Short-Term/Range Extreme-Value Probability Distributions of Upper Bounded Space-Time Maximum Ocean Waves
Abstract
:1. Introduction
2. Short-Term/Range Statistics of Extreme Waves
2.1. The Extreme-Value Distribution of the Spatio-Temporal Maximum Crest and Wave Heights
2.2. Extreme-Value Distribution of Upper Bounded Maximum Heights
3. Upper Heights and Assessment of the Bounded Distribution
4. Impact of the Upper Bounds on Space-Time Extreme Waves
5. Concluding Remarks
- The extreme-value bounded distribution alleviates the overestimation of the unbounded distribution over large areas. The use of limiting heights allows a smooth transition towards a realistic saturation of crest and wave heights with increasing sample size. Although the proposed pdf used a simplified measure of the limit for wave growth, it improves the performance of the space-time extreme pdf, while leaving its skill for small areas unchanged.
- Primary in the proper assessment of the bounded pdf is the definition of the upper limits. Here we have used 1.55Hs and 2.45Hs for the maximum crest and wave heights, respectively, which were derived from historical rogue wave parameters. However, more validation studies are needed to improve the knowledge on the confidence limits for varying sea state characteristics. Numerical studies, using for instance HOS simulations, seem to be promising for this purpose, allowing for investigation of nonlinear wave groups crossing sea surface regions with a different area.
- Our analysis has shown that the unbounded pdfs are reliable over surface areas with a side smaller than O(102 m) for all sea states and time interval shorter than one hour. More energetic (and potentially damaging) sea conditions however are less influenced by the inclusion of the bounds, since, for a given area, they provide smaller sample sizes.
- The proposed formulations are suitable for being integrated into phase-averaged spectral wave models to expand their range of applicability for a proper characterization of extreme wave parameters.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Onorato, M.; Osborne, A.; Serio, M.; Bertone, S. Freak Waves in Random Oceanic Sea States. Phys. Rev. Lett. 2001, 86, 5831–5834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, P.A.E.M. Nonlinear Four-Wave Interactions and Freak Waves. J. Phys. Oceanogr. 2003, 33, 863–884. [Google Scholar] [CrossRef]
- Dysthe, K.; Krogstad, H.E.; Müller, P. Oceanic Rogue Waves. Annu. Rev. Fluid Mech. 2008, 40, 287–310. [Google Scholar] [CrossRef]
- Gemmrich, J.; Garrett, C. Dynamical and statistical explanations of observed occurrence rates of rogue waves. Nat. Hazards Earth Syst. Sci. 2011, 11, 1437–1446. [Google Scholar] [CrossRef]
- Benetazzo, A.; Ardhuin, F.; Bergamasco, F.; Cavaleri, L.; Veras, P.; Schwendeman, M.; Sclavo, M.; Thomson, J.; Torsello, A.; Guimarães, P.V.; et al. On the shape and likelihood of oceanic rogue waves. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Fedele, F.; Lugni, C.; Chawla, A. The sinking of the El Faro: Predicting real world rogue waves during Hurricane Joaquin. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Cavaleri, L.; Bertotti, L.; Torrisi, L.; Bitner-Gregersen, E.; Serio, M.; Onorato, M. Rogue waves in crossing seas: The Louis Majesty accident. J. Geophys. Res. Ocean. 2012, 117, 1–8. [Google Scholar] [CrossRef]
- Donelan, M.A.; Magnusson, A.-K. The Making of the Andrea Wave and other Rogues. Sci. Rep. 2017, 7, 44124. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Barbariol, F.; Benetazzo, A.; Bertotti, L.; Bidlot, J.-R.; Janssen, P.; Wedi, N. The Draupner wave: A fresh look and the emerging view. J. Geophys. Res. Ocean. 2016, 121, 6061–6075. [Google Scholar] [CrossRef]
- Slunyaev, A.; Pelinovsky, E.; Guedes Soares, C. Modeling freak waves from the North Sea. Appl. Ocean Res. 2005, 27, 12–22. [Google Scholar] [CrossRef]
- Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F.T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 2013, 528, 47–89. [Google Scholar] [CrossRef]
- Waseda, T.; Hallerstig, M.; Ozaki, K.; Tomita, H. Enhanced freak wave occurrence with narrow directional spectrum in the North Sea. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Dematteis, G.; Grafke, T.; Onorato, M.; Vanden-Eijnden, E. Experimental Evidence of Hydrodynamic Instantons: The Universal Route to Rogue Waves. Phys. Rev. X 2019, 9, 041057. [Google Scholar] [CrossRef] [Green Version]
- Toffoli, A.; Lefèvre, J.M.; Bitner-Gregersen, E.; Monbaliu, J. Towards the identification of warning criteria: Analysis of a ship accident database. Appl. Ocean Res. 2005, 27, 281–291. [Google Scholar] [CrossRef]
- Bitner-Gregersen, E.M.; Gramstad, O. ROGUE WAVES. Impact on Ships and Offshore Structures. DNV GL STRATEGIC RESEARCH & INNOVATION POSITION PAPER 05–2015. 2015. Available online: https://issuu.com/dnvgl/docs/rogue_waves_final (accessed on 3 September 2020).
- Didenkulova, E. Catalogue of rogue waves occurred in the World Ocean from 2011 to 2018 reported by mass media sources. Ocean Coast. Manag. 2020, 188, 105076. [Google Scholar] [CrossRef]
- Barbariol, F.; Alves, J.H.G.; Benetazzo, A.; Bergamasco, F.; Bertotti, L.; Carniel, S.; Cavaleri, L.; Chao, Y.Y.; Chawla, A.; Ricchi, A.; et al. Numerical Modeling of Space-Time Wave Extremes using WAVEWATCH III. Ocean Dyn. 2017, 67, 535–549. [Google Scholar] [CrossRef]
- ECMWF IFS DOCUMENTATION–Cy46r1 Operational Implementation 6 June 2019 PART VII: ECMWF WAVE MODEL. 2019. Available online: https://www.ecmwf.int/en/elibrary/19311-part-vii-ecmwf-wave-model (accessed on 3 September 2020).
- Barbariol, F.; Benetazzo, A.; Carniel, S.; Sclavo, M. Space–Time Wave Extremes: The Role of Metocean Forcings. J. Phys. Oceanogr. 2015, 45, 1897–1916. [Google Scholar] [CrossRef]
- Sclavo, M.; Barbariol, F.; Bergamasco, F.; Carniel, S.; Benetazzo, A. Italian seas wave extremes: A preliminary assessment. Rend. Lincei 2015, 26, 25–35. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. On the statistical distribution of the heights of sea waves. J. Mar. Res. 1952, 11, 245–265. [Google Scholar]
- Mori, N.; Janssen, P.A.E.M. On Kurtosis and Occurrence Probability of Freak Waves. J. Phys. Oceanogr. 2006, 36, 1471–1483. [Google Scholar] [CrossRef]
- Fedele, F.; Tayfun, M.A. On nonlinear wave groups and crest statistics. J. Fluid Mech. 2009, 620, 221–239. [Google Scholar] [CrossRef]
- Adler, R.J. The Geometry of Random Fields; John Wiley: New York, NY, USA, 1981; p. 302. [Google Scholar]
- Piterbarg, V.I. Asymptotic Methods in the Theory of Gaussian Processes and Fields; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1996; p. 206. [Google Scholar]
- Fedele, F. Space–Time Extremes in Short-Crested Storm Seas. J. Phys. Oceanogr. 2012, 42, 1601–1615. [Google Scholar] [CrossRef]
- Krogstad, H.E.; Liu, J.; Socquet-Juglard, H.; Dysthe, K.; Trulsen, K. Spatial Extreme Value Analysis of Nonlinear Simulations of Random Surface Waves. In Proceedings of the OMAE04 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada, 20–25 June 2004; pp. 285–295. [Google Scholar]
- Fedele, F.; Benetazzo, A.; Gallego, G.; Shih, P.-C.; Yezzi, A.; Barbariol, F.; Ardhuin, F. Space–time measurements of oceanic sea states. Ocean Model. 2013, 70, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Baxevani, A.; Rychlik, I. Maxima for Gaussian seas. Ocean Eng. 2004, 33, 895–911. [Google Scholar] [CrossRef]
- Fedele, F. On certain properties of the compact Zakharov equation. J. Fluid Mech. 2014, 748, 692–711. [Google Scholar] [CrossRef] [Green Version]
- Babanin, A. Breaking and Dissipation of Ocean Surface Waves; Cambridge University Press: Cambridge, UK, 2011; ISBN 9780511736162. [Google Scholar]
- Benetazzo, A.; Barbariol, F.; Bergamasco, F.; Torsello, A.; Carniel, S.; Sclavo, M. Observation of extreme sea waves in a space-time ensemble. J. Phys. Oceanogr. 2015, 45, 2261–2275. [Google Scholar] [CrossRef] [Green Version]
- Barbariol, F.; Bidlot, J.-R.; Cavaleri, L.; Sclavo, M.; Thomson, J.; Benetazzo, A. Maximum wave heights from global model reanalysis. Prog. Oceanogr. 2019, 175, 139–160. [Google Scholar] [CrossRef]
- Mendes, S.; Scotti, A. Rogue wave statistics in (2+1) Gaussian seas I: Narrow-banded distribution. Appl. Ocean Res. 2020, 99, 102043. [Google Scholar] [CrossRef]
- Fedele, F.; Gallego, G.; Yezzi, A.; Benetazzo, A.; Cavaleri, L.; Sclavo, M.; Bastianini, M. Euler characteristics of oceanic sea states. Math. Comput. Simul. 2012, 82, 1102–1111. [Google Scholar] [CrossRef]
- Benetazzo, A.; Barbariol, F.; Pezzutto, P.; Staneva, J.; Behrens, A.; Davison, S.; Bergamasco, F.; Sclavo, M.; Cavaleri, L. Towards a unified framework for extreme sea waves from spectral models: Rationale and applications. Ocean Eng. 2020. under review. [Google Scholar]
- Tayfun, M.A. Narrow-band nonlinear sea waves. J. Geophys. Res. 1980, 85, 1548–1552. [Google Scholar] [CrossRef]
- Benetazzo, A.; Barbariol, F.; Bergamasco, F.; Sandro, C.; Sclavo, M.; Yoo, J.; Cavaleri, L.; Kim, S.S.; Bertotti, L.; Barbariol, F.; et al. Space-time extreme wind waves: Analysis and prediction of shape and height. Ocean Model. 2017, 113, 201–216. [Google Scholar]
- Boccotti, P. Wave Mechanics for Ocean Engineering; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; Volume 64, p. 496. [Google Scholar]
- Adler, R.J. On excursion sets, tube formulas and maxima of random fields. Ann. Appl. Probab. 2000, 10, 1–74. [Google Scholar] [CrossRef]
- Naess, A. On the distribution of crest to trough wave heights. Ocean Eng. 1985, 12, 221–234. [Google Scholar] [CrossRef]
- Liu, P.C.; Babanin, A.V. Using wavelet spectrum analysis to resolve breaking events in the wind wave time series. Ann. Geophys. 2004, 22, 3335–3345. [Google Scholar] [CrossRef]
- Bonmarin, P. Geometric properties of deep-water breaking waves. J. Fluid Mech. 1989, 209, 405–433. [Google Scholar] [CrossRef]
- Stokes, G.G. Considerations Relative to the Greatest Height of Oscillatory Irrotational Waves Which Can Be Propagated without Change of Form. In On the Theory of Oscillatory Waves; Cambridge University Press: London, UK, 1880; pp. 225–229. [Google Scholar]
- Brown, M.G.; Jensen, A. Experiments on focusing unidirectional water waves. J. Geophys. Res. Ocean. 2001, 106, 16917–16928. [Google Scholar] [CrossRef]
- Babanin, A.; Chalikov, D.; Young, I.; Savelyev, I. Predicting the breaking onset of surface water waves. Geophys. Res. Lett. 2007, 34, L07605. [Google Scholar] [CrossRef] [Green Version]
- Babanin, A.V.; Chalikov, D.; Young, I.R.; Savelyev, I. Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech. 2010, 644, 433–463. [Google Scholar] [CrossRef]
- Manolidis, M.; Orzech, M.; Simeonov, J. Rogue Wave Formation in Adverse Ocean Current Gradients. J. Mar. Sci. Eng. 2019, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Tayfun, M.A. Distributions of envelope and phase in wind waves. J. Phys. Oceanogr. 2008, 38, 2784–2800. [Google Scholar] [CrossRef]
- Rapp, R.J.; Melville, W.K. Laboratory measurements of deep-water breaking waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990, 331, 735–800. [Google Scholar]
- Holthuijsen, L.H.; Herbers, T.H.C. Statistics of Breaking Waves Observed as Whitecaps in the Open Sea. J. Phys. Oceanogr. 1986, 16, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Schwendeman, M.; Thomson, J. Sharp-crested Breaking Surface Waves Observed from a Ship-Based Stereo Video System. J. Phys. Oceanogr. 2017, 47, 775–792. [Google Scholar] [CrossRef]
- Banner, M.L.; Babanin, A.V.; Young, I.R. Breaking Probability for Dominant Waves on the Sea Surface. J. Phys. Oceanogr. 2000, 30, 3145–3160. [Google Scholar] [CrossRef]
- Filipot, J.-F.; Ardhuin, F.; Babanin, A.V. A unified deep-to-shallow water wave-breaking probability parameterization. J. Geophys. Res. 2010, 115, C04022. [Google Scholar] [CrossRef]
- Liu, P.C. A chronology of freaque wave encounters. Geofizika 2007, 24, 57–70. [Google Scholar]
- Kharif, C.; Pelinovsky, E.; Slunyaev, A. Rogue Waves in the Ocean; Springer: Berlin, Germany, 2009; p. 216. ISBN 9783540884187. [Google Scholar]
- Draper, L. ‘Freak’ ocean waves. Mar. Obs. 1965, 35, 193–195. [Google Scholar] [CrossRef]
- Fedele, F.; Brennan, J.; de León, S.P.; Dudley, J.; Dias, F. Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Magnusson, A.K.; Donelan, M.A. The Andrea Wave Characteristics of a Measured North Sea Rogue Wave. J. Offshore Mech. Arct. Eng. 2013, 135, 1–10. [Google Scholar] [CrossRef]
- Baschek, B.; Imai, J. Rogue Wave Observations off the US West Coast. Oceanography 2011, 24, 158–165. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rogers, E.; Babanin, A.; Filipot, J.-F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L.; et al. Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Benetazzo, A.; Fedele, F.; Gallego, G.; Shih, P.-C.; Yezzi, A. Offshore stereo measurements of gravity waves. Coast. Eng. 2012, 64, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007; p. 387. [Google Scholar]
- Ochi, M.K. Ocean Waves; Cambridge University Press: Cambridge, UK, 1998; ISBN 9780521563789. [Google Scholar]
Draupner | Andrea | Killard | AA1 | AA2 | El Faro a | |
---|---|---|---|---|---|---|
Cm/Hs (-) | 1.55 | 1.63 | 1.62 | 1.59 | 1.60 | 1.68 |
Hm/Hs (-) | 2.15 | 2.49 | 2.25 | - | - | 2.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benetazzo, A.; Barbariol, F.; Davison, S. Short-Term/Range Extreme-Value Probability Distributions of Upper Bounded Space-Time Maximum Ocean Waves. J. Mar. Sci. Eng. 2020, 8, 679. https://doi.org/10.3390/jmse8090679
Benetazzo A, Barbariol F, Davison S. Short-Term/Range Extreme-Value Probability Distributions of Upper Bounded Space-Time Maximum Ocean Waves. Journal of Marine Science and Engineering. 2020; 8(9):679. https://doi.org/10.3390/jmse8090679
Chicago/Turabian StyleBenetazzo, Alvise, Francesco Barbariol, and Silvio Davison. 2020. "Short-Term/Range Extreme-Value Probability Distributions of Upper Bounded Space-Time Maximum Ocean Waves" Journal of Marine Science and Engineering 8, no. 9: 679. https://doi.org/10.3390/jmse8090679
APA StyleBenetazzo, A., Barbariol, F., & Davison, S. (2020). Short-Term/Range Extreme-Value Probability Distributions of Upper Bounded Space-Time Maximum Ocean Waves. Journal of Marine Science and Engineering, 8(9), 679. https://doi.org/10.3390/jmse8090679