, W.; Martínez-Amador, M.; Salles, P.; Mendoza, E.T.; Trejo-Rangel, M.A.; Franklin, G.L.; Ruiz-Salcines, P.; Appendini, C.M.; Quintero-Ibáñez, J. Assessing Different Flood Risk and Damage Approaches: A Case of Study in Progreso, Yucatan, Mexico. J. Mar. Sci. Eng. 2020, 8, 137. https://doi.org/10.3390/jmse8020137
Rey W, Martínez-Amador M, Salles P, Mendoza ET, Trejo-Rangel MA, Franklin GL, Ruiz-Salcines P, Appendini CM, Quintero-Ibáñez J. Assessing Different Flood Risk and Damage Approaches: A Case of Study in Progreso, Yucatan, Mexico. Journal of Marine Science and Engineering. 2020; 8(2):137. https://doi.org/10.3390/jmse8020137
Chicago/Turabian StyleRey, Wilmer, Miranda Martínez-Amador, Paulo Salles, E. Tonatiuh Mendoza, Miguel A. Trejo-Rangel, Gemma L. Franklin, Pablo Ruiz-Salcines, Christian M. Appendini, and Julián Quintero-Ibáñez. 2020. "Assessing Different Flood Risk and Damage Approaches: A Case of Study in Progreso, Yucatan, Mexico" Journal of Marine Science and Engineering 8, no. 2: 137. https://doi.org/10.3390/jmse8020137
APA StyleRey, W., Martínez-Amador, M., Salles, P., Mendoza, E. T., Trejo-Rangel, M. A., Franklin, G. L., Ruiz-Salcines, P., Appendini, C. M., & Quintero-Ibáñez, J. (2020). Assessing Different Flood Risk and Damage Approaches: A Case of Study in Progreso, Yucatan, Mexico. Journal of Marine Science and Engineering, 8(2), 137. https://doi.org/10.3390/jmse8020137