Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia
Abstract
:1. Introduction
1.1. Challenges for OWC Site Assessments
1.2. Test Site and Energy Resource
2. Materials and Methods
3. Results
3.1. Cores
3.2. Sub-Bottom Profiling
3.3. Penetrometer
3.4. Geotechnical Analysis
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hemer, M.; Griffin, D. The wave energy resource along Australia’s Southern margin. J. Renew. Sustain. Energy 2010, 2. [Google Scholar] [CrossRef] [Green Version]
- Enerdata. Global Energy Trends—2016 Report; World Energy Council 2016: London, UK, 2016. [Google Scholar]
- ABC-News. Huge Swell Sinks Wave Energy Generator; ABC-News: New York, NY, USA, 2010. [Google Scholar]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Iturrioz, A.; Guanche, R.; Armesto, J.A.; Alves, M.A.; Vidal, C.; Losada, I.J. Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device. Ocean Eng. 2014, 76, 65–74. [Google Scholar] [CrossRef]
- Ramsay, P. Supporting renewable energy projects using high resolution hydrographic and geophysical survey techniques, Garden Island, Western Australia. Underw. Technol. Int. J. Soc. Underw. 2016, 33, 229–237. [Google Scholar] [CrossRef]
- Goff, J.A.; Kraft, B.J.; Mayer, L.A.; Schock, S.G.; Sommerfield, C.K.; Olson, H.C.; Gulick, S.P.S.; Nordfjord, S. Seabed characterization on the New Jersey middle and outer shelf: Correlatability and spatial variability of seafloor sediment properties. Mar. Geol. 2004, 209, 147–172. [Google Scholar] [CrossRef]
- Brown, J. Available online: http://waveswellenergy.com.au/technology/ (accessed on 12 January 2020).
- Fleming, A.A.M.G.; Hunter, S.; Denniss, T. Power performance prediction for a vented oscillating water column wave energy converter with a unidirectional air turbine power take-off. In Proceedings of the 12th European Wave and Tidal Energy Conference, Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Stark, N.; Hay, A.E.; Trowse, G. Cost-effective Geotechnical and Sedimentological Early Site Assessment for Ocean Renewable Energies. In Proceedings of the 2014 Oceans—St. John’s, St. John’s, NL, Canada, 14–19 September 2014. [Google Scholar]
- Barrie, J.V.; Conway, K.W. Seabed characterization for the development of marine renewable energy on the Pacific margin of Canada. Cont. Shelf Res. 2014, 83, 45–52. [Google Scholar] [CrossRef]
- Chatzigiannakou, M.A.; Dolguntseva, I.; Leijon, M. Offshore Deployments of Wave Energy Converters by Seabased Industry AB. J. Mar. Sci. Eng. 2017, 5, 15. [Google Scholar] [CrossRef]
- Chen, L.; Lam, W.-H. Methods for predicting seabed scour around marine current turbine. Renew. Sustain. Energy Rev. 2014, 29, 683–692. [Google Scholar] [CrossRef]
- Schneider, J.; Maynard, M.L.; Senders, M. Geotechnical engineering for offshore wind turbine foundations. Sea Technol. 2010, 51, 29–33. [Google Scholar]
- Cossu, R.; Heatherington, C.; Grinham, A.; Penesis, I.; Hunter, S. A cost-efficient seabed survey for bottom-mounted OWC on King Island, Tasmania, Australia. AWTEC 2018 Proc. 2018, 411–420. [Google Scholar]
- Fitzgerald, M.; Elsworth, D. Evolution of the Pore-Pressure Field Around a Moving Conical Penetrometer of Finite Size. J. Eng. Mech. 2010, 136, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Stark, N.; Wilkens, R.; Ernstsen, V.B.; Lambers-Huesmann, M.; Stegmann, S.; Kopf, A. Geotechnical Properties of Sandy Seafloors and the Consequences for Dynamic Penetrometer Interpretations: Quartz Sand Versus Carbonate Sand. Geotech. Geol. Eng. 2012, 30, 1–14. [Google Scholar] [CrossRef]
- Stoll, D.; Sun, Y.-F.; Bitte, I. Seafloor Properties From Penetrometer Tests. Ocean. Eng. IEEE J. 2007, 32, 57–63. [Google Scholar] [CrossRef]
- Mulukutla, G.K.; Huff, L.C.; Melton, J.S.; Baldwin, K.C.; Mayer, L.A. Sediment identification using free fall penetrometer acceleration-time histories. Mar. Geophys. Res. 2011, 32, 397–411. [Google Scholar] [CrossRef]
- Stark, N.; Kopf, A.; Hanff, H.; Stegmann, S.; Wilkens, R. Geotechnical investigations of sandy seafloors using dynamic penetrometers. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–10. [Google Scholar]
- Bjerrum, L. Problems of soil mechanics and construction on soft clays and structurally unstable soils-collapsiable expansive and others. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1975, 12, A19–A20. [Google Scholar] [CrossRef]
- Hansen, J.B. A revised and extended formula for bearing capacity. Danish Geotech. Inst. Bull 1970, 98, 5–11. [Google Scholar]
- Toby Johnson, D.T. Grassy Harbour Wave Climate and Scour Assessment; Cardno: St Leonards, NSW, Australia, 2019. [Google Scholar]
- Ahmadian, R.; Falconer, R.; Bockelmann-Evans, B. Far-field modelling of the hydro-environmental impact of tidal stream turbines. Renew. Energy 2012, 38, 107–116. [Google Scholar] [CrossRef]
- Funke, S.W.; Farrell, P.E.; Piggott, M.D. Tidal turbine array optimisation using the adjoint approach. Renew. Energy 2014, 63, 658–673. [Google Scholar] [CrossRef]
- Ricci, P.; Rico, A.; Ruiz-Minguela, P.; Boscolo, F.; Villate, J. Design, modelling and analysis of an integrated mooring system for wave energy arrays. In Proceedings of the 4th International Conference on Ocean Energy, Dublin, Ireland, 19 October 2012; pp. 1–6. [Google Scholar]
- Project, A. Tidal Energy in Australia—Assessing Australia’s Tidal Energy Resource & Its Ability to Contribute to Australia’s Future Energy Mix. Available online: http://austen.org.au/ (accessed on 19 January 2020).
- Stark, N.; Kopf, A. Detection and quantification of sediment remobilization processes using a dynamic penetrometer. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–9. [Google Scholar]
- Robertson, P.K. Soil classification using the cone penetration test. Can. Geotech. J. 1990, 27, 151–158. [Google Scholar] [CrossRef]
- Heath, J.E.; Jensen, R.P.; Weller, S.D.; Hardwick, J.; Roberts, J.D.; Johanning, L. Applicability of geotechnical approaches and constitutive models for foundation analysis of marine renewable energy arrays. Renew. Sustain. Energy Rev. 2017, 72, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.A.; Anderton, R.; Arosio, R.; Dove, D.; Bradwell, T.; Crump, P.; Cooper, R.; Cocuccio, A. The seabed geomorphology and geological structure of the Firth of Lorn, western Scotland, UK, as revealed by multibeam echo-sounder survey. Earth Environ. Sci. Trans. R. Soc. Edinb. 2015, 105, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.; Todd, B.J.; Li, M.Z.; Wu, Y. Anatomy of the tidal scour system at Minas Passage, Bay of Fundy, Canada. Mar. Geol. 2012, 323, 123–134. [Google Scholar] [CrossRef]
- O’Halloran, N.L.B. Geotechnical Design Report; Cardno (NSW/ACT) Pty Ltd.: St Leonards, NSW, Australia, 2019; pp. 1–40. [Google Scholar]
- Lancaster, O.; Cossu, R.; Baldock, T. Experimental investigation into scour processes around a gravity based Oscillating Water Column Wave Energy Converter. Coast. Eng. 2020. submitted. [Google Scholar]
- Petersen, T.U. Scour around Offshore Wind Turbine Foundations. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2014. [Google Scholar]
Site | Latitude | Longitude |
---|---|---|
site 1 | S40° 03’ 59.3″ | E144° 03’ 28.6″ |
site 2 | S40° 03’ 57.9″ | E144° 03’ 29.4″ |
site 3 | S40° 03’ 59.7″ | E144° 03’ 34.6″ |
site 4 | S40° 04’ 00.9″ | E144° 03’ 34.1″ |
site AWAC | S40° 03’ 58.7″ | E144° 03’ 31.8″ |
Load No. | Vertical Stress σ1 | Radial Effective Stress σ1 |
---|---|---|
1 | 45.43 | 6 |
2 | 95.29 | 15.5 |
3 | 143.34 | 25.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossu, R.; Heatherington, C.; Penesis, I.; Beecroft, R.; Hunter, S. Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia. J. Mar. Sci. Eng. 2020, 8, 194. https://doi.org/10.3390/jmse8030194
Cossu R, Heatherington C, Penesis I, Beecroft R, Hunter S. Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia. Journal of Marine Science and Engineering. 2020; 8(3):194. https://doi.org/10.3390/jmse8030194
Chicago/Turabian StyleCossu, Remo, Craig Heatherington, Irene Penesis, Ryan Beecroft, and Scott Hunter. 2020. "Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia" Journal of Marine Science and Engineering 8, no. 3: 194. https://doi.org/10.3390/jmse8030194
APA StyleCossu, R., Heatherington, C., Penesis, I., Beecroft, R., & Hunter, S. (2020). Seafloor Site Characterization for a Remote Island OWC Device Near King Island, Tasmania, Australia. Journal of Marine Science and Engineering, 8(3), 194. https://doi.org/10.3390/jmse8030194