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Abstract: The demand for non-powered facility towing is increasing with the development of large-scale
offshore projects. It is of great interest for its safe operation to measure the state of the towing process
in real time. This paper proposed a computer vision algorithm designed to measure the tug yawing
during the towing operation by estimating the towing line angle. The geometrical projection of
the towing line from 3D to 2D is described in detail. By fixing the camera at specific locations and
simplifying the calculation procedure, the towing line angle in the 3D world can be estimated by the
line angle in the image. Firstly, the sea–sky line is detected to estimate the rolling angle of the tug in
the captured image. Then, the towing line angle is calculated by an image processing method. At the
same time, the estimation of the towing angle is achieved through the captured video data analysis.
Finally, field experiments were carried out and the results demonstrated that this method is suitable
for real-time calculation of the towing angle during the towing operation.

Keywords: non-powered facility; towing angle; computer vision; sea–sky line detection

1. Introduction

Recently, the towing operation of non-powered facilities at sea has developed rapidly to promote
marine exploration, deep sea farming, and meet other marine engineering needs. Offshore drilling
platforms, marine breeding platforms, and other non-powered equipment are huge in size. Besides,
their hydrodynamics is quite complex and hard to model precisely, especially under the influence of
wind, waves, tides, and other natural environmental factors. These factors pose a great challenge to
their safe operation. Therefore, there has been an urgent need for industrial development to ensure the
safety and reduce the risk of towing operations at sea [1].

Due to the sea’s weather conditions, the tug and the towed facility would swing in the scheduled
route during the non-powered facility towing voyage, which is the yawing problem of the towing
operation. There are many factors that affect the yawing of the towing system, such as the towing
speed, the position of the towing point in the towed facility, the length of the rope, and the loading
of the towed facility. The yawing would lead to a change in the towing angle. A large towing angle
would make the dragging line have a transverse drag force acting on both the tug and the platform.
The transverse moment caused by the drag force would result in a transverse inclination, which would
influence the system stability. When the towing angle becomes larger, the transverse drag moment
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generated by the drag force will become larger, which would increase the wear and stress concentration
of the towing line. In this case, the difficulty of the towing operation would also increase; the towing
line might even break, causing serious accidents [2].

With the development of computer vision technology, the camera has become an indispensable
sensor device in all walks of life due to its low cost, rich information and high resolution; its application
in the marine environment is also increasing, such as for obstacles detection, sea–sky line detection,
etc. [3].

The main contribution of this paper is that a computer vision-based method is proposed for the
towing angle measurement, which contributes to the safety of the non-powered sea platform towing
operation. The geometrical projection model of the towing line from 3D to 2D is proposed in the work.
Without additional sensors, the towing line angle in the 3D world can be estimated by the line angle in
the image. Moreover, the rolling angle of the tug can be estimated by detecting the sea–sky line angle
in the captured image. To deal with the adverse effects of surface waves and spray, a specific filter is
designed for the towing line detection.

The remainder of this paper is organized as follows. Section 2 reviews related research in the
towing field. Section 3 presents the framework of the method, including the mathematics of the
projection from the 3D world to the 2D image, the sea–sky line detection method and the process of the
towing angle detection in the image coordinate. Section 4 is the experimental section, which provides
the experimental evaluation of the method. Finally, Section 5 gives some conclusions.

2. Literature Review

2.1. Towing Research

Towing operations involve a wide range of fields. Many researchers have done a lot of extensive
and in-depth work in the study of the whole process of towing. As early as 1950, performance
simulation and stability analyses were carried out by using a steady forward velocity towing model [4].
Bernitsas and Kekrides developed a model to describe the ship’s motion towed by an elastic cable [5].
Subsequently, they established the slow-speed dynamic mathematical models of single-line towing and
two-line towing in references [6,7], respectively, considering the environmental excitation of the current,
wind and average wave drift force. By simulating four systems with different dynamic characteristics,
the conclusions from the local linear analysis and global nonlinear analysis were verified. Fitriadhy et
al. proposed a numerical model to analyze the stability of the towed ship, and studied the effects of
different speeds and different angles of wind on the ship towing system. Under certain wind conditions,
the impact tension on the tow line increased, which decreased the towing system stability [8]. Fang
and Ju developed a nonlinear mathematical model that takes into consideration the seakeeping and
maneuverability of the ship, as well as the influence of wind; simulated the motion characteristics of
ships in random waves; and studied the dynamic stability of the towing system in waves [9]. In [10],
a mathematical model of a towing system, including a tug, a towing cable and a towed vessel, was
established to study the impact of the loading conditions of a towed vessel on the yawing extent of
the towing system. The simulation results showed that the towing speed, cable length and loading
conditions had a certain influence on the system yaw. Under the stability of the towing system, the
relationship between the yawing angle and cable stress was determined, and the limit values of cable
stress of the different yawing angles were calculated, in order to evaluate the safety of the towing
operation [11].

However, there is very little research about the measurement of real-time yawing. Based on this,
the article uses an image processing method to extract the towing line and estimate the yaw of the tug
during the towing process, thus ensuring the safety of the towing system.

2.2. Sea–Sky Line Detection

The sea–sky line is an important cue for visual perception in the marine environment. In marine
images where the sea–sky line is a region boundary, the accurate detection of the sea–sky line is
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significantly beneficial to the detection of the vessel rolling angle. Dong et al. [12] used the textural
features based on a gray-level co-occurrence matrix to locate the sea–sky line region. Then a set of
sea–sky line candidate points were obtained by an image binarization algorithm, and the sea–sky
line was detected by the linear fitting method. Wang et al. [13] proposed a method that first acquires
the gradient saliency image, and then adopts the region growth method to get the support region,
ultimately combining the spatial characteristics to obtain the sea–sky line. Chiyoon et al. proposed
a sea–sky line detection method that combined the edge information of different scale images and
adopted a convolutional neural network (CNN) to validate the edge pixels belonging to the horizon,
and then the sea–sky line was estimated iteratively by least squares fitting [14,15]. Dai et al. [16] used
the image segmentation method to extract the edge pixels and applied the Hough transformation to
obtain the sea–sky line. Sun et al. [17] proposed a coarse–fine-stitched method for robust horizon line
detection. They first used gradient features to build a line candidate pool, applied a hybrid feature
filter to extract the fine horizon lines from the pool, and then used the Random Sample Consensus
algorithm to obtain the whole horizon line. Wenqiang et al. [18] introduced the local variation method
to minimize the influence of background texture and reinforce the sea–sky line structure and adopted
the Random Sample Consensus algorithm to fitting the sea–sky line. Subsequently, they [19] proposed
a visual detection method for navigable waters based on neural networks online training. Firstly,
different regions of the image were clustered, and labels and confidence values were allocated, and
then they were fed into the training grid of the neural networks. Finally, the training grid was utilized
to segment the input image again, but with higher precision and robustness.

2.3. Salient Feature Detection

In this paper, the rope line in the image would be detected by its statistical saliency features. In order
to calculate the saliency map and recognize the salient objects in a given image, many researchers
propose a lot of saliency models. According to the use of prior knowledge, current methods are
divided into two categories: contrast different models and learning-based models. For the contrast
difference models, these methods used the local and global center-surround difference with the low-level
feature [20]. In the early local-contrast-based method, image pixel contrast was calculated from an image
pyramid based on the color and orientation features for saliency detection. Assuming that the salient
object has a well-defined closed boundary, Jiang et al. [21] integrated object shape prior and bottom-up
salient stimuli to propose a multi-scale contrast-based method. Cheng et al. [22] proposed a regional
contrast method for the saliency extraction based on spatial coherence and global appearance contrast,
and verified it in the largest public data set. In [23], a hierarchical framework was introduced to obtain
a high-response saliency map, which got important values from three image layers in different scales.
Bhattacharya et al. [24] proposed a novel algorithm that decomposed the input video into background
and residual videos to detect the motion salient regions within much less time. In [25], a novel saliency
detection algorithm was described: Multiscale extrema of the local differences measured in the CIELAB
space was firstly used to detect potentially salient regions, and then the saliency map was generated by
a Gaussian mixture. Chen et al. [26] detailed a new learning framework for video saliency detection,
which makes full use of spatiotemporal consistency to improve the detection accuracy. Instead of direct
training on image features, Mai et al. [27] trained Conditional Random Fields by saliency aggregation on
saliency maps. In [28], a regressor based on discriminative regional features was trained and the image
saliency was predicted by a random forest model. Recently, CNN techniques had good performance in
salience detection [29], and a novel CNN framework integrated with low-level features was proposed
to detect salient objects for complex images [30]. Luo et al. [31] designed a simplified CNN with the
local and global information, and proposed a loss function to penalize errors on the edge, inspired by
the Mumford–Shah function. A global Recurrent Localization Network (RLN) was proposed to exploit
the contextual cue of the weighted response map for salient object detection [32].
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3. An Overview of the Framework

The towing line angle estimation in the 3D global coordinate is shown in Figure 1. According to
the derivation process of the towing line projection, the towing line angle in the 3D global coordinate
could be estimated by the sea–sky line angle and the towing line angle in the image. Then, the image
processing procedure is divided into two parallel steps: the sea–sky line angle calculation and the
towing line angle calculation in the image, as shown in Figure 1.
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The top diagram shows the process of sea–sky line detection. The vertical gradient map is used
for the sea–sky line detection. Before the gradient computation, the image is smoothed by the total
variance method to reduce the local texture influence and remain the edge of the background structure.
Based on the characteristics of the edge between the sky and the sea, the points with the minimum
value are selected as the potential sea–sky line points. Then, the Random Sample Consensus algorithm
is adopted to remove the outlier and calculate the sea–sky line angle α.

To detect the towing line, the brightness distribution of the image is statistically analyzed, as shown
in the bottom diagram. An adaptive threshold is also used to select the potential towing line points.
Two new filters are designed to remove the sea wave lines and discrete points. Then the towing line
angle in the image is estimated by the least square method. Finally, the towing line angle in the 3D
global coordinate is calculated according to two calculated angles, which is also called the towing angle.

3.1. The Geometrical Projection Model

The pinhole camera model is regularly employed as a basic image acquisition process; it defines
the projection relationship from a 3D global coordinate to a 2D image plane coordinate [33]. The center
of the perspective projection is regarded as the optical center. The line that is perpendicular to the
image plane and passes through the optical center is regarded as the optical axis. Additionally, the
intersection point between the image plane and the optical axis is regarded as the principal point.
To simplify the calculation, the camera is mounted to make the optical axis parallel to the sea surface.
Simultaneously, the optical axis is in the longitudinal symmetry plane of the observation vessel.

The coordinate system is established, as shown in Figure 2. Origins of world coordinates and the
camera coordinates are both at the optical center. The optical axis is set as the Zc axis and the Zw axis.
In the world coordinate system P1w = [x0, y0, z0]

T is assumed to be the start points of the towing line
attached in the tug stern. P2w = [x2w, y2w, z2w]

T is the endpoints of the towing line on the sea surface.
y2w is set to be y0 by ignoring the altitude difference of the points P1w and P2w. d is the distance of P1w

and P2w. The angle between the towing line and the Zw axis in the world coordinate system is towing
angle γ. Then point P2w can be expressed as follows:

P2w =


x2w

y2w

z2w

 =


x0 + dsinγ
y0

z0 + dcosγ

. (1)

As the pitch value of the tug is small during the towing process, only the rolling transformation
is considered from the world coordinate system to the camera coordinate system. The rolling angle
coincides with the sea–sky line angle α. The transformation matrix R is
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R =


cosα −sinα 0
sinα cosα 0

0 0 1

. (2)

The two towing line points transformed in the camera coordinates are

P1c = RP1w =


x0cosα− y0sinα
x0sinα+ y0cosα

z0

, (3)

P2c = RP2w =


(x0 + dsinγ)cosα− y0sinα
(x0 + dsinγ)sinα+ y0cosα

z0 + dcosγ

. (4)

The camera intrinsic matrix is

K =


f 0 u0

0 f v0

0 0 1

, (5)

where u0 and v0 are the offsets of the horizontal and vertical axes. P1f =
[
x1 f , y1 f

]T
and P2f =

[
x2 f , y2 f

]T

are the projected points in the 2D image film, respectively. Besides, the two perspective points of the
towing line points in the image pixel coordinates are

P1f = KP1c =

 f
z0
(x0cosα− y0sinα) − u0

f
z0
(x0sinα+ y0cosα) − v0

, (6)

P2f = KP2c =


f

z0+dcosγ ((x0 + dsinγ)cosα− y0sinα) − u0
f

z0+dcosγ ((x0 + dsinγ)sinα+ y0cosα) − v0

. (7)

The towing line angle β in the pixel coordinates is estimated by

tanβ = −
x2 f − x1 f

y2 f − y1 f
. (8)

As the length of d has no influence on the value of β, d can be set to infinity. Then, P2f is

P2f =

[
f tanγ

tanγtanα

]
. (9)

According to the formula, we can obtain

tanβ = −
x0 − y0tanα− z0tanγ

x0tanα+ y0 − z0tanγtanα
. (10)

For the towing stability, the towing angle is also in the symmetry axis at the stern. P1f is
approximately in the middle of the stem of the vessel. Then, x0 is set zero. Then we can get

tanγ =
y0tanα− y0tanβ
z0 + z0tanβtanα

. (11)

According to the formula, the towing line angle in the 3D global coordinate can be estimated with
the parameters y0, z0, α and β.
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3.2. Sea–Sky Line Detection

Many observations show that the sea–sky line ranges in the limited area. To reduce the computing
expense as well as the noise, the processing area is constrained in the specific region in the image that
contains the sea–sky line.

The sea–sky line is detected based on the max change at the edge of the sea and the sky. The points
with max gradient value in each column are regarded as the sea–sky line points. As the textures of the
cloud and the sea wave are featured with great variation, points in these regions have a large chance
to be selected as the potential points. To solve this problem, the sky and water regions should be
smoothed and a max change in the sea–sky line region should remain at the same time.

The traditional denoising algorithms are likely to smooth both the local texture and the global
structure. To address this problem, the total variation algorithm proposed by Xu is applied [34].

The sky region above the sea–sky line is lighter. The area below the sea–sky line is composed of
darker areas like the sea and ships. The points along the vertical lines with an absolute great gradient
value are possible sea–sky line points. As the y-axis of the image coordinate system is from top to
bottom, the gradient value of the sea–sky line points is negative. Then, points with the minimum value
in each column of the gradient map are selected as the potential sea–sky line points.

The selected sea–sky line points are used to estimate the line parameter. Even though the gray
image is smooth in the local texture, we could not ensure that the minimum vertical gradient value
appears in the sea–sky line. To reduce the outlier point influence, Random Sample Consensus (RANSAC)
was adopted to estimate the sea–sky line angle. The algorithm can obtain the correct parameter values
under a large amount of noise through iterative calculation [35].

3.3. Towing Line Angle Estimation in Image Pixel Coordination

In this section, the process of the towing line detection and the angle estimation in the towing
vessel is described. A new saliency selection method is used to detect the towing line. Then a novel
filter method is applied to remove the sea wave texture and the stern spray noise points. After that, the
towing line angle is estimated by the towing line points.

3.3.1. Towing Line Selection

As the camera is mounted on the stern of the towing vessel, the towing line appears in the limited
region in the video. Thus, only the interest region is processed to detect the towing line. Intuitively, the
towing line is outstanding from the sea surface background. Inspired by saliency detection, which is
described as an attention mechanism in organisms to narrow down to the remarkable parts of what
they see, the statistical and geometric linear characteristic is adapted to detect the towing line from the
complex background.
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The color of the towing line is black in the video. Considering the influence of the sea wave, it is
difficult to detect the towing based on the probability distribution of the brightness in the image, as
shown in Figure 3. Intuitively, the towing line region is dark in the image, and the value of the towing
line accounts for a small part in the brightness statistics. Then the brightness distribution of the towing
line region is considered as the Gaussian distribution.

P(x, y) =
1

σ
√

2π
e
−(I(x,y)−µ)2

2σ2 . (12)

The points with high-density probability are background, while the points with low-density
probability have a great chance to be towing line points.

B(x, y) =
{

0
1

i f P(x, y) > PT

otherwise
, (13)

where B(x, y) is the background scene model, and PT is the threshold. Then, the mean and standard
deviation of the towing line region is calculated as

µ =
1

H ×W

W∑
x−1

H∑
y−1

I(x, y), (14)

σ =

√√√√
1

H ×W − 1

W∑
x−1

H∑
y−1

(I(x, y) − µ)2. (15)

Considering the towing line brightness with a low value, the brightness value of the towing line
is on the left side of the brightness distribution. Then, the towing line brightness value should satisfy

µ− I(x, y)
σ

> T, (16)
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where T is the threshold value. After several experiments, it was found that a good result can be
obtained when T is 2.

3.3.2. Filtering Horizontal Wave Line Points

After selecting the potential towing line points with the statistical method, there is still a lot of
noise in the selected points. The sea wave results in the noise points that are displayed as a horizon line
in the image. In addition to that, the stern spray is presented as the discrete noise points. The potential
towing line points are modeled and filtered by adopting the statistical method as three partitions:

P = Pt ∪ Ph ∪ Pd, (17)

where P is the set of potential towing line points; Pt is the set of towing line points; Ph is the set of sea
wave horizontal line points; and Pd is the set of discrete noise points.

To remove the noise and get the towline points, first of all, the horizontal wave line points are
removed. Then, based on the line property, the discrete points are denoised. Rather than removing
the horizontal line points directly, a filter is used to retain the horizontal line point Ph, as shown in
Figure 4c. Then, the potential towing line point set P is subtracted from the horizontal line point set Ph

to get the towing line points and the discrete noise point set Ptd.

Ptd = P− Ph. (18)

Morphology is applied to detect continuous horizon line points. The horizontal filter is shown in
Figure 4a. The potential towing line point map is convoluted with the horizontal filter. Map points of
the value equal to three are set to be one, while the others are set to be zero. When one of the horizontal
neighbors is not in the potential towing line point set, the potential points are removed from the set.
The discrete points and towing line points would be removed, with the horizontal sea wave line points
remaining. After the erosion operation, the eroded potential point map is dilated by convoluting with
the horizontal filter again. At this time, points with a non-zero value are set to be one. The dilating is
to offset the erosion of the horizontal wave line points.

Mh = D(E(M ∗ FH)∗ FH), (19)

where FH is the horizontal filter kernel; M is the potential towing line point map; Mh is the horizontal
wave line point map; and E(·) and D(·) are relevant operations of erosion and dilation respectively.

E(x, y) =
{

1
0

i f I(x, y) > 3
otherwise

. (20)
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3.3.3. Filtering Discrete Points

After removing the horizontal wave line points, the final step is to remove the discrete noise
points. The traditional method of removing small objects from the foreground is the morphology
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operation of opening, which is the combination of the erosion operation and dilation operation. In the
opening operation, the erosion operation removes the small objects, and the dilation operation restores
the shape of the remaining objects. As the erosion operation erodes objects in all directions, line points
could be removed at the same time. To solve this problem, a novel method was designed to remove
the discrete points and keep the line points. The new method consists of three convolution kernels, as
shown in Figure 5.
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The point map is convoluted by the three kernels and processed through the active function g1(x),
respectively. Then these three convoluted maps are summed up. Finally, the active function g2(x) is
used to filter the discrete points.

g1(x) =
{

1
0

i f x > 1
otherwise

, (21)

g2(x) =
{

1
0

i f x = 3
otherwise

. (22)

Kernel 2 is used to detect whether each location is featured with points. Kernels 1 and 3 are to
detect whether the up and the down locations have points. The active function g1(x) is the binary
convoluted map. The active function g2(x) tends to detect the up and down neighbor of the points at
the same time. Then the points are removed when either their up or down points do not exist.

Figure 6 shows the effect of the filtering method. With the vertical and oblique continuity, it is
supposed that there is more than one point at each of the upside and downside of the towing line
points. The filtering method is to remove the discrete points and keep the towing line points, as shown
in Figure 6b.
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3.3.4. Line Parameter Calculation

The least-square method is adopted to estimate the towing line parameter. To avoid the towing
line vertical to the horizontal line, we model the towing line as

x = k · y + b. (23)

The objective is to adjust the parameters of the line model function to best fit the points,
(xi, yi), i = 1, . . . , n. The least-squares method can be used to find its optimum with min squared
sum residuals:

argmin
k,b

∑
i

(
xi − k · yi − b

)2
. (24)

The min squared sum residuals are found when the gradient is zero. Then we can derive the
values of k and b that minimize the objective function:

k̂ =

∑
i(xi − x)(yi − y)∑

i(yi − y)2 , (25)

where x and y are the averages of xi and yi, respectively. Then, the angle of the sea–sky line is
estimated by

α = tanK. (26)

4. Experiments and Discussion

Several experiments were conducted to examine the validity of our method. Our experiment
video data was recorded when the vessel towed the jack-up drilling platform. As some parameters
are internal, secret information, this parameter is estimated roughly. The experiments successfully
estimated the towing line angle and the result of the angle was consistent with empirical values.

4.1. Experimental Setup

Our experimental data relied on a towing operation, when the vessel DONG HAI JIU 101 towed
the CJ50 jack-up drilling platform H1418 in 24 h. The H1418 platform features a square structure
that has a plane size of 70 m × 68 m. The height is about 82 m and the total weight is about 17,100
tons. These parameters were roughly estimated due to internal confidentiality. The vision system is
placed at the tail of the vessel and consists of an industrial camera (200 W pixel, 3.2 µm pixel size) and
industrial lens (12 mm, 1:1.4), and the captured images were recorded at 25 f/s, with a resolution of
1920 × 1080 pixels.

4.2. Water Line Detection

Figure 7 shows the results of the sea–sky line detection in different light conditions. The second
column in Figure 7 is the point map with the maximum value in each column of the vertical gradient
map. The third column is the result of the sea–sky line using the RANSAC algorithm based on the
second column. As can be seen from the second column, due to the interference of various noises,
the points of the maximum gradient value are not completely collinear, but most values are collinear.
The RANSAC algorithm is very robust to outliers, and can estimate the required parameters well in
the case of a large number of outliers. As shown in the third column, the correct sea–sky line results
can be obtained within a few dozen iterations.
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Figure 7. The sea–sky line detection process: the first column is the original image; the second column
is the points with the maximum gradient value in each column of the image; and the third column is
the sea–sky line detection by the RANSAC algorithm.

4.3. Towing Line Detection

Several saliency detection methods were adopted to locate the towing line in the image. Figure 8
shows the result of the context-aware-based saliency detection methods (CA) [36]; dense and sparse
reconstruction-based saliency detection methods (DSR) [37]; Markov chain-based saliency detection
methods (MC) [38]; spectral residual-based saliency detection methods (SR) [39]; and Bayesian-based
statistics saliency detection methods (SUN) [40]. The context-aware-based and spectral residual-based
methods could roughly locate the towing line. However, this method is susceptible to sea wave texture.
The dense and sparse reconstruction-based method and the Markov chain-based method failed to
detect salient line objects. The Bayesian-based method was influenced by the white sea spray. All these
saliency detection methods could not satisfy our requirement to detect the towing line in the image.

Canny edge detection and Hough methods were adopted to detect the towing line, as shown in
Figure 9. The second column of the figure is the result of Canny edge detection. Most of the edges
are the sea wave. The fourth column is the result of the Hough method after Canny edge detection.
However, this method could not detect the towing line. The third column is the potential towing line
point map by using our salient statistical method. As there are many noise points in these points, the
Hough method could not exactly detect the towing line, as shown in the fifth column. Experiments
show that our method could effectively detect the towing line points shown in the last column.

Figure 10 is the result of our method. The second column is the potential towing line points.
The third column is the detection of horizontal sea wave line points. By subtracting the horizontal
line points from the potential towing line points, the remaining discrete and towing line point map is
shown in the fourth column. The last column is the final towing line detection. Through the previous
comparative experiment and the step-by-step result analysis of the proposed algorithm, it demonstrates
that the proposed method performs well, regardless of the complex sea surface with waves and spray.



J. Mar. Sci. Eng. 2020, 8, 356 12 of 17

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 16 

 

texture. The dense and sparse reconstruction-based method and the Markov chain-based method 
failed to detect salient line objects. The Bayesian-based method was influenced by the white sea spray. 
All these saliency detection methods could not satisfy our requirement to detect the towing line in 
the image. 

 
Figure 8. Different saliency detection of the towing line: the first column is the original image; the 
second column is the result by CA methods; the third column is the result by DSR methods; the fourth 
column is the result by MC methods; the fifth column is the result by SR methods; and the sixth 
column is the result by SUN methods. 

Canny edge detection and Hough methods were adopted to detect the towing line, as shown in 
Figure 9. The second column of the figure is the result of Canny edge detection. Most of the edges are 
the sea wave. The fourth column is the result of the Hough method after Canny edge detection. 
However, this method could not detect the towing line. The third column is the potential towing line 
point map by using our salient statistical method. As there are many noise points in these points, the 
Hough method could not exactly detect the towing line, as shown in the fifth column. Experiments 
show that our method could effectively detect the towing line points shown in the last column. 

Figure 10 is the result of our method. The second column is the potential towing line points. The 
third column is the detection of horizontal sea wave line points. By subtracting the horizontal line 
points from the potential towing line points, the remaining discrete and towing line point map is 
shown in the fourth column. The last column is the final towing line detection. Through the previous 
comparative experiment and the step-by-step result analysis of the proposed algorithm, it 
demonstrates that the proposed method performs well, regardless of the complex sea surface with 
waves and spray. 

Figure 8. Different saliency detection of the towing line: the first column is the original image; the
second column is the result by CA methods; the third column is the result by DSR methods; the fourth
column is the result by MC methods; the fifth column is the result by SR methods; and the sixth column
is the result by SUN methods.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 12 of 16 

 

 

Figure 9. Experiment comparison with other method: the first column is the original image; the 
second column is Canny edge detection; the third column is the potential towing line point detection 
by our salient statistical method; the fourth column is Hough refinement after Canny edge detection; 
the fifth column is Hough refinement after our potential towing line point detection method; and the 
sixth column is the proposed methods. 

 
Figure 10. Our towing line detection method: the first column is the original image; the second 
column is the potential towing line point detection; the third column is horizontal sea wave line point 

Figure 9. Experiment comparison with other method: the first column is the original image; the second
column is Canny edge detection; the third column is the potential towing line point detection by our
salient statistical method; the fourth column is Hough refinement after Canny edge detection; the fifth
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column is the proposed methods.
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is the potential towing line point detection; the third column is horizontal sea wave line point detection;
the fourth column is the remaining points by subtracting the horizontal line points from the potential
towing line points; and the fifth column is the final towing line detection.

4.4. Towing Line Angle Estimation

The information of the vessel is illustrated in Table 1.

Table 1. The vessel parameters.

Ship Type Built Draught Length Width Gross Tonnage

Search and
Rescue Vessel 2012 6 m 117 m 16 m 4747 t

The camera was mounted about 10 m above the sea surface and 70 m away from the stem of the
vessel; that is to say, y0 = 10 and z0 = 70. According to Equation (11), the towing line angle in the 3D
world coordination could be estimated by

tan γ =
10 tanα – 10 tanβ
70 + 70 tanβtanα

. (27)

The following figure is the result of the angle detection in continuous time. The angles are measured
in degrees. The rolling angle of the towing vessel could be estimated by the sea–sky line detection. When
there is no rolling in the towing vessel, the sea–sky line angle in the image should be zero. Figure 11
shows that the vessel rolling angle in the image ranges from −2.53◦ to −0.62◦ degrees. The rolling
angle does not fluctuate near zero because of the bias of the vessel heels. According to the Figure, the
navigation state of the towing vessel can be obtained. The frequency of the vessel rolling could also be
calculated. Figure 12 shows the towing line angle value at different times in the image. Based on this
information, the towing line angle value in the 3D global coordination can be estimated according to
Equation (27).
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To verify the effectiveness of the proposed method, we compared the towing line angle prediction
based on the image with the prediction based on the GPS information. Two GPS devices were placed
on the towing vessel and towed platform, respectively, to record their trajectory. The towing line was

approximately regarded as the line
→

P1P2 between the towing vessel and towed platform, as shown in
Figure 13. An electronic compass was used to detect the course of the towing vessel

→
v, Then, the angle

θ between
→

P1P2 and
→
v was approximatively regarded as the contrast value of the towing line angle.
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Figure 14 shows the towing angles predicted by our proposed method based on the vision
information and the compared prediction based on the GPS. According to our proposed method, the
estimated 3D global towing line angle ranges from −1.00 to 7.58 degrees, which is consistent with the
GPS prediction.
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5. Conclusions

In this paper, a computer vision-based method is proposed to estimate the towing line angle,
which contributes to the safety of the non-powered sea platform towing operation. The towing line
angle in the 3D world can be estimated with the captured image according to the proposed geometrical
projection model of the towing line from 3D to 2D. Meanwhile, the rolling angle of the tug can also be
estimated by detecting the sea–sky line. Our proposed method is robust to deal with the effects of
surface waves and spray, as the new method is designed to detect the towing line and filter out the sea
wave line and stern spray points. Through the experiments, the validity of the method was verified,
achieving the towing angle real-time calculation during the towing operation.

Therefore, our method can be potentially used to ensure the safety of the towing system. However,
there is still much room for improvement in the future; for example, the influence of the height and
distance of the tug and the towed platform on the towing line angle will affect the calculation of the
towing angle, which is our next research aim.
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