Robust Output Path-Following Control of Marine Surface Vessels with Finite-Time LOS Guidance
Abstract
:1. Introduction
- The path-following problem is formulated with unknown time-varying sideslip angle, unmeasured system state and system uncertainties, thus, the observation technique is adopted to estimate all these unknown terms.
- A finite-time generalized observer is proposed for sideslip angle estimation, based on which a nonlinear LOS guidance law is proposed, and finite-time convergence of the cross-track error is hence obtained.
- An ESO is adopted for both unknown system state and total disturbance estimation, based on which an output feedback backstepping controller is proposed without angular velocity measurement.
2. Preliminaries and System Description
2.1. Preliminaries
2.2. Kinematics of Path Following
2.3. Yaw Dynamics of Marine Surface Vessels
3. Control System Design
3.1. FGO Based Finite-Time LOS Guidance
3.2. Output Feedback Controller Based on ADRC
4. Stability Analysis
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brockett, R.W. Differential Geometric Control Theory; Birkhauser: Boston, MA, USA, 1983. [Google Scholar]
- Lekkas, A.M.; Fossen, T.I. Integral LOS Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization. IEEE Trans. Control Syst. Technol. 2014, 22, 2287–2301. [Google Scholar] [CrossRef]
- Liu, S.; Xu, C.; Zhang, L. Hierarchical Robust Path Following Control of Fully Submerged Hydrofoil Vessels. IEEE Access 2017, 5, 21472–21487. [Google Scholar] [CrossRef]
- Wang, N.; Pan, X. Path Following of Autonomous Underactuated Ships: A Translation CRotation Cascade Control Approach. IEEE/ASME Trans. Mechatronics 2019, 6, 2583–2593. [Google Scholar] [CrossRef]
- Wang, N.; Sun, Z.; Yin, J.; S, S.; Sharma, S. Finite-Time Observer Based Guidance and Control of Underactuated Surface Vehicles With Unknown Sideslip Angles and Disturbances. IEEE Access 2018, 6, 14059–14070. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Peng, Z. Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances. Neurocomputing 2016, 173, 799–808. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, C.; Yu, H. Finite-Time PLOS-Based integral sliding-mode adaptive neural path following for unmanned surface vessels with unknown dynamics and disturbances. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1500–1511. [Google Scholar] [CrossRef]
- Lee, T.; Jiang, Z. New cascade approach for global κ-exponential tracking of underactuated ships. IEEE Trans. Autom. Control 2004, 49, 2297–2303. [Google Scholar] [CrossRef]
- Healey, A.J.; Lienard, D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 1993, 18, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.; Harris, C.J.; Hong, X. A line of sight counteraction navigation algorithm for ship encounter collision avoidance. J. Navig. 2003, 56, 111–121. [Google Scholar] [CrossRef]
- Fossen, T.I.; Pettersen, K.Y. On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws. Automatica 2014, 50, 2912–2917. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Shen, Y.; He, B.; Wang, D.; Wan, J.; Sha, Q.; Qin, P. Drift angle compensation-based adaptive line-of-sight path following for autonomous underwater vehicle. Appl. Ocean Res. 2016, 93, 799–808. [Google Scholar] [CrossRef]
- Caharija, W.; Pettersen, K.Y.; Bibuli, M.; Calado, P.; Zereik, E.; Braga, J.; Gravdahl, J.T.; Sørensen, A.J.; Milovanović, M.; Bruzzone, G. Integral Line-of-Sight Guidance and Control of Underactuated Marine Vehicles: Theory, Simulations, and Experiments. IEEE Trans. Control Syst. Technol. 2016, 24, 1623–1642. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tong, H.; Fu, M. Line-of-sight guidance law for path following of amphibious hovercrafts with big and time-varying sideslip compensation. Ocean Eng. 2019, 172, 531–540. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Peng, Z. ESO-Based Line-of-Sight Guidance Law for Path Following of Underactuated Marine Surface Vessels With Exact Sideslip Compensation. IEEE J. Ocean. Eng. 2016, 42, 1–11. [Google Scholar]
- Chen, W.; Yang, J.; Guo, L.; Li, S. Disturbance-observer-based control and related methods-an overview. IEEE Trans. Ind. Electron. 2016, 63, 1083–1095. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Rew, K.H.; Kim, S. Disturbance observer for estimaing high order disturbances in time series expansion. IEEE Trans. Autom. Control 2010, 55, 1905–1911. [Google Scholar]
- Wang, L.; Su, J. Robust disturbance rejection control for the attitude tracking of an aircraft. IEEE Trans. Control Syst. Technol. 2015, 23, 2361–2368. [Google Scholar] [CrossRef]
- Wang, L.; Su, J.; Xiang, G. Robust motion control system design with scheduled disturbance observer. IEEE Trans. Ind. Electron. 2016, 63, 6519–6529. [Google Scholar] [CrossRef]
- Witkowsha, A.; Smierzchalski, R. Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Eng. 2018, 163, 570–582. [Google Scholar] [CrossRef]
- Wen, G.; Ge, S.; Chen, C.; Tu, F.; Wang, S. Adaptive Tracking Control of Surface Vessel Using Optimized Backstepping Technique. IEEE Trans. Cybern. 2018, 163, 1–12. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, G.; Xia, G.; Liu, Z. Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 2012, 6, 461–466. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, G.; Yi, B.; Zhang, W. Practical proportional integral sliding mode control for underactuated surface ships in the fields of marine practice. Ocean Eng. 2017, 142, 217–223. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, H.; Yue, W.; Li, H. Fault-tolerant compensation control based on sliding mode technique of unmanned marine vehicles subject to unknown persistent Ocean Disturbances. Int. J. Control. Autom. Syst. 2019, 17, 1–14. [Google Scholar] [CrossRef]
- Guerrero, J.; Antonio, E.; Manzanilla, A.; Torres, J.; Lozano, R. Autonomous underwater vehicle robust path tracking: Auto-adjustable gain high order sliding mode controller. IFAC 2018, 51, 161–166. [Google Scholar] [CrossRef]
- Mondal, S.; Mahanta, C. Adaptive second order terminal sliding mode controller for robotic manipulators. J. Frankl. Inst. 2014, 351, 2356–2377. [Google Scholar] [CrossRef]
- Chen, Z.; Pan, Y.; Gu, J. Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays. Int. J. Robust Nonlinear Control 2016, 26, 2708–2728. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Gao, H.; Kaynak, O. Transient-Performance-Guaranteed Robust Adaptive Control and Its Application to Precision Motion Control Systems. IEEE Trans. Ind. Electron. 2016, 63, 6510–6518. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Huang, Y.; Xue, W. Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans. 2014, 53, 963–976. [Google Scholar] [CrossRef]
- Xia, Y.; Pu, F.; Li, S.; Gao, Y. Lateral Path Tracking Control of Autonomous Land Vehicle Based on ADRC and Differential Flatness. IEEE Trans. Ind. Electron. 2016, 63, 3091–3099. [Google Scholar] [CrossRef]
- Sira-Ramirez, H.; Zurita-Bustamante, E.W.; Huang, C. Equivalence Among Flat Filters, Dirty Derivative-Based PID Controllers, ADRC, and Integral Reconstructor-Based Sliding Mode Control. IEEE Trans. Control. Syst. Technol. 2019, 1–15. [Google Scholar] [CrossRef]
- Su, J.; Qiu, W.; Ma, H.; Woo, P. Calibration-free robotic eye-hand coordination based on an auto disturbance-rejection controller. IEEE Trans. Robot. 2019, 20, 899–907. [Google Scholar]
- Li, S.; Yang, J.; Chen, W.; Chen, X. Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties. IEEE Trans. Ind. Electron. 2012, 59, 4792–4802. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Wang, L.; Su, J. Composite disturbance rejection control based on generalized extended state observer. ISA Trans. 2016, 63, 377–386. [Google Scholar] [CrossRef]
- Wang, C.; Zuo, Z.; Qi, Z.; Ding, Z. Predictor-Based Extended-State-Observer Design for Consensus of MASs With Delays and Disturbances. IEEE Trans. Cybern. 2019, 49, 1259–1269. [Google Scholar] [CrossRef]
- Bhat, S.P.; S, B.D. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: New York, NY, USA, 1994. [Google Scholar]
Settling Time | Overshot | |
---|---|---|
Proposed method | 113 s | 0.0089% |
Adaptive LOS | 162 s | 1.3521% |
Integral LOS | 259 s | 31.6269% |
Maximum Error | RMSE | |
---|---|---|
Proposed method | 0.1564 m | 0.0275 m |
Adaptive LOS | 3.1063 m | 1.5261 m |
Integral LOS | 4.5996 m | 1.7025 m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xu, C.; Cheng, J. Robust Output Path-Following Control of Marine Surface Vessels with Finite-Time LOS Guidance. J. Mar. Sci. Eng. 2020, 8, 275. https://doi.org/10.3390/jmse8040275
Wang L, Xu C, Cheng J. Robust Output Path-Following Control of Marine Surface Vessels with Finite-Time LOS Guidance. Journal of Marine Science and Engineering. 2020; 8(4):275. https://doi.org/10.3390/jmse8040275
Chicago/Turabian StyleWang, Lu, Changkui Xu, and Jianhua Cheng. 2020. "Robust Output Path-Following Control of Marine Surface Vessels with Finite-Time LOS Guidance" Journal of Marine Science and Engineering 8, no. 4: 275. https://doi.org/10.3390/jmse8040275
APA StyleWang, L., Xu, C., & Cheng, J. (2020). Robust Output Path-Following Control of Marine Surface Vessels with Finite-Time LOS Guidance. Journal of Marine Science and Engineering, 8(4), 275. https://doi.org/10.3390/jmse8040275