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Abstract: The transformation of long waves—such as tsunamis and storm surges—evolving over
a continental shelf is investigated. We approach this problem numerically using a pseudo-spectral
method for a higher-order Euler formulation. Solitary waves and undular bores are considered as
models for the long waves. The bathymetry possesses a periodic ridge-valley configuration in the
alongshore direction which facilitates a means by which we may observe the effects of refraction,
diffraction, focusing, and shoaling. In this scenario, the effects of wave focusing and shoaling enhance
the wave amplitude and phase speed in the shallower regions of the domain. The combination of these
effects leads to a wave pattern that is atypical of the usual behavior seen in linear shallow-water theory.
A reciprocating behavior in the amplitude on the ridge and valley for the wave propagation causes
wave radiation behind the leading waves, hence, the amplitude approaches a smaller asymptotic
value than the equivalent case with no lateral variation. For an undular bore propagating in one
dimension over a smooth step, we find that the water surface resolves into five different mean water
levels. The physical mechanisms for this phenomenon are provided.

Keywords: nearshore dynamics; coastal processes; mathematical and numerical modeling

1. Introduction

There have been many studies to quantify the evolution of localized long waves during shoaling
onto a continental shelf. For example, Synolakis [1] presented the transformation of solitary waves
over plane beaches. Synolakis & Skjelbreia [2] proposed a “two-zone” shoaling model by performing
laboratory experiments which show that at the commencement of the shoaling process (near the toe
of the beach) that the rate of shoaling follows Green’s law which is applicable for small-amplitude
shallow-water waves propagating over slowly-varying water depths. Green’s law can be written as
a ∝ h−1/4 in which a is the wave amplitude and h is the local still water depth. After the solitary
wave advances far enough towards the beach, the amplitude begins to coincide with a faster rate
of shoaling (a ∝ h−1) corresponding to the adiabatic result by Miles [3]. Numerical results on
solitary-wave shoaling generated by a fully-nonlinear wave model are presented by Grilli et al. [4]
and Guyenne & Nicholls [5], which reveal the various rates of shoaling that may be expected for
different beach slopes and wave amplitudes. A comprehensive numerical study of solitary-wave runup
by Knowles & Yeh [6] reveals that the two-zone shoaling model is a special case among numerous
shoaling behaviors depending on the length and slope of the beach, as well as the initial incident-wave
amplitude. In some cases, the rate of wave shoaling can be slower than what is predicted by Green’s law.

The majority of the studies that have dealt with this problem approach it from the context of
shoaling over a plane beach. However, some literature is available which includes the effects of
geometric irregularities in the bathymetry. Chen et al. [7] numerically solved the extended Boussinesq
equation [8] in the 2D horizontal plane for solitary waves in a nonuniform bathymetric domain.
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Solitary-wave-breaking over a circular shoal and run-up onto a conical island were examined
and compared with results from large-scale laboratory experiments. Lynett et al. [9] performed
laboratory experiments on solitary waves propagating over a shallow-water shelf. The continental
shelf possessed a triangular shape which broadens in the nearshore direction. This bathymetry
was modified by Lynett et al. [10] to contain a conical island located near the front of the triangular
bathymetry. From these experiments, it was observed that the solitary wave would separate into four
different bores. In the shallower regions, breaking would occur, generating jets around the conical
island which led to an enhanced energy dissipation. Liu et al. [11] performed large-scale laboratory
experiments on solitary waves propagating around a circular island. Results were compared with
a numerical model of the shallow-water wave equations. The experiments provided evidence of
wave trapping and the enhancing effects of slope on wave amplitude. Numerically, Yoshiki et al. [12]
developed a depth-integrated, non-hydrostatic, shock-capturing model in spherical coordinates to
reconstruct the 2009 Samoa tsunami. An analytic study was presented by Shimozono [13] in which
solutions were developed for long-wave evolution in laterally converging bays. It was found in some
cases that the wave behavior becomes two-dimensional due to wave refraction, and as a consequence
the quasi-one-dimensional assumption breaks down.

Here we investigate the effects of alongshore periodic variations of continental shelves on long
wave penetrations. This does not exactly represent a real-world condition, but we intend to focus on
the physics that emerge from the presence of a 2D bathymetry.

Solitary waves are a convenient waveform used to study localized long waves because of
their stable and permanent form in waters of uniform depth. Another relevant waveform that
we shall consider are undular bores. An undular bore is a dispersive shockwave that manifests
itself between two different asymptotic depths in shallow waters. The formation of an undular bore
can emerge from an extremely long initial water-surface displacement such as a tsunami or storm
surge. Furthermore, an undular bore is often generated by tides propagating up a river estuary.
Similar to a fully turbulent bore, an undular bore is characterized by a sudden change in water
depth which transitions from a supercritical to subcritical flow regime. It was found in laboratory
experiments by Favre [14], that as long as the ratio between the upstream and downstream water
depths is greater than unity but less than 1.28, an undular bore may form without any signs of
energy dissipation. Peregrine [15] performed numerical experiments on undular bores in waters of
uniform depth. He found that the initial growth rate of the undular bore is proportional to the square
of its initial amplitude, and the calculations were compared to the experimental results found by
Sandover & Taylor[16].

The purpose of our study is to explore the behaviors of a long wave (modeled by a solitary
wave and an undular bore) while it climbs over a continental shelf with a lateral periodic
variability. High-accuracy numerical experiments are carried out using the pseudo-spectral method.
Quantitative analyses are performed which reveal the mechanisms responsible for the evolution of
long waves over continental shelves.

2. Materials and Methods

Numerical Algorithm

We consider an irrotational flow field with a homogeneous, inviscid fluid in which the
mathematical description is given by the Zakharov-Craig-Sulem formulation [17,18] of the full
water-wave theory in the 3D domain:
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Φxx + Φyy + Φzz = 0 for − 1 + ζ ≤ z ≤ η,

∇Φ · ∇ζ −Φz = 0 at z = −1 + ζ,

ηt +∇ΦS · ∇η − (1 + |∇η|2)Φz = 0

ΦS
t + η +

1
2
|∇ΦS|2 − 1

2
(1 + |∇η|2)Φ2

z = 0

 at z = η,

(1)

where parameters have been scaled as follows:

Φ̃ = c0h0Φ, x̃ = h0x, ỹ = h0y, z̃ = h0z, η̃ = h0η, ζ̃ = h0ζ, t̃ =
h0

c0
t, (2)

in which the tildes denote dimensional variables, c0 =
√

gh0 is the linear shallow-water-wave phase
speed, and h0 is the still water depth. In this formulation, Φ(~x, z, t) is the velocity potential, ζ(~x) is the
deviation of the bottom-boundary from its mean elevation, η(~x, t) is the water-surface displacement
from the equilibrium state, ΦS(~x, t) ≡ Φ(~x, z = η(~x, t), t) is the velocity potential at the water surface,
∇ = (∂/∂x, ∂/∂y) represents the horizontal gradient, z points upward from the quiescent water level,
and ~x = (x, y) is the horizontal position vector. From hereinafter, terms will be scaled consistently
with (2). The velocity potential is expressed as an asymptotic series expansion:

Φ(~x, z, t) =
M

∑
m=1

φ(m)(~x, z, t), (3)

where the superscript (m) denotes that the term is on the order O ∼ (αm
0 ) in which α0 is a small

parameter that represents the nonlinearity effect (α0 = a0/h0: a0 is the wave-amplitude scale).
Each perturbation term is expressed as a two-term expansion φ(m) = A(m) + B(m) in which:

A(m)(~x, z, t) =
∞

∑
p=−∞

∞

∑
q=−∞

A(m)
p,q (t)

cosh |~κp,q|(z + 1)
cosh |~κp,q|

ei~κp,q ·~x, (4)

and

B(m)(~x, z, t) =
∞

∑
p=−∞

∞

∑
q=−∞

B(m)
p,q (t)

sinh |~κp,q|z
|~κp,q| cosh |~κp,q|

ei~κp,q ·~x. (5)

The basis functions A(m) and B(m) satisfy Laplace’s equation in which (4) also satisfies the
Neumann boundary condition at z = −1 and (5) satisfies the Dirichlet boundary conditon at z = 0.
For numerical considerations, the indices p and q of the basis functions are truncated to some large
integers Nx and Ny, respectively. In (4) and (5),~κp,q = ( pπ

Lx
, qπ

Ly
) is the wavenumber vector where Lx

and Ly are the length and width of the domain, respectively. The magnitude of the wavenumber vector

is |~κp,q| =
√
( pπ

Lx
)2 + ( qπ

Ly
)2, and i =

√
−1. A four-stage Runge-Kutta (RK4) method (e.g., [19]) is used

to time-integrate the evolution equations numerically:

ηt = −∇ΦS · ∇η + (1 + |∇η|2)Φz,

ΦS
t = −η − 1

2
|∇ΦS|2 + 1

2
(1 + |∇η|2)Φ2

z ,
(6)

on z = η. The horizontal gradient is calculated through the algebraic derivative by making use of
the Fast Fourier Transform (FFT). In order to calculate the vertical velocity Φz at the water surface,
we must first calculate the degrees of freedom of the basis functions. In other words, we use the
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Fourier Transform to determine the coefficients A(m)
p,q (t) and B(m)

p,q (t). This is achieved by expanding the
velocity potential at the mean water surface as well as at the bottom boundary. At the water surface:

ΦS(~x, t) =
M

∑
m=1

M−m

∑
k=0

ηk

k!
∂kφ(m)

∂zk

∣∣∣∣
(~x,z=0,t)

, (7)

and for example, if we set M = 5, after expanding out the sum and equating like-order terms we have:

A(1) = ΦS,

A(2) = −η(A(1) + B(1))z,

A(3) = −η(A(2) + B(2))z −
η2

2!
A(1)

zz ,

A(4) = −η(A(3) + B(3))z −
η2

2!
A(2)

zz −
η3

3!
(A(1) + B(1))zzz,

A(5) = −η(A(4) + B(4))z −
η2

2!
A(3)

zz −
η3

3!
(A(2) + B(2))zzz −

η4

4!
A(1)

zzzz,

(8)

all evaluated at z = 0. The coefficients of (4) and (5) can then be found from the Fourier Transform
once the B(m) terms are known. Therefore, we continue in a similar fashion by expanding the velocity
potential about the bottom boundary:

Φ(~x, z, t) =
M

∑
m=1

M−m

∑
k=0

(z + 1)k

k!
∂kφ(m)

∂zk

∣∣∣∣
(~x,z=−1,t)

. (9)

Substituting (9) into the kinematic boundary condition at the bed (second line of (1)) and equating
like-order terms yields:

B(1)
z = 0,

B(2)
z = ∇ζ · ∇A(1) − ζA(1)

zz ,

B(3)
z = ∇ζ · ∇(A(2) + B(2))− ζ(A(2)

zz + B(2)
zz ),

B(4)
z = ∇ζ · (∇A(3) +∇B(3) + ζ∇B(2)

z +
ζ2

2!
∇A(1)

zz )

− ζ(A(3)
zz + B(3)

zz +
ζ

2!
B(2)

zzz +
ζ2

3!
A(1)

zzzz),

B(5)
z = ∇ζ · (∇A(4) +∇B(4) + ζ∇B(3)

z +
ζ2

2!
∇A(2)

zz +
ζ2

2!
∇B(2)

zz )

− ζ(A(4)
zz + B(4)

zz +
ζ

2!
B(3)

zzz +
ζ2

3!
A(2)

zzzz +
ζ2

3!
B(2)

zzzz),

(10)

all evaluated at z = −1. From (5), we see with the use of the Fourier Transform that the degrees of freedom
B(1)

p,q(t) are all zero and therefore B(1) is zero for all t. Therefore B(1) may be omitted from (8) as well.
From the recurrence relations established in (8) and (10) we can determine all of the degrees of freedom.
After the degrees of freedom are determined, the vertical velocity at the water surface is now calculated:

Φz(~x, z = η, t) =
M

∑
m=1

M−m

∑
k=0

ηk

k!
∂k+1φ(m)

∂zk+1

∣∣∣∣
(~x,z=0,t)

. (11)

The solution is completely determined once the initial conditions for η and ΦS are prescribed.
Note that the water-surface data must satisfy periodic boundary conditions to accommodate for the Fourier
basis functions. This issue is resolved by mirroring the domain in the horizontal directions. The numerical



J. Mar. Sci. Eng. 2020, 8, 241 5 of 18

method described here is based on the work by Dommermuth & Yue [20] and Gouin et al. [21].
The verification and validation of the present numerical model can be found in Knowles & Yeh [6].

3. Results

3.1. Solitary Wave Propagation over a Continental Shelf with Periodic Lateral Variation

Numerical results are presented for a solitary wave propagating over a continental shelf with a
ridge-valley configuration as seen in the planview image presented in Figure 1. The bathymetry is given by:

ζ(x, y) =
δ0

2
(1 + tanh σx[x + b0 cos σyy− l0]), (12)

where the height of the step is δ0 = 0.5, the steepness in the x−direction is σx = 0.01, and the
amplitude of the lateral perturbation in the bathymetry is b0 = 50. In order to ensure periodicity in
the y−direction, we set σy = 2π

Ly
= 6.14× 10−2: namely the breadth between valleys is Ly = 102.2.

The bathymetry is translated to the right of the origin by an amount of l0 = 480 so that the initial
wave form is not disturbed by the presence of the continental shelf. Note that our coordinate system
is oriented such that x is in the dominant direction of wave propagation where the origin (x = 0)
gives the initial location of the crest of the solitary wave, and y is the spatial coordinate in the lateral
direction. The bathymetry is symmetric about the origin (y = 0) on account of the spatial periodicity in
the y−direction. Because of this periodicity, from hereinafter, the numerical results are presented only
in the span |y| ≤ 51.1, and we call the bathymetry presented in (12) the 2D case, while the bathymetry
with no lateral variation will be referred to as the 1D case.

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plan view of the bathymetry with periodic lateral variation.

The spatial resolutions in the x− and y−directions are chosen to be ∆x = 0.37 and ∆y = 0.1,
respectively. A time step of ∆t = 0.16 is used in this simulation and we truncate the asymptotic
series (3) to M = 5 terms. We include Nx = 212 and Ny = 210 modes in the basis functions (4) and (5).

The initial conditions are prescribed by the third-order solitary-wave solution by Grimshaw [22]
where the initial water-surface displacement η and velocity potential ΦS are given by:

η = α0S2 − 3
4

α2
0(S

2 − S4) + α3
0

(
5
8

S2 − 151
80

S4 +
101
80

S6
)

,

ΦS = 2
√

α0

3

{
T + α0

[
5
24

T − 1
3

S2T +
3
4
(1 + η)2S2T

]
+

α2
0

[
− 1257

3200
T +

9
200

S2T +
6

25
S4T + (1 + η)2

(
− 9

32
S2T − 3

2
S4T

)
+

(1 + η)4(− 3
16

S2T +
9
16

S4T)
]}

.

(13)
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where S and T are:
S = sech κ0(x− x0), T = tanh κ0(x− x0), (14)

in which κ0 =
√

3α0
2 (1− 5

8 α0 +
71

128 α2
0). In this experiment, the initial wave amplitude is α0 = 0.1.

Recall that α0 is the wave amplitude normalized by the offshore still water depth and is therefore a
measure of the initial nonlinearity of the wave.

In Figure 2, we present snapshots of the water-surface displacement for the solitary wave evolving
over the bathymetry specified by (12). In Figure 2a, we present the initial offshore solitary-wave
conditions. Then at time t = 470 (Figure 2b), the effects of refraction begin to emerge from the presence
of the bathymetry, creating a phase difference between the waveform at the ridge (y = 0) and at the
valley (y = ±51.1). Note that soon after refraction occurs, a stem-wave formation appears in the
vicinity of y = 0, which is similar in form to the wave pattern created by obliquely interacting solitary
waves in a uniform depth: see for example, Yeh & Li [23] and Kodama & Yeh [24]. Due to the formation
of “radiating” waves from the stem, energy is allowed to leak out laterally which is then displaced
behind the lead waveform.

 
Figure 2. Contour plots of the water-surface displacement η for the solitary wave propagating over 2D
bathymetry at times: (a) t = 0, (b) t = 470, (c) t = 533, (d) t = 564, (e) t = 595, (f) t = 658, (g) t = 720,
(h) t = 783, (i) t = 940, (j) t = 1253, and (k) t = 1409. (l) Bathymetry (note the different x− and z−scales).
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At time t = 658 (Figure 2f), we observe a negative difference in spatial phase lag (∆ < 0) even
though the local water depth is shallower at y = 0 than at y = ±51.1. Note that the spatial phase
difference is defined as ∆ = xv − xc, where xv gives the x−coordinate of the lead crest of the solitary
wave at y = ±51.1, and xc gives the x−coordinate of the lead crest at y = 0. This negative phase
lag is also observed in Figure 2g,h. While the negative phase lag is present, energy is allowed to
travel outwards in the lateral directions, transverse to the direction of wave propagation, which then
accumulates at y = ±51.1, at the valleys of the bathymetry. This then commences in an increase in
amplitude and thus phase speed at the valleys, which leads to a positive spatial phase difference (∆ > 0)
as can be observed at t = 940 (Figure 2i). In Figure 2j,k we continue to see a reciprocating behavior
in the spatial phase lag where the middle of the waveform bends forwards and backwards in time.
However, as the wave climbs up the shelf, the waveform is tending towards an asymptotic state where
the solitary wave is recovered and the crest of the wave becomes straight and parallel to the shoreline.
Note that the waveform at time t = 1409 (Figure 2k) is of greater amplitude, but of narrower width,
than the initial solitary wave. The total mechanical energy of the initial solitary wave is compared with
the lead solitary wave at the end of the numerical simulation, and the ratio of the final-stage energy to
the initial energy was found to be 0.74. This is the amount of energy reduction in the leading wave
due to dispersion/radiation effects which took place over the wavy bathymetry.

In Figure 3a, we present a portion of the domain along the ridge (y = 0) at time t = 2036.
The waveform over the plateau region possesses a lead solitary wave and trailing waves of
smaller amplitude. In order to assess if these are truly solitary waves, we compare the computed
numerical water-surface displacement with the higher-order solution (13) by Grimshaw [22].
An overlay presented in Figure 3 shows that the lead and intermediate waves are solitary waves.
However, the third wave, presented in Figure 3d, does not appear to be a clean solitary wave.

1500 1600 1700 1800 1900
-0.05
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0.03 Numerical
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Figure 3. Water-surface displacement of solitary wave for α0 = 0.1 for the 2D bathymetry (12) at time
t = 2036 along center transect (y = 0). (a) Water-surface displacement on the plateau of the bathymetry.
Overlay of the higher-order solitary-wave solution (dashed line) with the numerical solution (solid
line): (b) lead solitary wave, (c) intermediate wave, and (d) trailing wave.

In Figure 4, we present the amplitude variation along the ridge (y = 0) and the valley (y = ±51.1).
In addition, the result from the 2D case is compared with the 1D wave-propagation case which will
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be discussed later in Section 3.1.1. The amplitude at y = 0 starts to increase at the toe of the slope
(x ≤ 250) and reaches a maximum of a = 0.274 at x = 556. The amplitude at y = ±51.1 then attains
a minimum value of a = 0.038 at x = 651. We observe a “saw-tooth” pattern where the amplitude
at y = 0 oscillates out of phase with the amplitude at y = ±51.1. The amplitude appears to be
approaching an asymptotic mean state of a ≈ 0.156 for the 2D case, whereas the amplitude for the 1D
case is approaching a larger value of a ≈ 0.183. This smaller amplitude for the 2D case is due to energy
dispersion effects resulting from the creation of radiating waves in the vicinity of y = 0.

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3
Crest

Valley

Figure 4. Amplitude variation of the solitary wave along the ridge y = 0 (solid line) and along the
valley y = ±51.1 (dashed line) over the 2D bathymetry (12). The dotted line represents the amplitude
of the solitary wave for the 1D wave-propagation case.

The spatial phase difference ∆ = xv − xc is presented in Figure 5. Again, we see an oscillatory
behavior in the phase lag which also appears to be tending towards an asymptotic state: ∆ → 0 as
x → ∞. The maximum positive value of phase lag is ∆ = 6.18 at the location x = 495. The most
negative value of phase lag is ∆ = −7.59 at the location x = 696. Note that, the greatest absolute
difference in phase lag occurs when the waveform in the shallower region of the domain is moving
faster than the waveform in the deeper portion of the domain.

0 500 1000 1500
-10

-5

0

5

10

Figure 5. Spatial phase lag between locations at y = 0 and y = ±51.1 for the solitary wave over the
2D bathymetry (12). Note that ∆ = xv − xc, where xv gives the x−coordinate of the lead crest of the
solitary wave at y = ±51.1, and xc gives the x−coordinate of the leading crest at y = 0.
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3.1.1. Solitary Wave Propagation over a Continental Shelf with no Lateral Variation

For comparison, we run a numerical simulation for the 1D wave-propagation case. The initial
wave conditions are given by equation (13) where the amplitude is α0 = 0.1 and the initial location of
the crest is x0 = 0. The bathymetry with no lateral variation is now given by:

ζ(x) =
δ0

2
(1 + tanh σx[x + b0 − l0]). (15)

The parameters for the bathymetry (15) are δ0 = 0.5, σx = 0.01, b0 = 50, and l0 = 480. Note that
this is the same bathymetry as for the 2D wave-propgation case (12) if we had chosen y = 0. A temporal
and spatial resolution of ∆t = 0.016 and ∆x = 0.07 are used, respectively. We include M = 5 terms in
the perturbation expansion and truncate the basis functions to Nx = 215 modes.

In Figure 6, we provide snapshots of the free-surface displacement along with the corresponding
bathymetry at various times. Figure 6a shows the initial condition of the waveform at the offshore
location. At time t = 470 (Figure 6b), the solitary wave has encountered the increasing bed elevation
and the water-surface displacement loses its symmetry. The amplitude increases and the solitary wave
becomes narrower. In Figure 6c, we observe the presence of a trailing wave resulting from fissioning
that occured after the solitary wave climbed onto the plateau region of the bathymetry. The solitary
waveform is then recovered as demonstrated in Figure 6d with a larger amplitude and narrower width
than the initial solitary wave.

0

0.1

0.2

-20 0 20 40
0

0.5

1
0

0.1

0.2

440 460 480 500
0

0.5

1

0

0.1

0.2

580 600 620 640
0

0.5

1
0

0.1

0.2

1740 1760 1780 1800
0

0.5

1

Figure 6. Evolution of solitary wave over the 1D bathymetry (15) for times (a) t = 0, (b) t = 470,
(c) t = 940, and (d) t = 2036.

The waveform is presented in Figure 7 at time t = 2036. We see a similar pattern in the
water-surface displacement along y = 0 for the 2D case seen in Figure 3. However, for the 2D
case, there are extra trailing waves. As we stated earlier, the amplitude of the lead solitary wave is
larger for the 1D case than for the 2D case. Furthermore, in Figure 7, we overlay the numerical result
with the higher-order solitary-wave solution (13) by Grimshaw [22] in order to check if the trailing and
leading waves are solitary waves. It appears that the first two leading waves, as seen in Figure 7b,c are
solitary waves, but the trailing wave, as seen in Figure 7d is similar to a solitary wave, but not quite
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the exact same form. Therefore, just as in the 2D case, it appears that there are two solitary waves that
emerge from the fissioning process. The numerical result for the number of solitons which emerge is
compared with the analytical prediction presented in (Johnson [25] Section 3.4.4):

1− δ0 = {1
2
(N)(N + 1)}−4/9, (16)

which gives a value of N = 2.62 for δ0 = 0.5. Our numerical results support the analytical
prediction (16). Note that, in the present case we examined, the analytical prediction coincides
with the numerical result even for the 2D bathymetry.

1500 1600 1700 1800 1900

0

0.05

0.1

0.15

0.2

1760 1765 1770 1775 1780
0

0.05

0.1

0.15

0.2 Numerical
Analytical

1610 1615 1620 1625 1630

0

0.02

0.04

Numerical
Analytical

1590 1595 1600 1605 1610
-0.01

0

0.01

0.02

0.03 Numerical
Analytical

Figure 7. Water-surface displacement of solitary wave with α0 = 0.1 on the plateau fo the 1D
bathymetry (15) at time t = 2036 along center transect (y = 0). (a) Water-surface displacement
on the plateau of the bathymetry. Overlay of the higher-order solitary-wave solution (dashed line) with
the numerical solution (solid line): (b) Lead solitary wave, (c) intermediate wave, and (d) trailing wave.

3.2. Undular Bore Propagation over a Continental Shelf with Periodic Lateral Variation

We now examine an undular bore propagating over a bathymetry representing a continental shelf
with a laterally-periodic ridge-valley configuration, similar to what is seen in Figure 1. The initial
wave condition is prescribed by a smooth step-shaped displacement with zero velocity. The initial
water-surface displacement and velocity potential are given, respectively, by:

η =
α0

2
(1− tanh κ0x), ΦS = 0, (17)

where α0 = 0.1 and κ0 = 1.0. The bathymetry is prescribed by (12) where the parameters are given
by δ0 = 0.5, σx = 0.01, σy = 6.14× 10−2, and b0 = 50. In this simulation we choose l0 = 980 in order
to give the initial wave condition ample time to evolve into an undular bore before encountering the
continental shelf. We set a time step at ∆t = 0.16 and the spatial resolutions in the x− and y−directions
are ∆x = 0.37 and ∆y = 0.10, respectively. M = 5 terms are included in the perturpation series, and the
modes in the x− and y−directions are truncated to Nx = 213 and Ny = 210, respectively.
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Figure 8 shows snapshots of the plan view of the water-surface displacement along with the
corresponding bathymetry. In Figure 8a, we see the initial offshore water-surface displacement at
t = 0. The smooth step then evolves into an undular bore in the offshore region as shown in Figure 8b.
At time t = 940 (Figure 8c), the undular bore encounters the toe of the continental slope and refracts
about the crest of the ridge. In Figure 8d,e, the lead crest of the undular bore begins to straighten out
while “radiating” waves emerge from the ends of the stem; this is similar to the pattern observed in
the solitary wave case, as discussed in Section 3.1. At time t = 1096 (Figure 8f), it appears that the
center of the waveform begins to bow forward which continues in Figure 8g,h. At time t = 1253,
(Figure 8i), the amplitude at the valley (y = ±51.1) becomes greater than at the ridge. In Figure 8j,
solitons disintegrate from the front of the undular bore, resulting in a total of five solitary waves that
have emerged at time t = 2193 as shown in Figure 8k.

 

 

 

Figure 8. Contour plots of the water-surface displacement η for the undular bore propagating over
2D bathymetry at times: (a) t = 0, (b) t = 470, (c) t = 940, (d) t = 1002, (e) t = 1034, (f) t = 1096,
(g) t = 1159, (h) t = 1253, (i) t = 1409, (j) t = 1566, (k) t = 2193. (l) Bathymetry (note the different x−
and z−scales).
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Figure 9 shows the spatial evolution of the lead-wave amplitude of the 2D undular bore against
location. The amplitude at the ridge (y = 0) is represented by a solid line and the amplitude at the
valley (y = ±51.1) is represented by a dashed line. The dotted line represents the amplitude of the lead
crest of the undular bore for the 1D case which is discussed later in Section 3.2.1. The amplitude at x = 0
is as = 0.049, which represents the height immediately after the intial water-surface displacement is set
in motion. This initial height is in agreement with the prediction given by the method of characteristics
for the nonlinear-nondispersive shallow-water-wave equation for a dam-break initial condition:

as =
(1 +

√
α0 + 1)2

4
− 1. (18)

Soon after, the amplitude of the lead wave of the undular bore slowly increases until
reaching x ≈ 875. Once the undular bore encounters the sloping bed, we see that the amplitude
at the ridge (y = 0) quickly increases, reaching a maximum value of a = 0.266 at x = 1044, and the
amplitude in the valley (y = ±51.1) decreases, reaching a minimum value of a = 0.035 at x = 1160.
The amplitude then behaves in a reciprocating fashion, creating a saw-tooth pattern. The amplitude
at y = 0 is roughly out of phase with the amplitude at y = ±51.1. It appears though that the amplitude
may approach an asymptotic state given a sufficient amount of time. For the 1D case that is represented
by the dotted line in Figure 9, the amplitude increases monotonically until reaching the asymptotic
value of a = 0.17 after reaching the plateau. It appears that the amplitudes for the 1D and 2D cases
become similar in the limit as x → ∞. Recall that the amplitudes for the 1D and 2D cases of the solitary
waves are different (a ≈ 0.183 for the 1D case and a ≈ 0.156 for the 2D case) as x → ∞.

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3
Crest

Valley

Figure 9. Amplitude variation of undular bore along the ridge y = 0 (solid line) and along the valley
y = ±51.1 (dashed line) over the 2D bathymetry (12). The dotted line represents the amplitude of the
undular bore for the 1D wave-propagation case.

The spatial phase lag ∆ = xv − xc is presented in Figure 10 for the 2D undular bore case.
The phase lag remains at ∆ = 0 until encountering the toe of the bed slope at x ≈ 875. At this
point, a positive phase lag is created from the undular bore refracting about the crest of the continental
shelf. A maximum value of ∆ = 6.62 is attained at x = 1012. However, the spatial phase lag then
sharply decreases to a minimum value of ∆ = −6.46 at x = 1197. It appears that the phase lag is
approaching an asymptotic value such that ∆→ 0 as x → ∞. Note that, unlike the solitary wave case
(Figure 5), the magnitudes of the maximum and minimum phase lags are similar for the undular bore.
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Figure 10. Spatial phase lag between locations at y = 0 and y = ±51.1 for undular bore over the
2D bathymetry (12). Note that ∆ = xv − xc, where xv gives the x−coordinate of the lead crest of the
undular bore at y = ±51.1, and xc gives the x−coordinate of the leading crest at y = 0.

3.2.1. Undular Bore Propagation over a Continental Shelf with no Lateral Variation

For comparison, we perform numerical experiments where an undular bore propagates over a
smooth step into shallower waters without lateral variation (see the sketch in Figure 11). The same
initial conditions along y = 0 as (17) is applied. In this numerical experiment, we set ∆t = 0.016,
∆x = 0.13, M = 5, and Nx = 216.

Figure 11. Definition sketch of the initial dam-break conditions for undular bore.

Snapshots of the entire domain are presented in Figure 12. The initial conditions are shown in
Figure 12a. The smooth step then evolves into an undular bore and a dispersive rarefaction wave
with an expanding mean water depth, which separates the two ends of the waveform. The mean
water depth is equivalent to the height predicted by Equation (18). Once encountering the toe of
the continental slope, the undular bore shoals, and a careful observation in Figure 12c reveals the
occurrence of energy reflection at time t = 1096. Note that, at the beginning of the simulation, there are
only two mean water depths. However, after the undular bore climbs up and passes over the sloping
region, five distinct mean water depths can be identified at t = 3132 as shown in Figure 13. We may
roughly partition these depths into the following regions: (1): η̄ = 0.1 for x < −3300; (2): η̄ = 0.049
for −3000 < x < −1600; (3): η̄ = 0.058 for −800 < x < 750; (4): η̄ = 0.055 for 1200 < x < 2200;
and (5): η̄ = 0 for x > 2800. Regions (1), (2), and (5) are relatively straightforward to interpret.
However, regions (3) and (4) require some explanations. Within region (4), the velocity field reaches an
essentially steady flow condition. This is supported by Figure 14 which displays the depth-averaged
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horizontal velocity ū plotted against time at locations x = 400 and x = 1400. After about t = 2500,
the velocity appears to maintain the steady state. Note that the depth-averaged horizontal velocity is
defined as

ū =
1
H

∫ η

−1+ζ
u dz, (19)

in which u is the horizontal fluid velocity and H = η + 1− ζ is the local total water depth. The fluid
velocities are normalized by c0 =

√
gh0. The vertical component of the velocity is essentially nil.

For an inviscid and homogeneous fluid, the total energy head (total mechanical energy plus pressure
work per unit fluid weight) must be conserved. Therefore:

E3 = E4 + ∆z, (20)

where E3 and E4 are the specific energy before and after the bed slope, respectively, which are
defined as:

E3 =
ū2

3
2

+ H3, E4 =
ū2

4
2

+ H4, (21)

where the subscripts 3 and 4 refer to the values in the regions 3 and 4, respectively, (see Figure 13),
and H is the total water depth. Following this notation, the height of the step can be given by the
difference in the bed elevations: ∆z = ζ4 − ζ3. From Equations (20) and (21), the theoretical total water
depth at region 4 can be computed and found to be 0.556. This is calculated from the numerical data
attained at t = 3132 with ū3 = 4.042× 10−2, ū4 = 7.67× 10−2, H3 = 1.058, and ∆z = 0.50. The actual
value attained from the numerical experiment was H4 = 0.556, resulting in no error up to the first
three decimal places.
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Figure 12. Water-surface displacement of undular bore propagating over the 1D continental slope at
times: (a) t = 0, (b) t = 633, (c) t = 1096, and (d) t = 3132.
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Figure 13. Water-surface displacement of undular bore propagating over the 1D continental shelf,
displaying five different mean water depths at time t = 3132.

The analysis between regions (3) and (4) indicates that the flow is subcritical relative to the
laboratory coordinate, and a standard analysis of the specific energy in the area of open-channel flows
(see e.g., Henderson [26]) can be applicable here for the quasi-steady flow condition.
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Figure 14. Temporal variation of depth-averaged horizontal velocity for undular bore over the 1D
bathymetry at the locations (a) x = 400 and (b) x = 1400. At x = 1400, the leading two waves are
solitary waves. The horizontal velocity approaches a steady state after approximately t = 2500.

4. Discussion

Numerical experiments are performed for a solitary wave and an undular bore evolving over
a continental shelf containing a lateral variability. The repetitious ridge-and-valley pattern of the
continental shelf causes the incident wave to deform due to the effects of refraction, diffraction,
and shoaling. The local wave focusing produces the formation of a stem-like wave pattern that results
from the spatially merging wave. The stem-like formation at the merging location emanates “radiating”
trailing oblique waves from the edges of the stem. These local interactions on the ridge are similar to



J. Mar. Sci. Eng. 2020, 8, 241 16 of 18

the interaction of V-shaped solitary waves in a uniform depth [27], which also produce trailing wave
radiation. These radiating waves are the source of additional wave-energy dispersion. Consequently,
the energy of the solitary wave climbing over the 2D continental slope is less than the comparable
1D case (see Figure 4). On the other hand, the energy loss in the leading wave of the undular bore is
substantially smaller than the case of the solitary wave (Figure 9). This is because the wave emanating
from the stem interacts with the subsequent wave of the undular bore; the radiated wave cannot
freely disperse behind the leading wave. The accumulation in energy of the obliquely radiating wave
tends to maintain the leading-wave amplitude of the undular bore. The foregoing explanation can be
supported by the comparison of our numerical results shown in Figure 2f for the solitary wave and
Figure 8f for the undular bore.

After the solitary wave reaches the plateau, soliton fissioning occurs, which results in the formation
of two distinct solitary waves in the simulation. The numerical results of the soliton fission for solitary
waves propagating over both the 1D and 2D cases agree with the analytical prediction given by
Equation (16). After a sufficient amount of time, the solitary wave recovers its characteristic form,
approaching a steadily propagating state. It is found that the amplitude of the 1D propagation case
approaches a greater asymptotic value than for the 2D propagation case. This difference in amplitude
appears to be a result of extra energy dispersion caused by the formation of the obliquely radiating
waves, which is allowed to occur in the 2D case.

Results were presented on an undular bore evolving from dam-break initial conditions and then
propagating over a smooth depth transition from deep to shallow water. Note that this initial condition
resembles an ideal model of a co-seismic tsunami source. After the wave reaches the plateau region,
multiple (in this case five) discrete solitary waves appear to disintegrate from the leading portion
of the undular bore. This particular result has potential applications in engineering. For instance,
after a tsunami propagates over a continental slope, our results demonstrate the possibility for multiple
localized waves of significant amplitude to advance over a broad continental shelf and ultimately
inundate the shore with a series of waves.

The present results demonstrate the uncertainty in predicting the critical locations of the
greatest tsunami amplitude. From linear theory, we anticipate that the greatest amplitude should
be observed along the ridge (y = 0). However, our numerical experiments reveal that there is a
laterally reciprocating variability in the amplification which occurs as a consequence of the nonlinear
dependence of the phase speed on the amplitude.

The mean water surface of the entire domain was also examined for an undular bore propagating
over the 1D continental shelf. Initially, we see that the water surface only contains two mean depths,
but after the undular bore propagates well beyond the continental shelf, we find a total of five mean
water depths over different segments of the domain. It appears that specific energy (a standard
parameter used to analyze 1D steady open-channel flows) can be used to accurately predict the height
of these mean water depths before and after the continental shelf.

5. Conclusions

Many previous studies on tsunami propagation over a continental slope assessed the problem
for a 1D shelf configuration: i.e., no lateral variation. Here we examined long-wave (tsunami)
transformations over a continental slope with a periodic lateral variation, considering two incident
wave models: a solitary wave and an undular bore. The lateral variation causes the incident wave
to refract, diffract and shoal along the trajectory of wave propagation. When the wave initially
encounters the continental slope, shoaling occurs, placing the location of maximum amplitude over
the ridge. Soon after, the location of maximum amplitude shifts to the valley due to the effects of
wave nonlinearity and phase velocity in the 2D field. This transfer of energy then periodically shifts
back and forth between the ridge and the valley. This process induces extra wave energy dispersion,
and affects the energy distribution on the continental shelf after the incident wave climbs up the slope.
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Our findings demonstrate the importance in consideration of lateral variability of the continental slope
for the evaluation of long-wave behaviors and consequences when it climbs up the continental slope.

The behaviors of localized long waves interacting and shoaling over a 2D bathymetry are primarily
discussed in the context of length scales on the order of a continental shelf, where the corresponding
waveform is a tsunami. None the less, the findings should be applicable to smaller scale nearshore
waves interacting with the bathymetry as well.
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