A Stereolithographic Model-Based Dense Body Plan Generation Method to Construct a Ship Hydrodynamic Coefficients Database
Abstract
:1. Introduction
2. Three-Dimensional Printing and Stereolithographic Model
2.1. Three-Dimensional Printing
2.2. Stereolithographic Model
3. Model Slicing Pipeline
Algorithm 1. Section redistribution |
Input:Si (i = 1,…,N) Original sliced data Output: Ri (i = 1,…,N) Redistributed data
|
4. Dense Body Plan Results
5. Validation of the Produced Body Plan
6. Hydrodynamic Coefficients Database
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sprenger, F.; Maron, A.; Delefortrie, G.; van Zwijnsvoorde, T.; Cura-Hochbaum, A.; Lengwinat, A.; Papanikolaou, A. Experimental Studies on Seakeeping and Maneuverability of Ships in Adverse Weather Conditions. J. Sh. Res. 2017, 61, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.; Kirtman, B. Extreme Environmental Forcing on the Container Ship SS El Faro. J. Oper. Oceanogr. 2019, 1–16. Available online: https://www.tandfonline.com/doi/pdf/10.1080/1755876X.2019.1684136?needAccess=true (accessed on 1 July 2018). [CrossRef] [Green Version]
- Aung, M.Z.; Umeda, N. Manoeuvring Simulations in Adverse Weather Conditions with the Effects of Propeller and Rudder Emergence Taken into Account. Ocean Eng. 2020, 197, 106857. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Zhang, L.; Li, X. Safety Assessment of Navigation Based on Ship Handing Simulator. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 92–98. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Xiang, X.; Wang, Z. Real-Time Simulation of a Rescue Ship Maneuvering in Short-Crested Irregular Waves. IEEE Access 2019, 7, 133936–133950. [Google Scholar] [CrossRef]
- Benedict, K.; Kirchhoff, M.; Gluch, M.; Fischer, S.; Schaub, M.; Baldauf, M. Simulation-augmented methods for safe and efficient manoeuvres in harbour areas. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2016, 10. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Q.; Liu, J.; Li, S.; Negenborn, R.R. State-of-the-Art Research on Motion Control of Maritime Autonomous Surface Ships. J. Mar. Sci. Eng. 2019, 7, 438. [Google Scholar] [CrossRef] [Green Version]
- Bailey, P.A.; Hudson, D.A.; Price, W.G.; Temarel, P. Time Simulation of Manoeuvring and Seakeeping Assessments Using a Unified Mathematical Model. Trans. R. Inst. Nav. Arch. 2002, 144, 27–48. [Google Scholar]
- Fossen, T.I. A Nonlinear Unified State-Space Model for Ship Maneuvering and Control in a Seaway. Int. J. Bifurc. Chaos 2005, 15, 2717–2746. [Google Scholar] [CrossRef]
- Fang, M.-C.; Luo, J.-H.; Lee, M.-L. A Nonlinear Mathematical Model for Ship Turning Circle Simulation in Waves. J. Sh. Res. 2005, 49, 69–79. [Google Scholar]
- Skejic, R.; Faltinsen, O.M. A Unified Seakeeping and Maneuvering Analysis of Ships in Regular Waves. J. Mar. Sci. Technol. 2008, 13, 371–394. [Google Scholar] [CrossRef]
- Cummins, W. The impulse response function and ship motions. Schiffstechnik 1962, 9, 101–109. [Google Scholar]
- Ogilvie, T.F. Recent Progress toward the Understanding and Prediction of Ship Motions. In Proceedings of the 5th symposium on naval hydrodynamics, Bergen, Norway, 10–12 September 1964; Volume 1, pp. 2–5. [Google Scholar]
- The Manoeuvring Committee, Final Report and Recommendations to the 27th ITTC. In Proceedings of the 27th International Towing Tank Conference, Copenhagen, Denmark, 31 August–5 September 2014; Volume 1, pp. 1–67.
- Zhang, W.; Zou, Z.-J.; Deng, D.-H. A Study on Prediction of Ship Maneuvering in Regular Waves. Ocean Eng. 2017, 137, 367–381. [Google Scholar] [CrossRef]
- Chillcce, G.; el Moctar, O. A numerical method for manoeuvring simulation in regular waves. Ocean Eng. 2018, 170, 434–444. [Google Scholar] [CrossRef]
- Mei, T.; Liu, Y.; Tello Ruiz, M.; Vantorre, M.; Lataire, E.; Chen, C.; Zou, Z. Hybrid Method for Predicting Ship Manoeuvrability in Regular Waves. In Proceedings of the OMAE2019, Glasgow, Scotland, UK, 9–14 June 2019; Volume 7. [Google Scholar] [CrossRef]
- Wicaksono, A.; Kashiwagi, M. Wave-induced Steady Forces and Yaw Moment of a Ship Advancing in Oblique Waves. J. Mar. Sci. Technol. 2018, 23, 767–781. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, R.; Beck, R.F. An Improved Body-Exact Method to Predict the Maneuvering of Ships in a Seaway. In Proceedings of the OMAE2019, Glasgow, Scotland, UK, 9–14 June 2019; Volume 9. [Google Scholar] [CrossRef]
- Yasukawa, H.; Hirata, N.; Matsumoto, A.; Kuroiwa, R.; Mizokami, S. Evaluations of Wave-Induced Steady Forces and Turning Motion of a Full Hull Ship in Waves. J. Mar. Sci. Technol. 2019, 24, 1–15. [Google Scholar] [CrossRef]
- Wicaksono, A.; Kashiwagi, M. Efficient Coupling of Slender Ship Theory and Modular Maneuvering Model to Estimate the Ship Turning Motion in Waves. In Proceedings of the ISOPE-I-19-110, International Society of Offshore and Polar Engineers, Honolulu, HI, USA, 16–21 June 2019; p. 8. [Google Scholar]
- Jiao, J.; Sun, S.; Li, J.; Adenya, C.A.; Ren, H.; Chen, C.; Wang, D. A Comprehensive Study on the Seakeeping Performance of High Speed Hybrid Ships by 2.5D Theoretical Calculation and Different Scaled Model Experiments. Ocean Eng. 2018, 160, 197–223. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, M. A Hybrid 2.5-Dimensional High-Speed Strip Theory Method and Its Application to Apply Pressure Loads to 3-Dimensional Full Ship Finite Element Models. J. Sh. Prod. Des. 2016, 32, 216–225. [Google Scholar] [CrossRef]
- Ma, S.; Duan, W.-Y.; Song, J.-Z. An Efficient Numerical Method for Solving ‘2.5D’ Ship Seakeeping Problem. Ocean Eng. 2005, 32, 937–960. [Google Scholar] [CrossRef]
- Gourlay, T.; von Graefe, A.; Shigunov, V.; Lataire, E. Comparison of AQWA, GL Rankine, MOSES, OCTOPUS, PDStrip and WAMIT With Model Test Results for Cargo Ship Wave-Induced Motions in Shallow Water. In Proceedings of the OMAE2015, Newfoundland, Canada, 31 May–5 June 2015; Volume 11. [Google Scholar] [CrossRef] [Green Version]
- Park, D.-M.; Kim, Y.; Seo, M.-G.; Lee, J. Study on Added Resistance of a Tanker in Head Waves at Different Drafts. Ocean Eng. 2016, 111, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Ruth, E.; Austefjord, H.; Bitner-Gregersen, E.M.; Gramstad, O. Study on Ship Manoeuvering in Adverse Sea State. In Proceedings of the OMAE2017, Trondheim, Norway, 25–30 June 2017; Volume 3. [Google Scholar] [CrossRef]
- Kristiansen, E.; Hjulstad, Å.; Egeland, O. State-Space Representation of Radiation Forces in Time-Domain Vessel Models. Ocean Eng. 2005, 32, 2195–2216. [Google Scholar] [CrossRef]
- Donatini, L.; Vantorre, M.; Verwilligen, J.; Delefortrie, G. Description of Hydro/Meteo Data in Ship Manoeuvring Simulators: A Survey on the State of the Art. Ocean Eng. 2019, 189, 106344. [Google Scholar] [CrossRef] [Green Version]
- Oanta, E.; Hreniuc, V.C.; Grosu, C.D. Effective Method Used to Create the Analytical Models of Large Sets of Curves – Application for the Ship Hull Body Plan. IOP Conf. Ser. Mater. Sci. Eng. 2018, 400, 042043. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, J.S. Applications of 3D printing technologies in oceanography. Methods Oceanogr. 2016, 17, 97–117. [Google Scholar] [CrossRef]
- Kloske, R.; Josten, M.; Carstensen, B. Resistance tests with 3D printed models in the early ship design stage of high speed vessels. In Sustainable Development and Innovations in Marine Technologies, Proceedings of the 18th International Congress of the Maritme Association of the Mediterranean (IMAM 2019), Varna, Bulgaria, 9–11 September 2019; CRC Press: Boca Raton, FL, USA, 2019; p. 150. [Google Scholar]
- Liu, C.; Zhang, X.; Sun, X.; Yin, Y. Improved Draft Survey Method Based on Densified Table of Offsets. J. Traffic Transp. Eng. 2014, 14, 58–64. [Google Scholar]
- Shen, H.; Liu, C.; Yin, Y.; Sun, X. Automatic Stowage of Bulk Carrier Based on Ship Floating-State Control. J. Sh. Res. 2019, in press. [Google Scholar] [CrossRef]
- Most Used 3D Printing Technologies 2017–2018. Available online: https://www.statista.com/statistics/560304/worldwide-survey-3d-printing-top-technologies/ (accessed on 1 July 2018).
- Stern, F.; Agdrup, K.; Kim, S.Y.; Hochbaum, A.C.; Rhee, K.P.; Quadvlieg, F.; Perdon, P.; Hino, T.; Broglia, R.; Gorski, J. Experience from SIMMAN 2008The First Workshop on Verification and Validation of Ship Maneuvering Simulation Methods. J. Sh. Res. 2011, 55, 135–147. [Google Scholar]
- Wang, C.-S.; Chang, T.-R. Re-Triangulation in STL Meshes for Rapid Prototyping and Manufacture. Int. J. Adv. Manuf. Technol. 2008, 37, 770–781. [Google Scholar] [CrossRef]
- Zheng, H.; Cong, M.; Liu, D.; Dong, H.; Liu, Y. Optimization of STL Model and Layer Shape for Laser Cladding Forming. Int. J. Adv. Manuf. Technol. 2019, 100, 599–608. [Google Scholar] [CrossRef]
- Ledalla, S.R.K.; Tirupathi, B.; Sriram, V. Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process. J. Inst. Eng. India Ser. C 2018, 99, 339–346. [Google Scholar] [CrossRef]
- Shaher Sabit, A. Regression Analysis of the Resistance Results of the BSRA Series. Int. Shipbuild. Progress 1971, 18, 3–17. [Google Scholar] [CrossRef]
- Molland, A.F.; Turnock, S.R.; Hudson, D.A. Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-14206-0. [Google Scholar]
- Holtrop, J.; Mennen, G. An Approximate Power Prediction Method. Int. Shipbuild. Progress 1982, 29, 166–170. [Google Scholar] [CrossRef]
- Schneekluth, H.; Bertram, V. Ship Design for Efficiency and Economy; Butterworth-Heinemann: Oxford, UK, 1998; Volume 218, ISBN 978-0-7506-4133-3. [Google Scholar]
ASCII | Binary |
---|---|
Solid name | UINT8—header (80-character) |
Facet normal ni nj nk | UINT32—number of triangles |
Outer loop | For each triangle |
Vertex v1x v1y v1z | REAL 32—normal vector |
Vertex v2x v2y v2z | REAL32—vertex 1 |
Vertex v3x v3y v3z | REAL32—vertex 2 |
End loop | REAL32—vertex 3 |
End facet | UINT16—attribute byte count |
End solid name | end |
Ship | Facets (N) | Volume (m3) | WSA (m2) |
---|---|---|---|
DTMB | 5088 | 8424.4 | 2972.6 |
KCS | 8340 | 52030.0 | 9424.0 |
KVLCC2 | 24586 | 312600.0 | 27194.0 |
Slice (N) | 20 | 50 | 100 | 200 | 500 |
---|---|---|---|---|---|
DTMB (m3) | 8347.34 | 8415.09 | 8425.93 | 8428.68 | 8429.22 |
Error (%) | 0.915% | 0.111% | 0.018% | 0.051% | 0.057% |
KCS (m3) | 51909.53 | 52000.08 | 52021.66 | 52027.39 | 52029.59 |
Error (%) | 0.232% | 0.058% | 0.016% | 0.005% | 0.001% |
KVLCC2 (m3) | 312244.97 | 312426.39 | 312505.17 | 312580.11 | 312591.34 |
Error (%) | 0.114% | 0.056% | 0.030% | 0.006% | 0.003% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Q.; Shen, H.; Yin, Y. A Stereolithographic Model-Based Dense Body Plan Generation Method to Construct a Ship Hydrodynamic Coefficients Database. J. Mar. Sci. Eng. 2020, 8, 222. https://doi.org/10.3390/jmse8030222
Jing Q, Shen H, Yin Y. A Stereolithographic Model-Based Dense Body Plan Generation Method to Construct a Ship Hydrodynamic Coefficients Database. Journal of Marine Science and Engineering. 2020; 8(3):222. https://doi.org/10.3390/jmse8030222
Chicago/Turabian StyleJing, Qianfeng, Helong Shen, and Yong Yin. 2020. "A Stereolithographic Model-Based Dense Body Plan Generation Method to Construct a Ship Hydrodynamic Coefficients Database" Journal of Marine Science and Engineering 8, no. 3: 222. https://doi.org/10.3390/jmse8030222
APA StyleJing, Q., Shen, H., & Yin, Y. (2020). A Stereolithographic Model-Based Dense Body Plan Generation Method to Construct a Ship Hydrodynamic Coefficients Database. Journal of Marine Science and Engineering, 8(3), 222. https://doi.org/10.3390/jmse8030222