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Abstract: Coral sand is an important filler resource that can solve the shortage of terrestrial fillers
in coastal areas. Recently, the foundations of many infrastructures in the South China Sea have
been built with coral sand as fillers, which have been subjected to wave and traffic cyclic loads.
Resilient modulus (Mr) is an important design parameter in marine engineering, but there are few
studies on the resilient modulus response of coral sand under cyclic loading. A series of drained
cyclic triaxial tests were carried out to investigate the effects of the initial mean effective stress (p0) and
cyclic stress ratio (ζ) on the resilient modulus response of the coral sand from the South China Sea.
The change of fractal dimension (αc) can reflect the rule of particle breakage evolution. The αc of coral
sand shows a tendency of almost maintaining stable and then increasing rapidly with the increase of
mean effective stress p0 under each cyclic stress ratio ζ. There is a threshold of p0, when the p0 exceeds
this threshold, αc will increase significantly with the increase of p0. The increase of p0 has a beneficial
effect on the improvement of the Mr, while the increase of ζ has both beneficial and detrimental effects
on the improvement of the Mr. A new prediction model of the Mr considering particle breakage was
established, which can better predict the Mr of coral sand in the whole stress interval. The research
results can provide guidance for the design of marine transportation infrastructures, which can
promote the development of marine transportation industry and energy utilization.
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1. Introduction

Coral sand is widely distributed in the equatorial and tropical marine areas, which is the foundation
soil type encountered in many marine engineering construction [1–3]. Coral sand is formed by the
deposition of marine biological debris, and its main component is calcium carbonate. The mechanical
properties of coral sand are totally different from that of terrigenous quartz sand [4–7]. For example,
its particles are irregular in shape and easy to break under external load. Recently, many reef island
infrastructures for land reclamation in the South China Sea have used coral sand as foundation filling
materials. Coral sand has now been used as foundation filling materials in the construction of airport
runways, flexible road pavements, building foundations, and other infrastructures. In the complex
marine engineering environment, the hydraulic filling coral sand foundation will be subject to tens
of thousands of low frequency traffic and wave cyclic loads for a long time. Resilient modulus is an
important parameter for the evaluation and design of bearing capacity, settlement deformation, and
service performance of foundation soil under cyclic loading [8–10]. Therefore, it is of great significance
to study the response and prediction model of resilient modulus of coral sand under cyclic loading.
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Numerous experimental studies (mainly based on cyclic triaxial tests) have been carried out
on resilient behavior of unbound granular materials, which is usually represented by the resilient
modulus Mr [10–12]. The studies, based on the resilient characteristics of unbound granular materials,
focused on the terrigenous materials, such as ballast and quartz sand. Hicks [13] stated that frequency
has a negligible effect on the elastic behavior of granular materials. Lackenby et al. [14] emphasized
that for railway ballast, Mr increases with the increase of load cycles N, mean effective stress p’, and
cyclic deviatoric stress qampl. Indraratna et al. [15] examined the effect of p’ and f on Mr. It was
found that Mr increases with the increase of p’ and f, which was due to the increase of packing
density. Donohue et al. [16] reported that some coarse-grained soil used as subgrade fillers will
undergo particle degradation under cyclic loading. Particle degradation includes particle breakage and
fine-grain intrusion mainly caused by particle breakage [17,18]. Particle breakage can lead to adverse
effects, such as the reduction in shear strength, interlocking, and stiffness of soil aggregates [19,20].
Different empirical models have been reported for the estimation of resilient modulus Mr of unbound
granular materials under cyclic loading [21,22]. However, Chen et al. [21] found that for some
coarse-grained soils degraded under cyclic loading, a good fitting curve based on the full stress interval
will obviously underestimate the resilient modulus of the low stress interval. This is a challenging
problem, which deserves more research to investigate the Mr’s prediction model of coral sand under the
whole stress interval. Due to its unique mineral composition and mechanical properties, coral sand will
undergo more serious particle degradation (i.e. particle breakage) under cyclic loading than terrigenous
materials. Current experimental studies on coral sands focused on the static shear behavior [1,3,6],
influencing factors for particle breakage [2], and small strain dynamic characteristics [4,23]. At present,
the research on resilient behavior of coral sand under cyclic loading is relatively lacking. There is still
no clear understanding of the resilient modulus of coral sand in engineering.

In this paper, a series of drained cyclic triaxial tests were carried out on the coral sand of the South
China Sea to investigate the resilient modulus Mr response. The evolution of particle breakage of coral
sand was studied by analyzing the variation of fractal dimension αc during cyclic loading. The effects
of the initial mean effective stress p0 and cyclic stress ratio ζ on the Mr were examined. The influence of
particle breakage on the prediction model of Mr was deeply analyzed. Finally, a new resilient modulus
prediction model for coral sand considering particle breakage was established. This study can help
deepen the understanding of the resilient behavior of coral sand, which is beneficial to the design and
safety assessment of marine transportation infrastructures.

2. Materials and Methods

2.1. Test Materials and Sample Preparation

The coral sand samples were taken from an offshore reef in the South China Sea, which were all
unbound particles (as shown in Figure 1a). Figure 1b shows the microparticle shape of coral sand
obtained by scanning electron microscopy (SEM). It can be seen from Figure 1b that the grain shape
of the coral sand sample is irregular and retains a large amount of the internal pores of the original
marine biological debris. Figure 2 shows the particle size distribution curve of the coral sand sample.
Table 1 presents the basic physical and mechanical parameters of test sand samples.
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The cyclic triaxial sample in this study was a standard cylinder sample with a height of 100 mm
and a diameter of 50 mm. Since the prediction model of resilient modulus is mainly used in the design
of compact foundations such as road bases, previous studies on the resilient behavior of soils have
used dense samples [11]. Due to the strict requirements of relative density Dr of the road bases, wharfs
and other marine engineering infrastructures, the foundation of hydraulic filling coral sand is very
dense. Therefore, in order to meet the actual engineering characteristics, the relative density Dr of the
coral sand samples in this study were selected as 80%. The air pluviation method [23] was applied to
prepare cylindrical samples of the coral sand. The method of light hammering was used to obtain the
designed relative density of sand samples. The samples were remolded for Dr < 80%, depending on the
initial consolidation stress, to acquire the target Dr (i.e., 80%) after consolidation. After the preparation
of the sample, carbon dioxide (CO2) was used to pass through the sample, and then the sample was
saturated with 200 kPa back pressure under the effective confining pressure of 20 kPa. After checking
that the B-value of the sample exceeded 0.95, the saturation process of the sample ended. Through
K0 (static earth pressure coefficient) consolidation module of triaxial apparatus [24,25], the K0-value
of coral sand sample was set at 0.4. After the sample was saturated, the sample was consolidated
under anisotropic condition. During consolidation, the σ3/σ1-value (σ1 and σ3 are the major and minor
principal stress, respectively) was fixed to the K0-value to simulate K0 consolidation.
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Table 1. Basic physical and mechanical parameters of test sand samples.

Property Coral Sand

Specific gravity (Gs) 2.75
Maximum void ratio (emax) 1.107
Minimum void ratio (emin) 0.971
Coefficient of uniformity (Cu) 1.793
Coefficient of curvature (Cc) 0.781
Relative density of samples (Dr) 80%

2.2. Test Methods

The cyclic triaxial apparatus [26] developed by GDS company (GDS Instruments Ltd., UK) was
used in this study, which includes a loading system, a back pressure volume controller, a confining
pressure volume controller, a pore pressure sensor, displacement and force sensors (as shown in
Figure 3). The pressure chamber base is connected with various sensors and pressure volume controllers,
including back pressure, confining pressure, pore pressure, etc. The axial force is measured at a load
cell being located directly below the bottom end plate of the sample, i.e., inside the cell chamber.
The axial deformation is obtained from a displacement transducer attached to the load piston (not
shown in Figure 3).
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Chen et al. suggested using 1 Hz as the frequency of the resilient response tests for granular
soils [21]. With reference to previous studies, the effect of frequency f on the resilient behavior of
coarse-grained soil can be ignored [14]. In order to ensure the stability of data collection, the frequency
f of cyclic loading was selected as 0.5 Hz in this study. In order to study the long-term resilient response
of coral sand, the number of cycles N was selected to be 20,000. Referring to the experimental studies
of coarse-grained soil under traffic cyclic loading by other scholars, the cyclic loading type of this study
used half-sine loading [27–29]. Drained cyclic triaxial tests were performed on coral sand samples
at p0 = 40, 70, 100, 200, 300, 400 kPa. The selection range of the cyclic stress ratio ζ referred to the
range of actual loads reported in previous studies [30], and followed the rule that the cyclic stress ratio
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decreases as the foundation depth deepens. Table 2 summarizes the drained cyclic triaxial test scheme
of this study.

Table 2. Summary of the dynamic test programs.

Initial Mean Effective
Stress, p0(kPa)

Confining Pressure,
σ3(kPa)

Initial Static Stress
Ratio, ηc

Cyclic Stress Ratio, ζ

40 26.7 1.0 1.0, 1.4, 1.8, 2.2
70 46.7 1.0 1.0, 1.4, 1.8, 2.2

100 66.8 1.0 0.2, 0.4, 0.6, 1.0, 1.8
200 133.3 1.0 0.2, 0.4, 0.6, 1.0, 1.8
300 150.0 1.0 0.2, 0.4, 0.6, 1.0, 1.8
400 266.7 1.0 0.4, 0.6, 1.0, 1.8

The strain of sample under cyclic loading includes resilient strain (ε1
ampl) and accumulated axial

strain (ε1
acc). The typical hysteresis loop of the sample under cyclic loading is shown in Figure 4.

The area of each hysteresis loop represents the energy dissipation per cycle, which characterizes the
plastic work in a cycle, reflecting the resistance to deformation in profile. Resilient modulus (Mr)
is an important parameter for the infrastructure of offshore islands and reefs, which is computed
(Figure 4) by:

Mr = qampl/εampl
1 (1)

where qampl is the amplitude of cyclic deviatoric stress. The definition of cyclic stress ratio ζ is the ratio
of cyclic deviatoric stress to initial mean effective stress. The definition of initial static stress ratio ηc is
the ratio of initial static deviatoric stress to initial mean effective stress.
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3. Results

3.1. Particle Breakage under Cyclic Loading

According to the fractal theory and Hardin’s definition of relative particle breakage [31], Einav [32]
proposed the relative particle breakage index to characterize the degree of particle breakage of
coarse-grained soil. In the process of shearing, the gradation of coral sand changes to ultimate fractal
gradation under high pressure. The ultimate gradation (as the basic property of the material) is
independent of relative density and confining pressure, indicating that the particles will hardly break
in the ultimate state. From this point of view, the index proposed by Einav [32] was used as a measure
of particle breakage for coral sand:

Br =
Bt

Bp
(2)
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where Br is relative breakage index; Bp is total breakage potential; Bt is current total breakage potential.
The ultimate gradation was obtained from the triaxial compression test under the maximum mean
effective stress of 3 MPa (as shown in Figure 5). The total breakage potential Bp (as shown in Figure 5)
can be acquired by integrating the area over the logarithmic scale:

Bp =

∫ dM

dm

[Fu(d) − F0(d)]d(log d) (3)

where dm is minimum diameter and dM is maximum diameter. The total breakage Bt (as shown in
Figure 5) can be calculated as:

Bt =

∫ dM

dm

[Fc(d) − F0(d)]d(log d) (4)

The formulations F0(d), Fc(d), and Fu(d) (representing the initial gradation (IG), the current gradation
(CG) and the ultimate gradation (UG) for coral sand, respectively, as shown in Figure 5) can be
calculated as:

F0(d) = (
d

dM
)

3−α0

(5)

Fc(d) = (
d

dM
)

3−αc

(6)

Fu(d) = (
d

dM
)

3−αu

(7)

where α0, αc, and αu are fractal dimensions of IG, CG, and UG, respectively; d is diameter.
Substitution of Equations (3)–(7) into Equation (2) gives:

Br =

∫ dM
dm [Fu(d) − F0(d)]d(log d)∫ dM
dm [Fc(d) − F0(d)]d(log d)

=
(αc − α0)(3− αu)

(αu − α0)(3− αc)
(8)

The initial fractal dimension and ultimate fractal dimension are supposed to 1.44 and 2.46,
respectively, which were obtained by fitting the IG and UG (as shown in Figure 5).
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The fractal dimension αc can be obtained by fitting current gradation using Equation (6). Figure 6
shows the fractal dimension αc of coral sand at various initial mean effective stresses p0. The larger the
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fractal dimension is, the more serious the particle breakage of coral sand is, and the more the particle
gradation tends to the final fractal gradation. Under each p0, in the range of lower cyclic stress ratio ζ,
the αc increases significantly with the increase of ζ; in the range of higher ζ, the rate of αc increasing
with ζ slows down. Under each ζ, the αc of coral sand presents a consistent trend with the increase of
the initial mean effective stress p0. The αc of coral sand shows a tendency of almost maintaining stable
and then increasing rapidly with the increase of mean effective stress p0. There is a threshold of p0

(about 100 kPa), when the p0 exceeds this threshold, αc will increase significantly with the increase of
p0. This indicates that p0 has a restrictive effect on the particle breakage of coral sand. When p0 is small,
the αc (i.e., particle breakage) cannot grow fast. In actual engineering, it should be noted that when p0

is greater than the threshold value, the significant and rapid increase of particle breakage will bring
adverse effects on the service safety of the project. As can be seen in Figure 6, under each ζ, the αc can
be expressed as a function with p0 as a variable:

αc = αp0 + kαβα
log

p0
pa (9)

where αp0, kα, and βα are material parameters. The physical meaning of αp0 represents the fractal
dimension of the starting particle breakage that can occur when the p0 is relatively small at each ζ.
The optimal regression value of kα and βα are 0.00575 and 147.955, respectively. The optimal regression
values of αp0 at ζ = 0.2, 0.4, 0.6, 1.0, 1.4, 1.8, and 2.2 are 1.452, 1.522, 1.577, 1.619, 1.634, 1.648, and
1.661, respectively.
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Figure 7 shows the relationship between parameter αp0 and cyclic stress ratio ζ. The relationship
between αp0 and ζ can be expressed as:

αp0 = χαζ
µα (10)

where χα and µα are material parameters. The optimal regression value of χα and ζµα are 1.603 and
0.0550, respectively. Substitution of Equation (10) into Equation (9) gives:

αc = αp0 + kαβα
log

p0
pa (11)

Substitution of Equation (11) into Equation (8) gives:

Br =
(χαζµα + kαβα

log
p0
pa − α0)(3− αu)

(αu − α0)(3− χαζµα − kαβα
log

p0
pa )

(12)
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Figure 7. Relationship between parameter αp0 and cyclic stress ratio ζ.

At the end of the drained cyclic triaxial test, the calcareous sand sample was recovered carefully
and the particle size distribution curve of the sample after cyclic loading was measured by the sieving
test. Based on the observed particle size distribution curve after loading, the observed Br of calcareous
sand was then calculated by Equation (2). Figure 8 represents the relationship between Br predicted
by Equation (12) and observed Br. It can be seen from Figure 8 that the points of predicted Br and
observed Br are basically in a straight line with the slope of 1, indicating that Equation (12) can well
predict the Br of coral sand under cyclic loading. Substitution of Equation (10) into Equation (8) gives:

Brp0 =
(χαζµα − α0)(3− αu)

(αu − α0)(3− χαζµα)
(13)

where Brp0 is the starting relative particle breakage index that can occur when p0 is relatively small at
each ζ, which represents the ability of coral sand to resist particle breakage under different ζ.
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3.2. Resilient Behavior under Cyclic Loading

Sun et al. [11] and Indraratna et al. [15] emphasized that understanding the resilient behavior of
soil can be helpful to judge and avoid some factors that cause engineering accidents. Resilient modulus
is an important design parameter for the safety evaluation of the infrastructures of ocean engineering.
Therefore, a comprehensive understanding of the resilient modulus of coral sand is of great practical
significance to the construction of reef island traffic infrastructures and the utilization of energy.
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Figure 9 reflects the general evolution trend of the hysteresis loop of coral sand during cyclic
loading. The cyclic stress ratio has a significant effect on the dynamic stress-strain relationship of
calcareous sand. According to the changing trend of the shape and area of the hysteresis loop with the
number of cycles N, the development law of the hysteresis loop under different cyclic stress ratios can
be divided into two types. When the cyclic stress ratio ζ is small (ζ = 0.2), the hysteresis loop is closed
at the beginning, and the area of hysteresis loop increases slightly with the increase of the number of
cycles N. At the initial stage of cyclic loading, when the ζ is large (ζ = 0.4, 0.6 and 1.0), the opening of
hysteresis loop is large and its shape is relatively irregular. With the development of cyclic loading,
the opening of hysteretic loop tends to close, which is a long ellipse with two pointed ends. As the
number of cycles increases, the dynamic strain accumulates, and the hysteresis loop becomes narrow.
The area of the hysteresis loop decreases first and then increases slightly with the increase of N. Under
the process of cyclic loading, the shape of coral sand’s hysteresis loop changes rapidly at first, and then
tends to be stable gradually. Roughly, in the early stage of cyclic loading, the hysteresis loop of coral
sand first rotates anticlockwise, then slightly rotates clockwise in the later stage and finally tends to be
stable. This illustrates that the resilient modulus Mr of coral sand under cyclic loading first increases
with the number of cycles N, and then due to the continuous accumulation of particle breakage, the Mr

will decrease to some extent in the later stage as N increases. Under the long-term cyclic loading, the
Mr will finally tends to a stable value, which is consistent with the results of Sun et al. [11].
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Figure 9. Hysteresis loop of coral sand under cyclic loading (take the samples of p0 = 200k Pa as an 

example): (a) p0 = 200 kPa, ζ = 0.2; (b) p0 = 200 kPa, ζ = 0.4; (c) p0 = 200 kPa, ζ = 0.6; (d) p0 = 200 kPa, ζ = 

1.0. 
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conclusion that Mr increases uniformly with the increase of ζ obtained by the experimental results on 

terrigenous granular materials [14], the Mrs of coral sand only shows a slight growth trend as a whole. 

That is to say, as the ζ increases, the Mrs does not increase uniformly but fluctuates. This indicates 

that the increase of ζ has both beneficial and detrimental effects on the improvement of the Mrs. This 

phenomenon may be caused by the complexity and variability due to the particle breakage of coral 

sand material. It can be seen from Figure 6 that the particle breakage degree of coral sand increases 

with the increase of ζ and the particle breakage has an adverse effect on the stiffness; therefore, the 

cyclic stress ratio has a complex effect on the resilient modulus response of coral sand. This should 

be paid attention to in practical engineering. 

Figure 9. Hysteresis loop of coral sand under cyclic loading (take the samples of p0 = 200k Pa as an
example): (a) p0 = 200 kPa, ζ = 0.2; (b) p0 = 200 kPa, ζ = 0.4; (c) p0 = 200 kPa, ζ = 0.6; (d) p0 = 200 kPa,
ζ = 1.0.

Figure 10a shows the variation of stable resilient modulus Mr
s with p0. With the increase of p0, Mr

s

basically increases uniformly. This indicates that the increase of p0 is beneficial for the improvement
of Mr

s. This conclusion is consistent with the findings of Sun et al. [11] and Lackenby et al. [14].
Figure 10b shows the variation of stable resilient modulus with ζ. Contrary to the conclusion that Mr

increases uniformly with the increase of ζ obtained by the experimental results on terrigenous granular
materials [14], the Mr

s of coral sand only shows a slight growth trend as a whole. That is to say, as the
ζ increases, the Mr

s does not increase uniformly but fluctuates. This indicates that the increase of ζ
has both beneficial and detrimental effects on the improvement of the Mr

s. This phenomenon may be
caused by the complexity and variability due to the particle breakage of coral sand material. It can
be seen from Figure 6 that the particle breakage degree of coral sand increases with the increase of ζ
and the particle breakage has an adverse effect on the stiffness; therefore, the cyclic stress ratio has a
complex effect on the resilient modulus response of coral sand. This should be paid attention to in
practical engineering.
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Figure 10. Stable resilient modulus of coral sand at various initial mean effective stress and cyclic 
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Figure 10. Stable resilient modulus of coral sand at various initial mean effective stress and cyclic stress
ratios: (a) stable resilient modulus of coral sand at various initial mean effective stresses; (b) stable
resilient modulus of coral sand at various cyclic stress ratios.

4. Discussion

The reasonable prediction of Mr
s is of great significance to the actual engineering design and

safety evaluation [10,33,34]. Therefore, Witczak and Uzan [35] established the empirical models for
predicting the stable resilient modulus of terrigenous granular soil under cyclic loading. A famous
two-parameter model proposed by Witczak and Uzan [33] only considered the cyclic deviatoric stress,
not the initial mean effective stress p0. Therefore, by introducing the initial mean effective stress into
the model, the predicted resilient modulus Mr

ps can be calculated as:

Mr
ps = k1

p0

pa
ζk2 (14)

where pa = 100 kPa (i.e., standard atmospheric pressure); k1 and k2 are material parameters. The optimal
regression value of k1, k2, k3, and k4 are 40.766, −0.297, −1553.306, and 0.282, respectively.

Figure 11 shows a comparison of the predicted surface of Mr
ps calculated from Equation (14) with

the observed Mr
s. As can be seen from Figure 11, the predicted Mr

ps deviates greatly from the observed
Mr

s. In the low stress range, the predicted Mr
ps is always greater than the observed Mr

s, which has also
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been reported by many scholars when they study the granular soil with easily broken particles [21,36].
It can also be seen from Figure 11 that in the high stress range, the predicted Mr

ps is always less than
the observed Mr

s. The previous model for conventional terrestrial granular material cannot predict the
Mr

s of coral sand with easily broken particles in whole stress interval. Figure 12 shows the relationship
between the ratio of predicted resilient modulus Mr

ps by Equation (14) and observed Mr
s with the

particle breakage level Brp0/pa. It can be obtained from Figure 12 that the particle breakage has a
significant effect on the resilient modulus prediction model of coral sand. The Mr

ps/Mr
s decreases

with the increase of the Brp0/pa, which indicates that the deviation between the predicted resilient
modulus and the observed resilient modulus is partly caused by the difference of particle breakage
level in various stress range. Coral sand has smaller particle breakage in the low stress range and
larger particle breakage in the high stress range. The difference between particle breakage in the high
and low stress ranges causes the predicted resilient modulus to regularly deviate from the observed
resilient modulus. The starting relative particle breakage index Brp0 was introduced into the formula,
and the prediction model of Mr

ps considering the effect of particle breakage can be expressed as:

Mr
ps = k1

p0

pa
ζk2 − k3Brp0(

p0

pa
)

k4
(15)

where pa = 100 kPa (i.e., standard atmospheric pressure); Brp0 can be calculated by Equation (13); k1, k2,
k3, and k4 are material parameters. The optimal regression value of k1, k2, k3, and k4 are 40.766, −0.297,
−1553.306, and 0.282, respectively.
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Figure 12. Relationship between Brp0/pa and Mr
ps/Mr

s calculated from Equation (14).

Figure 13 shows a comparison of the predicted surface of Mr
ps calculated from Equation (15) with

the observed Mr
s. It can be seen from Figure 13 that the prediction model of the Mr

s considering particle
breakage can make the predicted Mr

ps closer to the observed Mr
s. Figure 14 shows the relationship

between the ratio of predicted resilient modulus Mr
ps by Equation (15) and observed Mr

s with the
particle breakage level Brp0/pa. It can be seen from Figure 14 that the Mr

ps/ Mr
s is basically 1 and has

no obvious relationship with the particle breakage level Brp0/pa, which indicates that the prediction
model of Mr

s considering particle breakage can better predict the resilient modulus response of coral
sand. Therefore, unlike terrestrial granular materials, it is necessary to consider the impact of particle
breakage when establishing a resilient modulus prediction model for coral sand. Considering particle
breakage can help more accurately predict the resilient modulus of coral sand. In order to evaluate the
resilient response of actual engineering more comprehensively and accurately, the effect of different
particle sizes and relative densities on the prediction model of resilient modulus will be focused on in
the future research. Moreover, the proposed formula will be verified in other types of soils.
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5. Conclusions

A series of drained cyclic triaxial tests were carried out on the coral sand of the South China Sea
to investigate the resilient modulus Mr response and a new prediction model of Mr was proposed.
The effects of the initial mean effective stress p0 and cyclic stress ratio ζ on the Mr were examined.
The main conclusions are the following:

(1) The change of fractal dimension αc can reflect the rule of particle breakage evolution. The αc of
coral sand shows a tendency of almost maintaining stable and then increasing rapidly with the
increase of mean effective stress p0 under each cyclic stress ratio ζ. There is a threshold of p0, when
the p0 exceed s this threshold, αc will increase significantly with the increase of p0. The actual
project needs to pay attention to the adverse effect of the rapid increase of particle breakage on
the engineering safety when p0 is greater than the threshold.

(2) The resilient modulus Mr of coral sand under cyclic loading first increases with the number of
cycles N, and then due to the continuous accumulation of particle breakage, the Mr will decrease
to some extent in the later stage as N increases. Under the long-term cyclic loading, the Mr will
finally tend to a stable value. The increase of p0 has a beneficial effect on the improvement of the
Mr, and the increase of p0 will lead to the increase of Mr uniformly. The increase of ζ has both
beneficial and detrimental effects on the improvement of the Mr, and the increase of ζ will cause
the increase or decrease of Mr. The effect of ζ on the resilient modulus of coral sand is different
from that of terrestrial granular materials, which is caused by the special material properties of
coral sand.

(3) A new empirical prediction model of the Mr considering particle breakage was established,
which can better predict the Mr of coral sand in the whole stress interval. Particle breakage has a
significant effect on the prediction model of the Mr. It was found that if the particle breakage
was not considered as an influencing factor in the empirical model, the predicted value of the Mr

would deviate greatly from the measured value. Therefore, it is necessary to consider the effect of
particle breakage when establishing a resilient modulus prediction model for the coral sand.
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