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Abstract: Considering the requirement of the near-field calibration under strong underwater multipath
condition, a high-precision geometric calibration method based on maximum likelihood estimation is
proposed. It can be used as both auxiliary-calibration and self-calibration. According to the near-field
geometry error model, the objective function of nonlinear optimization problem is constructed by using
the unconditional maximum likelihood estimator. The influence of multipath on geometric calibration
is studied. The strong reflections are considered as the coherent sources, and the compensation
strategy for auxiliary-calibration is realized. The optimization method (differential evolution, DE)
is used to solve the geometry errors and sources’ position. The method in this paper is compared
with the eigenvector method. The simulation results show that the method in this paper is more
accurate than the eigenvector method especially under high signal-to-noise ratio (SNR) and multipath
environment. Experiment results further verify the effectiveness.

Keywords: long hydrophone array; element position error; unconditioned maximum likelihood
detector (UML); correlated multipath channel; optimization solution; lake experiment

1. Introduction

For the hydrophone array, the array error mainly includes the array amplitude errors, phase
errors, and the geometry errors, which is one of the important factors affecting the array processing
capability [1]. Array calibration can reduce this kind of error and ensure high-precision measurement.
At present, most array calibration methods consider far-field plane wave condition [2]. However, for
sonar systems with large aperture, far-field conditions are not easily met, especially in water pool
or other space-constrained conditions. Model mismatch will occur when the distance is insufficient
between the source and the array [3]. In addition, the near-field calibration has a higher signal-to-noise
ratio (SNR) than the far-field calibration, which can improve the calibration accuracy. Therefore, it is
significant to develop an array calibration method utilizing near-field sources.

The earliest array calibration method is realized by measuring, interpolating, and storing the
actual array manifold, but this method needs to be measured in the use environment [4]. If there is
mismatch between the measurement and the application environment, the calibration effect will be
seriously affected. Its operation is difficult and the accuracy is not ideal. In the 1990s, scholars tried to
parameterize the array manifold error by means of mathematical modeling, transforming the array
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calibration problem into a parameter estimation problem [5]. They analyzed the correctable conditions
of different arrays [6] and Cramer-Rao Lower Bound (CRLB) [7] of different calibration models.

According to the type of calibration source, array calibration can be divided into auxiliary
calibration and self-calibration.

The active correction is to estimate the array errors by using the auxiliary source with known
position. Its advantages are that it needs less calculation and needs less calibration source than
self-calibration [8,9]. However, because it depends on the auxiliary source, its performance will decline
sharply when the position of the auxiliary source is deviated. Typical auxiliary calibration methods
include eigenvector calibration method [10] and subspace calibration method [11]. The former utilizes
the corresponding relationship between guide vector and main eigenvector of covariance matrix,
and establishes equations of the steering vector function using the array error as the variable, then
solves the array error parameters. In the latter, an approximation is used to expand the steering
vector into a linear or generalized linear combination of array errors, and the array error is solved
according to the subspace principle, such as the noise subspace is orthogonal to the target guidance
vector. Reference [12] is based on the first idea above for array correction, and uses the near-field
auxiliary source. It is aimed at the perturbation error. Using the Taylor approximation, the guidance
vector is expressed as a linear function of the array element position error in the near-field model. The
analytical solution of the array error can be obtained. This method is simple in calculation, but only
suitable for the case of small error. In [13], aiming at the problem that the performance of compact
phased-array high-frequency ground-wave radars is seriously degraded by array error, an auxiliary
calibration method is proposed. It obtained a calibrated array manifold by fitting and interpolating
the responses of ship echoes using a least squares fitting method. The calibrated array manifold and
the noise subspace matrix are substituted into the multiple signal classification (MUSIC) method to
estimate the direction of arrival (DOA) of each ship echo. It significantly reduces the DOA estimation
errors. In [14], a joint correction method for array mutual coupling, amplitude phase error and array
shape error is proposed based on the subspace principle. It is realized by alternating iteration. It is
suitable for the situation where multiple auxiliary sources exist at the same time, and the calculation
amount is moderate. However, because of the small dynamic range of the cost plane, the estimation
accuracy of the algorithm is limited.

Self-calibration does not need cooperative sources, but generally requires the number of sources
to be known. It can be used to estimate the array error parameters off-line, or to estimate the array error
and target azimuth jointly on-line [15]. The advantage of this kind of method is that there is no influence
of auxiliary source position error. However, because of the large dimension of the parameters to be
estimated, the amount of calculation is large, and the coupling relationship between the parameters
may lead to the problem that the special array cannot converge. The most classical method is the joint
iterative self-calibration algorithm based on subspace principle proposed by Friedlander B. and Weiss
A. J. in 1991 [16]. However, since this method needs to solve high-dimensional nonlinear problem,
the computational complexity and convergence speed are not satisfactory, and it is not applicable to
linear arrays. Then Eric pointed out another limitation of this algorithm, that is, it is effective only
when the number of elements is greater than 4 [17]. In [18], they proposed a self-calibration method
for an active uniform linear array (ULA) utilizing the radar returns containing the clutter and the
opportunity targets. The array error is estimated from the phase gradient of the active ULAs and the
Fourier property of ULA beamforming. To correct the estimation error, several range bins used as
the estimation sources are selected according to an entropy value. The linear phase component in the
phase error is eliminated using both the center shifting and the matched filter, thus, enhancing the
calibration performance. In [19], based on the non-uniform cross-array, a self-calibration algorithm is
proposed to simultaneously estimate the angle of the impinging signal and the mutual coupling error.
They divide the mutual coupling matrix into several matrices with special characteristics, and the
decoupling of angle and mutual coupling coefficients is realized conveniently. The proposed algorithm
can reduce the search dimension, and hence, the amount of computation.
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In practical application, auxiliary calibration and self-calibration cannot be completely
distinguished sometimes. The source with known azimuth and the target should be measured
may exist at the same time. In this case, the hybrid application of the two methods can improve
the ability of parameter estimation and achieve the purpose of complementary performance [20]. In
the field of underwater acoustic, although array processing technology has been widely used, the
application of calibration technology is still relatively less. Different from the antenna array, the
frequency of underwater acoustic signal is low. The mutual coupling error between array elements is
not considered generally, but the amplitude phase error and position error are concerned. Because of
the complexity of the underwater acoustic environment [21], the underwater acoustic array calibration
method is still in the stage of theoretical analysis and simulation. In order to improve the application
ability of the algorithm, we must combine the environment matching technology, which is also the
future research direction in the field of underwater acoustic array calibration.

In this paper, we develop a new approach to calibrate the geometry errors of hydrophone array
with near field sources. It is suitable for strong multipath underwater environment, and can be
used as auxiliary calibration, self-calibration, and even hybrid calibration. Our approach is based on
the unconditioned maximum likelihood detector [22]. We construct an arbitrary formation model
with array geometry errors and near-field source at first. The errors and source position are used
as variables to represent the array manifold. We consider the sample function model is Gaussian
stochastic process. Its spectrum matrix is unknown. Then we obtain the objective function for near
field based on the above assumption. We use differential evolution method (DE) to solve it, and get
the estimated geometry errors and sources position. Aiming at the strong multipath problem in the
underwater acoustic environment, we change the objective function to match the multipath, then
achieve a multipath matching calibration compensation strategy to improve the practicability. The
performances are analyzed by simulation, and we have a lake experiment to verify the effectiveness of
the proposed method.

This paper is organized as follows. In Section 2, error model of array position with near-field source
is introduced. In Section 3, the new geometry calibration method is proposed. In Section 4, simulation
results and experiment results are presented to demonstrate the effectiveness of the proposed method.
Finally, the paper is concluded in Section 5.

2. Error Model of Array Position with Near-Field Source

We consider the two-dimensional error model of arbitrary horizontal array that was used in the
authors’ previous articles [12]. We suppose the number of elements is N, the number of near-field
sources is M, and each source is an irrelevant narrow-band signal. The locations of sources are recorded
as γ i = [ϕi, Ri], i = 1, 2, . . . , M.

Most of the existing methods of element position estimation use the plane wave incidence model,
which is suitable for the case that source locates in far field. That is, the distance r between source
and array satisfies r > πD2/λ, where D denotes the maximum aperture of the array, and λ denotes
signal wavelength. When the space is limited, and the array aperture is large, the above conditions are
difficult to be satisfied. At this time, the wave along the spherical wave is shown in Figure 1. We use
the position of the first element as the origin to establish coordinate system. It means that, the first
element is basic one, and its error is 0.
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Figure 1. Near-field spherical wave model with geometry error, the ith source si, range between source
and element r, direction of arrival ϕi, the nth element actual position ρn=(xn, yn), the nth element
normal position (x0n, y0n).

The received signal vector corresponding to the ith source can be modeled as:

xri(t) = Aisi(t) + n(t) , i = 1, 2, . . . , M. (1)

where si(t) is the signal emitted by the ith source, n(t) is a complex Gaussian white noise matrix
with zero mean, and σ2 variance. In many applications, the assumption of white noise is not true, so
the noise covariance matrix needs to be estimated in order to pre-whiten the noise. Without losing
generality, we take the first hydrophone as the reference element (located at the origin of the coordinate
and the position error is 0). If ρ is used to denote the position of the array,

ρ = [ρ1,ρ2, . . . ,ρN]

ρn = [xn, yn]
T, n = 1, 2, . . . , N

(2)

Ri denotes the distance between the ith source and origin, the array manifold Ai can be expressed as:

Ai =


1

Ri
r(ρ2,γi)

exp[−j 2π
λ (r(ρ2,γi) −Ri)]

...
Ri

r(ρN ,γi)
exp[−j 2π

λ (r(ρN,γi) −Ri)]


, (3)

where r(ρn,γi) is the distance between the ith source and the nth element,

r(ρn,γi) =

√
(Ri sin(ϕi) − xn)

2 + (Ri cos(ϕi) − yn)
2. (4)

When the array has position errors,{
xn = x0n + ∆xn

yn = y0n + ∆yn
, n = 1, 2, . . . , N, (5)

where (x0n, y0n) represents the nominal position of the array element, (∆xn, ∆yn) is the position error
of the element, ∆x1 = ∆y1 = 0 and x1 = y1 = 0.

For the far-field problem, the steering vector can be simplified to a linear function by logarithm
operation, but the near-field steering vector is a complex nonlinear function.

When we know the sources’ position, the array manifold is a nonlinear function of the element
position errors. As shown in Equation (3), there are M(N− 1) independent delays that can be measured,
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and 2(N − 1) unknown values about element positions. In order to get a unique solution, when N ≥ 2,
the number of auxiliary sources needs to satisfy M ≥ 2.

When the sources positions are unknown, in order to find the baseline basis for the array
calibration, we set ∆x1 = ∆y1 = ∆y2 = 0, so that the steering vector is a nonlinear function of the
element position errors and the sources’ position. This model has M(N − 1) independent equations,
where existences 2N − 3 element position errors and 2M sources’ position are unknown values
(considering the two-dimensional source position). In order to obtain a unique solution, when N ≥ 4,
the number of sources needs to satisfy M ≥ 2N−3

N−3 , otherwise N ≤ 3, there is no solution.

3. Methods

3.1. Near-Field Element Position Calibration Based on Maximum Likelihood Estimation

An effective way to solve the nonlinear function problem of near-field steering vector is to use
the optimal solution algorithm. This method does not need to approximate the nonlinear function,
and theoretically can achieve CRLB. Based on this idea, using unconditional maximum likelihood
estimator (UML) [23], this paper proposes a near-field geometry calibration method. This method can
not only be used for auxiliary calibration, separately estimating the positions of the elements, but also
be used for self-calibration, achieving a joint estimation of elements’ positions and sources’ position. It
can even be used under the conditions that partial sources’ positions are known. This paper mainly
discusses the auxiliary calibration and self-calibration based on maximum likelihood estimation, and
abbreviates them as “ML-GC” and “ML-GAC” respectively.

We set S as the sample function of Gaussian random process, its spectral matrix is unknown,
additive noise is spatially uncorrelated Gaussian noise, and its spectrum is Rn. The number of snapshots
is indicated by a corner mark. If there are M independent near-field sources with different positions,
the received samples X can be expressed as:

Xk = A(α)Sk + Nk
A(α) = [A1(α), A2(α), . . . , AM(α)]

Sk = [s1k, s2k, . . . , sMk]
T

(6)

where Ai, i = 1, . . . , M as shown in the Formula (3), signals’ spectrum is Rs = E
[
SkSk

H
]
, and α is

unknown vector.
We assume that

Rn = σ2
nI, (7)

and σ2
n is unknown. The likelihood function can be expressed as

L
(
α, Rs, σ2

n

)
= − ln detRx −

1
K

K∑
k=1

XH
k R−1

x Xk, (8)

where K denotes the number of snapshots, and

Rx = A(α)RsAH(α) + σ2
nI. (9)

We use Cx to denote the sampling correlation matrix, then

Cx =
1
K

K∑
k=1

XkXH
k . (10)
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The likelihood function can be expressed as

L
(
α, Rs, σ2

n

)
= −

[
ln detRx + tr

(
R−1

x Cx
)]

. (11)

For the above formula, we first maximize it on Rx to get the equation of unknown vector α, and
then find the maximum value of the equation, so as to get all the solutions.

Let Ri, j be the element in Rs, then Rx can be expressed as

Rx =
M∑

i=1

M∑
j=1

Ri, jA(αi)AH
(
α j

)
+ σ2

nI. (12)

According to the necessary conditions

∂L
(
α, Rs, σ2

n

)
∂Ri, j

= 0, i, j = 1, 2, . . . , M, (13)

∂L
(
α, Rs, σ2

n

)
∂σ2

n
= 0 (14)

.
The solutions of Rx and σ2

n in the above formula can be obtained, which are denoted as R̂x and σ̂2
n:

R̂x(α) = PA
(
Cx − σ

2
nI

)
PA + σ2

nI, (15)

σ̂2
n =

tr
[
P⊥ACx

]
N −M

. (16)

PA is the projection matrix of the steering vector A, and P⊥A is the orthogonal component of PA:

PA = A(AHA)
−1

AH, (17)

P⊥A = I−PA. (18)

Next Rx in Formula (11) is replaced by R̂x, and the maximum value of Formula (11) is solved. We
take α̂ as the estimation of α, then

α̂ = argmax
α

− ln det

PACxPA +
tr(P⊥ACx)P⊥A

N −M

, (19)

α̂ = = argmin
α

det

PACxPA +
tr(P⊥ACx)P⊥A

N −M

, N ,M. (20)

The above formula is the UML. Define unknown vector α according to different array calibration
methods. The unknown vector α in the auxiliary calibration method only contains the position
error of the array, and α = [∆x, ∆y]T, ∆x1 = ∆y1 = 0. It also includes the target position parameter
in the self-calibration method, that is α = [R,ϕ, ∆x, ∆y]T. In order to obtain a baseline, we set
∆x1 = ∆y1 = ∆y2 = 0.

The optimization algorithm such as differential evolution algorithm (DE) or Levenberg-Marquardt
algorithm (LM) [24,25] can be used to solve the Problem (20) to obtain the unknown parameter vector.
In the later simulation, we use the DE to solve the above optimization problem. Its characteristic is that
it uses the local information of individual and the global information of the group to search together,
and has strong universality. It can be directly applied to auxiliary calibration and self-calibration
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without changing the basic model of the algorithm. Its calculation process is simple, but the amount of
computation of this kind of evolutionary algorithms is a little large.

The optimization problem can be expressed as:

minF(α) = det
[
PACxPA +

tr(P⊥ACx)P⊥A
N−M

]
, N ,M , α = [∆x, ∆y]T or α = [R,ϕ, ∆x, ∆y]T

s.t. αi ∈ [li, ui]
(21)

where αi is the ith element in α, and [li, ui] is its value range. It includes four steps to solve the problem
by DE, and they are population initialization, variation, crossing, and selection. In this paper, we use
DE/best/1/bin to solve Formula (21), and take the self-calibration method as an example:

Step 1, population initialization. Each individual in the population represents a solution to
the optimization problem. We set that the population size is U = 300, the kth individual is αk =

[α1,k,α2,k,α3,k,α4,k], and achieve the first generation like this:

αi,k(0) = li + rand · (ui − li), k = 1, . . . , U, (22)

where rand ∈[0,1], it is random numbers that follow a uniform distribution. The range of R covers the
whole near field. The direction of arrivalϕ ranges from −90◦ to 90◦. The errors ∆x and ∆y range from
−d/2 to d/2, where d is the element space.

Step 2, DE/best/1 variation. Generate a target individual tk(g) for each individual αk(g) in the
current population, where g is the evolution generation,

tk(g) = αbest(g) + Q[αu1(g) −αu2(g)]. (23)

where u1, u2 ∈ {1, 2, · · · , U}&u1, u2 , k, αbest(g) is the best individual of the gth generation, and taken
as variation operation base. Q ∈ [0, 1) is the zoom factor, and we set Q = 0.85.

Step 3, binomial crossing (DE/best/1/bin). Generate an equally distributed random number
γi,k ∈ [0, 1] for every variable of each individual, complete crossing operation, and generate test
individual vk(g):

vi,k(g) =
{

ti,k(g), γi,k < cr
αi,k(g), else

, (24)

where threshold cr ∈ [0, 1], we choose cr = 1. It means that we use tk(g) as the test individual primarily.
Step 4, greedy selection. Select the better individual to go to the next generation.

αk(g + 1) =
{

tk(g), F(tk(g)) < F(αk(g))
αk(g), else

, (25)

Iteration termination condition: Objective function F(αk(g)) is smaller than termination threshold,
or the times of iteration is large enough. In this paper, the max times of iteration is 500, there is no
termination threshold of objective function, and then we get the final estimation.

The computation of this method is mainly decided by the population size U, the number of
variables, and times of iterations. First, we calculate the data covariance matrix, and just do it once, as
it is small amount of calculation. Its amount of calculation is N ×K dimension matrix multiplication.
Second, population initialization, we randomly generate H ×U dimension matrix, where H is the
length of α. Variation, crossing, and selection are all based on this dimension matrix to complete some
simple logic and numerical operations. This process is repeated 500 times.

3.2. Multipath Compensation Method

Considering the underwater correlated multipath environment, the steering vector becomes

Ã =
[
Ã1, Ã2, . . . , ÃM

]
, (26)
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where Ãi, i = 1, . . . , M is
Ãi(∆x, ∆y) = Ai(∆x, ∆y) +

∑
l

Arli(∆x, ∆y), (27)

and Arli(∆x, ∆y) represents the steering vector corresponding to the lth reflection path

Arli(∆x, ∆y) =


f l
1i

f l
2i
...

f l
Ni

⊗


Ri
rl
1i(∆x,∆y)

exp[−j 2π
λ (rl

1i(∆x, ∆y) −Ri)]

Ri
rl
2i(∆x,∆y)

exp[−j 2π
λ (rl

2i(∆x, ∆y) −Ri)]

...
Ri

rl
Ni(∆x,∆y)

exp[−j 2π
λ (rl

Ni(∆x, ∆y) −Ri)]


. (28)

The “⊗” indicates the multiplication of the corresponding items. f l
ni and rl

ni(∆x, ∆y) respectively
represent the reflection coefficient and the sound path. The corner marks n, i, l respectively represent
the nth element, the ith source, and the lth reflection path. The sound path can be described as

rl
ni(∆x, ∆y) =

√
(Ri sin(θi) sin(ϕi) − xn)

2 + (Ri sin(θi) cos(ϕi) − yn)
2 + (zl − zn)

2, (29)

where zl is the equivalent virtual source depth, ϕi is the pitch angle of the real sources. The received
signal is equivalent to

X̃k = Ã(α)Sk + Nk, (30)

We use Ã to replace A in Equation (6). The reflection coefficients can be achieved by the channel
estimation algorithm [26], and then we can obtain the novel near-field calibration method based
on maximum likelihood matching. It is suitable for strong multipath environment. Especially for
the auxiliary calibration, multipath structure and reflection coefficients can be estimated with high
accuracy. For the self-calibration with unknown source, multipath can also be estimated, but the
accuracy is affected. This paper mainly analyzes the multipath problem in the auxiliary calibration.
For the self-calibration method, the model is still valid, but the specific research will be expanded in
the follow-up research. The corresponding auxiliary calibration is recorded as “MLM-GC.”

4. Simulation and Experiment

4.1. Simulation

4.1.1. Near-field Auxiliary Calibration Method Base on Maximum Likelihood Estimation (ML-GC)

In this section, we use a 15-element long linear array as an example to simulate and analyze the
performance of ML-GC. We divide the array into three 5-element sub-arrays. The distance between
each sub-array is 20 m. The subarray space d = λ/2 = 0.5 m, λ is signal wavelength, and SNR = 20
dB. We set array center as coordinate origin, and randomly generate a two-dimensional array error
with standard deviation 0.1 d. The two auxiliary sources’ DOAs are −30◦ and 40◦. The distance from
each source to the origin is both 20 m. We use 1000 snapshots.

Figure 2 shows the simulation result. The circles in the figure represent the nominal positions of
elements, the asterisks are their actual positions, and the squares are the elements’ positions estimated
by ML-GC. It can be seen that ML-GC proposed in this paper can achieve the real element position,
which verifies its effectiveness with near field source. Table 1 shows the estimation results and accuracy
of elements’ positions. The estimation errors in the X-axis is smaller than 0.006 d, in the Y-axis is
smaller than 0.008 d.
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Here we use a near-field focusing beam forming result to observe the effect of our calibration. We
suppose that there are two targets in the near field, and they locate at (−70.71 m, 70.71 m) and (76.60 m,
64.28 m), SNR = 20 dB. Figure 3 shows the spatial spectral results.
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As shown in Figure 3, with geometry errors of array, two targets’ location errors are (−1.41, 1.41)
and (−3.06, −2.57). After calibration by ML-GC, the location errors reduce to (0, 0) and (0, 0). For
near field targets, the spatial spectrum is seriously affected by the array geometry errors, and the
positioning accuracy is reduced, especially the range accuracy. After calibration using ML-GC, the
near-field positioning accuracy has been improved and is basically the same as that of using the actual
elements positions. It fully illustrates that array calibration can weaken the impact caused by the array
geometry errors.

The simulation conditions are the same as above. The following is compared with the eigenvector
method (EV-GC) which is a kind of classical near field calibration method to study the estimation
accuracy change with spectrum level SNR, snapshot, and source position. EV-GC uses the relationship
between steering vector and signal eigen vector to establish equation. Then it uses Taylor approximation
to change the non-linear equation to a linear one. So we can solve for the analytic solution of the
unknown values [12]. Here we use 200 Monte Carlo simulations. Here we calculate its RMSE like this:

RMSEX = 1
MC(N−1)

Mc∑
l=1

N∑
n=2

(x̂n,l − xn,l)
2

RMSEY = 1
MC(N−1)

Mc∑
l=1

N∑
n=2

(ŷn,l − yn,l)
2

(31)

(
x̂n,l, ŷn,l

)
is the estimated result of the nth element, the lth time of Monte Carlo simulations.(

xn,l, yn,l
)

is its real value. RMSE unit is “d” in Figure 4, and its element space. So the values shown in
Figure 4 are the result of RMSEX and RMSEY divided by d.
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Figure 4. RMSE of array shape estimation with signal-to-noise ratio (SNR) increasing under different
numbers of snapshots. (a) EV-GC; (b) ML-GC.

Figure 4 shows the estimation RMSE of geometry errors with SNR increasing under different
numbers of snapshots using EV-GC and ML-GC. In general, all errors decrease with the increase of
the snapshots number or SNR. The main reason is that EV-GC and ML-GC use the received data
covariance matrix as the estimation of array covariance matrix, and the effect of this estimation depends
on the snapshots number and SNR. When the SNR is high, the required snapshots number can be
significantly reduced.

When the spectrum level SNR is greater than 25 dB, the RMSE of EV-GC tends to be stable
gradually, and the estimation accuracy no longer changes with SNR. The reason is that the statistical
estimation error is dominant when the SNR is less than 25 dB, while the calibration error of EV-GC is
dominated by model approximation error when SNR is greater than 25 dB. In order to solve a nonlinear
function, EV-GC uses a model approximation method.

The estimation accuracy of EV-GC is higher than that of ML-GC at low SNR, which indicates that
ML-GC has higher requirements for SNR than EV-GC. When SNR is higher than 25 dB, ML-GC has
higher estimation accuracy than EV-GC because ML-GC does not introduce model approximation,
and the estimation accuracy of ML-GC gradually approaches CRLB as the SNR increases. It is worth
noting that the SNR is usually higher than 25 dB in the near-field calibration scene, and at this time
ML-GC is better than EV-GC in terms of accuracy. In addition, ML-GC is unbiased estimation.

Next, we introduce the position errors of auxiliary sources. We set the errors of source positions
obey the Gauss distribution with mean value 0, standard deviation 0.01 rad and 1 cm. Figure 5 shows
the comparison of estimation errors with and without source errors using 1000 snapshots and 500
Monte Carlo experiments. In order to show the details, we show X-RMSE and Y-RMSE in the unit “dB”
like this:

RMSEX = 10lg
{[

1
MC(N−1)

Mc∑
l=1

N∑
n=2

(x̂n,l − xn,l)
2
]
/d

}
RMSEY = 10lg

{[
1

MC(N−1)

Mc∑
l=1

N∑
n=2

(ŷn,l − yn,l)
2
]
/d

} (32)
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As shown in Figure 6, when the orientations of the two auxiliary sources coincide, the position 
of the elements is unmeasurable, and the estimation error tends to infinity. When the angle between 
the two auxiliary sources is less than 20°, RMSEs are higher than 0.05 d, and the estimation error of 
the element position decreases sharply with the increase of their included angle. The performance 
tends to be stable when it is greater than 20°. EV-GC and ML-GC have similar conclusions. In order 
to ensure the performance of the algorithm, the included angle of the two auxiliary sources should 
be greater than 20° and the auxiliary source should be away from the axial direction of the line array. 
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When there is no source error, ML-GC is closer to CRLB than EV-GC. When there is no source
error and SNR is higher than 17 dB, the ML-GC has higher estimation accuracy than EV-GC. When
there are source errors, the two methods are still effective, but the errors increase. The influence of
source error is stronger than that of statistical estimation error in high SNR. Figure 5 shows that the
proposed method ML-GC has a certain tolerance for source error.

Next, we analyze the RMSE change of the array element position estimation with the azimuth of
the two auxiliary sources. We fix one source at −40◦, 0◦, or 40◦. The other one source changes from
−75◦ to 75◦. We use 100 snapshots, and have 100 Monte Carlo experiments. The results are shown in
Figure 6.
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As shown in Figure 6, when the orientations of the two auxiliary sources coincide, the position of
the elements is unmeasurable, and the estimation error tends to infinity. When the angle between the
two auxiliary sources is less than 20◦, RMSEs are higher than 0.05 d, and the estimation error of the
element position decreases sharply with the increase of their included angle. The performance tends to
be stable when it is greater than 20◦. EV-GC and ML-GC have similar conclusions. In order to ensure
the performance of the algorithm, the included angle of the two auxiliary sources should be greater
than 20◦ and the auxiliary source should be away from the axial direction of the line array.
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4.1.2. Near-Field Self-Calibration Method Based on Maximum Likelihood Estimation (ML-GAC)

First we verify the effectiveness of the ML-GAC proposed in this paper. We take the 9-element
line array as an example, and assume that the array element spacing is d = λ/2 = 0.5 m, the SNR is 20
dB, and the elements position errors are randomly generated with a standard deviation of 0.1 d, mean
value of 0. Only horizontal two-dimensional elements position errors are considered. The three targets’
DOAs are −60◦, 0◦, 40◦. The distance between each source and the first element is 10 m. We simulate
with 1000 snapshots.

Figure 7, Tables 2 and 3 show the calibration results and estimated sources locations using
ML-GAC. They can verify its effectiveness. The estimation errors of array in the X-axis is smaller than
0.015 d, in the Y-axis is smaller than 0.006 d. The estimation errors of targets in distance is smaller than
0.2166◦, in DOA is smaller than 0.5811◦.
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We have 200 Monte Carlo experiments. Figure 8 shows the estimation RMSE of the array 
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Table 2. Calibration result of ML-GAC.

Element
Num.

Nominal Position (d) Actual Position (d) ML−GAC (d) Absolute Error (d)

X Y X Y X Y X Y

1 0 0 0.180 −0.078 0.195 −0.078 0.015 0.000
2 1 0 1.037 −0.117 1.050 −0.117 0.013 0.000
3 2 0 1.887 0.084 1.894 0.086 0.007 0.002
4 3 0 2.813 0.151 2.812 0.151 0.001 0.000
5 4 0 4.000 0.000 4.000 0.000 0.000 0.000
6 5 0 4.985 0.000 4.979 0.000 0.006 0.000
7 6 0 5.928 0.191 5.916 0.191 0.012 0.000
8 7 0 7.093 −0.040 7.087 −0.035 0.006 0.005
9 8 0 7.996 −0.159 7.982 −0.153 0.014 0.006

Table 3. Target location results of ML-GAC.

Source
Num.

Actual
Distance

(m)

Estimated
Distance

(m)

Absolute Error of
Distance(m)

Actual DOA
(Degree)

Estimated
DOA

(Degree)

Absolute
Error of

DOA
(Degree)

1 10 9.9912 0.0088 −60 −60.5811 0.5811

2 10 9.8115 0.1885 0 0.1484 0.1484

3 10 9.7834 0.2166 40 40.3403 0.3403

Based on the above simulation, this paper studies the estimation RMSE of ML-GAC changing
with the spectrum level SNR, the number of snapshots and the position of the calibration sources.

We have 200 Monte Carlo experiments. Figure 8 shows the estimation RMSE of the array geometry
errors and sources positions changing with SNR and snapshots number. It can be seen that the RMSE
decreases as the number of snapshots or SNR increases. It is the same with ML-GC, and snapshots
number and SNR affect the estimation accuracy of the signal covariance matrix. When the SNR is high
and the number of snapshots is large, the algorithm accuracy is close to CRLB. Since the self-calibration
method does not need to know the positions of the sources in advance, it is not affected by the position
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error of the sources, and the operation is relatively simple. However, since the variable dimension
is increased, more sources are needed, and the estimation accuracy of the self-calibration method is
lower than that of the auxiliary method. When SNR = 5 dB and we use 2000 snaps, the X-RMSE =

0.104 d, Y-RMSE = 0.035 d, R-RMSE = 0.787 m, φ-RMSE = 2.756◦. When SNR = 20 dB and we use 2000
snaps, the X-RMSE = 0.039 d, Y-RMSE = 0.011 d, R-RMSE = 0.123 m, φ-RMSE = 0.595◦.
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Figure 9. The RMSE of the elements and the sources position estimation changing with the target
azimuth based on ML-GAC. (a) Estimation RMSE of elements position in X direction; (b) estimation
RMSE of elements position in Y direction; (c) estimation RMSE of target distance; (d) estimation RMSE
of target direction of arrival (DOA).

It can be seen from Figure 7 that when the third source position coincides with the other two
sources, the estimation errors of the elements positions and the sources positions tend to infinity. The
larger the angle between the third source and the other two sources, the higher the estimation accuracy.
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Therefore, in practical applications, the angle between the three sources should be as large as possible
to ensure the estimated accuracy.

4.1.3. Multipath Compensation Strategy for Auxiliary Calibration (MLM-GC)

The water depth is 25 m. The multi-path model only includes the direct sound, the sea surface,
and the sea bottom once reflected sound. The sea surface and bottom reflection coefficients are −0.9
and 0.3 respectively. Other condition is the same with Section 3.1. Figure 10 shows the simulation
results of EV-GC, ML-GC, EVM-GC, and MLM-GC. EVM-GC is shown in reference [12], and it is an
improved EV-GC for multipath environment. By comparison, it can be seen that the results obtained
by ML-GC are less affected by the multipath method than the results obtained by EV-GC. The error of
EV-GC is about 1.04 d, and the error of ML-GC is about 0.22 d. EVM-GC and MLM-GC can achieve a
good estimation in multipath environment. The error of EVM-GC is about 0.02 d, and the error of
MLM-GC is about 0.01 d.
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Figure 10. Calibration result of elements position with strong multipath. (a) EV-GC; (b) ML-GC; (c)
EVM-GC; (d) MLM-GC.

The following part quantitatively analyzes the influence of the reflection coefficient estimation
accuracy on the MLM-GC and EVM-GC. The ocean channel can be regarded as a slowly time varying
and coherent multipath channel, but because of the sea surface fluctuations, platform sways, etc., the
estimated multipath reflection coefficient often has some errors. The simulation conditions remain
unchanged. The estimation error of reflection coefficient obeys the Gaussian distribution with zero
mean value.

Figure 11 shows the RMSE of the elements position estimation changing with the reflection
coefficient estimation standard deviation.
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Figure 11. RMSE of array shape estimation with different coefficient error of strong multipath.
(a) EVM-GC; (b) MLM-GC.

It can be seen that in the strong multipath environment, EVM-GC and MLM-GC estimated errors
increase with the increase of the reflection coefficient error, but still have some tolerance to it. MLM-GC
has a higher estimation accuracy than EVM-GC with coefficient error. When reflection coefficient
estimation standard deviation is 0.2, X-RMSE and Y-RMSE of EVM-GC are 0.084 d and 0.077 d, X-RMSE
and Y-RMSE of MLM-GC are 0.052 d and 0.019 d.

4.2. Lake Experiment

We performed a calibration experiment in Qiandao Lake. Figure 12 shows the experimental
layout. The hydrophone array is a 5-element hydrophone linear array with a spacing of 0.2 m. The
depth of the array element and the source is 2 m. The center of the array is the coordinate origin and
the central array element is the reference array element. The source is 2.9 m away from the origin,
and it meets the near-field condition. We just use one source, and change the DOA by rotating the
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array. The data measured in different DOAs are regarded as different source data. We use a broadband
continuous noise signal, and the frequency is 1–6 kHz. The sampling rate is 51.2 kHz, and the sound
velocity is 1458 m/s.
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Figure 12. Experiment layout.

The DOAs of sources are −42.2◦ and −19.3◦. We use the mean value of the calibration results of
each narrowband signal (a sub-bandwidth is 100 Hz) as the final result. The calibration result is shown
in Figure 13. Since the array elements are rigidly connected, the relative positional error among the
array elements is small, and it is on the order of millimeters. However, the zeros degree reference in the
experiment is measured with a tape measure, and there is a little azimuth deviation, so the calibration
result in Figure 13 is considered to be reliable. Because the normalized sea surface reflection intensity is
weak in the experiment, the multi-channel effect is not obvious. However, it can be seen from Figure 13
that the estimation result of MLM-GC is more approximate to a straight line than that of ML-GC.
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Figure 13. Array position calibration result.

Based on the above results, we analyze the near-field positioning accuracy before and after
calibration. We set the target at −12◦and 2.9 m. The near field focus positioning results are shown in
Table 4. It can be seen that, before calibration we use normal elements positions to locate the source,
and the absolute deviation is 2.998◦and 0.0996 m. ML-GC can improve the ability of DOA estimation,
but the distance error becomes larger. MLM-GC achieves the best estimation here.

Table 4. Near-field target positioning results.

DOA(Degree) Distance(m)

Estimated
Value

Absolute
Deviation

Estimated
Value

Absolute
Deviation

Before calibration −14.9980 2.9980 2.8004 0.0996
ML−GC −12.0000 0.0000 3.1999 0.2999

MLM−GC −11.9976 0.0024 2.9004 0.0004
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Next, the ML-GAC is verified. Here we use four sources that are not related both in time and
space. The Formulas (17), (18), and (21) become,

F(α) =
∑

i

det

PAiR̂iPAi +
tr(P⊥AiR̂i)P⊥Ai

N −M

, N ,M, (33)

where R̂i, PAi, and P⊥Ai respectively express the covariance matrix of the ith received signal, the projection
matrix of guide vector and the orthogonal component of PAi, where they satisfy the following formula:

PAi = Ai(Ai
HAi)

−1
Ai

H, (34)

P⊥Ai = I− PAi. (35)

The DOAs of the four sources are −40.2◦, −19.3◦, 3.9◦, and 33.9◦, and the distance are all 2.9 m.
Other conditions are the same as above. Figure 14 and Table 5 are the joint estimation results of the
elements and source positions using ML-GAC.
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Table 5. Estimation result of source position using ML-GAC.

Source Num. 1 2 3 4

Estimated DOA (◦) −37.7077 −18.6544 2.0127 31.4406

DOA Deviation (◦) 2.4923 0.6456 1.8873 2.4594

Estimated Distance (m) 2.9546 2.5808 3.0798 2.9311

Distance Deviation (m) 0.0546 0.3192 0.1798 0.0311

The above experiment proves the validity of ML-GAC. Because this method does not require the
known source position, and the baseline is determined by the ordinate of the central array element and
the 4th element, so the position estimation result of the elements is not affected by the 0◦ deviation.
However, the accuracy of the source joint positioning is significantly lower than that of the auxiliary
correction method. It should be noted that the 0◦ reference error is included in the DOA deviation in
Table 5, which is caused by inaccurate preset azimuth.

5. Conclusions

This paper proposes a near-field element position calibration method which can be used for
auxiliary calibration and self-calibration. The method is based on the near-field element position error
model. Using the non-conditional maximum likelihood estimator, we construct an objective function,
and the DE method are used to solve the problem of near-field calibration. Considering the underwater
multipath influence, this paper compensates the mapping model according to linear acoustic theory
and feature decomposition properties. Then we obtain a robust high-precision near-field element
position matching calibration method that can be used in strong multipath environments. The main
conclusions of this paper include: (1) the proposed calibration method based on maximum likelihood
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estimation can correctly estimate the position of array elements in strong multipath environment
with source in near-field, and significantly improve the array positioning accuracy. The algorithm
has certain tolerance for multipath reflection coefficient estimation error. (2) The position estimation
of the array element RMSE is affected by the SNR, the number of snapshots, and the azimuth angle
of the auxiliary sources. When the azimuth angles of different auxiliary sources are greater than
20◦, the position estimation result of the array elements is more accurate. (3) The proposed method
outperforms the eigenvector method especially under high SNR and multipath conditions, and the
estimation accuracy can approach CRLB.
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