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Abstract: Over the last decades, the aquaculture sector increased significantly and constantly, moving
fish-farm plants further from the coast, and exposing them to increasingly high forces due to currents
and waves. The performances of cages in currents and waves have been widely studied in literature,
by means of laboratory experiments and numerical models, but virtually all the research is focused
on the global performances of the system, i.e., on the maximum displacement, the volume reduction
or the mooring tension. In this work we propose a numerical model, derived from the net-truss
model of Kristiansen and Faltinsen (2012), to study the dynamics of fish farm cages in current and
waves. In this model the net is modeled with straight trusses connecting nodes, where the mass of
the net is concentrated at the nodes. The deformation of the net is evaluated solving the equation
of motion of the nodes, subjected to gravity, buoyancy, lift, and drag forces. With respect to the
original model, the elasticity of the net is included. In this work the real size of the net is used for
the computation mesh grid, this allowing the numerical model to reproduce the exact dynamics of
the cage. The numerical model is used to simulate a cage with fixed rings, based on the concept of
mooring the cage to the foundation of no longer functioning offshore structures. The deformations of
the system subjected to currents and waves are studied.

Keywords: fish cage; cage dynamics; deformable net; numerical model; current and waves

1. Introduction

The aquaculture sector has been characterized by a significant increase in produc-
tion and revenue over the last decades. The latest report of the Food and Agriculture
Organization of the United Nations on fish consumption [1] showed that fish-farming
provides more than 40% of the fish production in 2015. Further, while fish capture amount
remained constant in the period 2008–2015, fish farming was characterized by a constant
rise. This trend required fish-farm plants to be larger and located in offshore sites, where
they are exposed to stronger actions [2].

The performances of fish-farm cages have been analyzed both experimentally and
numerically, with a large focus on the determination of the hydrodinamic coefficients of
the net, forced by currents or waves. For example, [3] evaluated experimentally the drag
and lift forces onto a net in uniform flow, while [4] provided empirical values for the
normal drag coefficients of copper nets. On the other hand, numerical models (validated
experimentally) have been applied to the study and design of real fish cages, including
floating top rings, mooring elements, or coupling multiple cages.

Among the different numerical models used in literature to simulate the dynamics
of fish-farm net in currents and waves, the most used are the lumped-mass method, the
net-truss model, the spring-mass model and finite elements models. The large number
of models and applications testifies the capability of these models to reproduce the nets
behaviours, subjected to different loads. The lumped-mass method, proposed by [5],
modeled the effects of drag, inertia, weight, buoyancy, and net elasticity. The model was
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validated and applied to several fish farm configurations with different environmental
forcing [6–15]. The net-truss model, originally presented by [16], simulated the net with
straight trusses connecting nodes. The model was improved and applied by [17,18], who
introduced the screen model for the viscous forces and applied the method for the study
of an aquaculture net cage with floaters in currents and waves. The net-truss model is at
the basis of the super-elements model [3,19–22], where net mesh is grouped into super-
elements, composed by consistent and diagonal trusses, characterized by lumped-masses
and nonlinear springs. The spring-mass model, proposed by [23,24], approximated the
net mesh to virtual mathematical mesh with size larger than the real one. Finite elements
methods (FEM) were also used, exploiting the implementation in commercial software,
such as Ansys Aqwa [25] and Abaqus [26,27].

In most of these models the computational cost is reduced by lumping the properties
of the large number of cage nodes into a small number of panels. This approximation does
not affect the efficiency of the methods in terms of mooring tension and volume reduc-
tion [22]. However, the coarser mesh reduces the capability of these models to represent the
actual deformation of the cages. For example, [28] compared three different approximated
numerical models, finding them good for the design process, but overpredicting the loads
acting on the structures for high solidity ratio. In the present paper we use a deformable
net-truss model, based on the model proposed by [17], to study the dynamics of a specific,
but emblematic, fish cage as forced by both sea currents and waves. In particular, the net
elements are not grouped into a coarser mesh; therefore, the computational resolution
corresponds exactly to the real-life net grid. Hence, in contrast to other recent applications
of net models, the application here proposed simulates accurately the dynamics of each
point of the net. The cage considered for the simulations is a cylindrical cage fixed to a top
ring and a bottom ring, which are moored to a central pillar (see the sketch of Figure 1).
This structural concept derives from the idea of exploiting the foundation of dismissed
offshore structures as structural elements of the cage.
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Figure 1. Sketch of a cylindrical cage fixed to two rings moored to a central pillar. Red points are
reference locations for the analyses.

The geometry of the cage is characterized by the cage radius R = 1 m, the cage height
H = 1 m, and the cage is located at water depths between 2 m and 4 m from the free surface.
The net mesh is squared, with twine length being l0 = 0.02 m and the twine diameter
(or thickness) dtwine = 0.0015 m. Hence, the solidity ratio can be calculated, following [18],
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Sn = 2(dtwine/l0) − (dtwine/l0)2 ~ 0.144. The material of the net is assumed to be elastic and
isotropic, with Young modulus E = 81 × 106 N/m2.

The dynamics of the net is simulated with two loading conditions: a steady current
with velocity U = 0.5 m/s, and a monochromatic wave with height Hw = 1 m and length
Lw = 25 m in deep water (time averaged water depth hw = 20 m). These are taken as
representative of typical working conditions at sea.

2. Methods

The numerical model used in this work to reproduce in detail the deformation of the
net is inspired by the net-truss model proposed by [18], where the net is represented by
nodes connected by straight trusses. Each ij-node, representing a net knot, is described by
the vector xij, collecting its spatial coordinates. Trusses represent the net twines and the
ijhk-truss, linking nodes ij and hk, is described by its length lijhk and by its direction vector
sijhk. The displacements of the nodes were solved by means of the time-discretized motion
equation. Time is discretized in steps of size ∆t. Hence, the position of the ij-node at the
time step n + 1 is evaluated from the position of the ij-node at the time step n using the
velocity of the ij-node at the time step n + 1:

xn+1
ij = xn

ij + un+1
ij ∆t (1)

where the velocity of the ij-node at the time step n + 1 is evaluated from the velocity of the
ij-node at time step n using the acceleration of the ij-node at the time step n:

un+1
ij = un

ij + an
ij∆t (2)

The acceleration is evaluated using the dynamic equilibrium principle:

Mijan
ij = f n

int ij + f n
ext ij (3)

where Mij is the mass of the net concentrated at ij-node, while f n
int ij and f n

extij are the
internal and external contributions to the force acting on the node ij at time step n.

The concentrated mass of each node Mij is calculated by the product of the twines
volume by the polyamide density ρPA6 = 1140 kg/m3, equally divided between the two
contact nodes. The obtained mass was multiplied by a coefficient equal to 1.5, to include
the added mass effect (see e.g., [8,24]).

Differently from the model of [18], in our model the kinematic constraint of the
constant truss length is not imposed. Hence, the internal force contribution is evaluated
using a linear elastic relation between the deformation and tension of the trusses.

The internal forces on a node are given by the force contributions of all the trusses
insisting on the node. Since the net is squared, the internal forces is given by the tensile
contribution of four twines σn

ijhk, multiplied by the cross sectional area of the truss Atwine,
which is constant because the twine diameter variation is assumed negligible during
the deformation:

f n
int ij = Atwine

(
σn

ijij+1 + σn
iji+1j + σn

ijij−1 + σn
iji−1j

)
(4)

The internal tensions act in the direction of the corresponding truss and vanish when
the trusses are compressed:

σn
ijhk =

{
Eεn

ijhksn
ijhk if εn

ijhk > 0
0 if εn

ijhk < 0
(5)

where E is the material Young modulus and εn
ijhk is the elongation of the ijhk-truss at time

step n, defined as



J. Mar. Sci. Eng. 2021, 9, 14 4 of 10

εn
ijhk =

ln
ijhk − l0

ijhk

l0
ijhk

(6)

The external forces f n
ext ij on the ij-node at time step n are composed by gravity,

buoyancy and viscous forces and can be expressed as

f n
ext ij = Mij

(
1− ρPA6

ρw

)
g + f n

V ij (7)

The first term includes gravity and buoyancy, where g is the gravitational acceleration
vector and ρw is the water density. The second term f n

V ij represents the viscous force, due
to the interaction of the net with the fluid. It has been evaluated using the screen model
proposed by [17].

Since both the internal and external forces can be calculated from the coordinates and
velocity of the nodes at time step n, the acceleration at such time step n can be evaluated
directly from Equation (3). This set of equations, together with the boundary conditions of
zero displacement (i.e., zero acceleration) given at the nodes of the top and bottom rings, is
a set of algebraic equations that can be solved in terms of the acceleration. The evaluated
acceleration can be substituted into Equations (2) and (1), to update the velocity and the
position of the nodes at time step n + 1.

Validation

The numerical model here proposed has been validated by simulating the experimen-
tal test reported in Section 3.2 of [29]. A square panel of flexible net with size 0.30 × 0.30 m,
fixed at the free surface and weighted at the bottom with two steel bars, was subjected to a
water current with four different velocities U = 0.058, 0.113, 0.170, and 0.226 m/s, using
the method above reported. The net was characterized by trusses with length l0 = 0.02 m
and diameter dtwine = 0.0026 m, composed by polyethylene (with density ρPE = 880 kg/m3

and Young modulus EPE = 6 × 10−8 N/m2). The four experiments have been simulated
with the proposed numerical model, using the net material characteristics reported above
and a time step size of ∆t = 0.0025 in the two test with the lowest velocities and ∆t = 0.001
in the two test with the highest velocities. The grid used for the simulation is exactly the
geometry of the net, characterized by a squared net with initial truss length l0 = 0.02 m.
The two support steel bars, at the net top edge and the other mounted on the bottom of the
net as a sinker system, were 0.3 m long, 6 mm in diameter, and with mass of 73 g. The two
bars are implemented in the numerical simulations introducing the additional weight and
the additional drag force, with drag coefficient of CD = 2, applied proportionally to the
nodes where the two bars are attached.

In Figure 2 the drag evaluated with numerical simulations is compared with the
corresponding experimental results of [29]. Here, also the results of the numerical model
proposed by the same benchmark reference is reported. The results obtained with the
proposed model highlight the capability of the code to reproduce the drag force measured
in the experiments with good accuracy. In particular, the simulation characterized by the
highest current velocity show a better accuracy than the simulation proposed by [29].



J. Mar. Sci. Eng. 2021, 9, 14 5 of 10

J. Mar. Sci. Eng. 2020, 9, x FOR PEER REVIEW 5 of 10 

 

 
Figure 2. Comparison of the drag forces measured experimentally (red dashed line and red 
squares) and evaluated numerically (blue lines and blue circles) by [29], and the drag forces evalu-
ated numerically with the proposed method (green line and triangles). Modified figure from [29]. 

3. Results 

The model has been applied to two cases: one with forcing due to a steady sea current 
only, and one with forcing due to a linear wave only. The initial condition was the unde-
formed condition, with zero motion. The total time of simulation has been set to 4 s for 
the simulation with the sea current and to 32 s for the simulation with the waves. The total 
run time has been discretized in time steps of size ∆t = 0.00005 s. 

The results are reported in dimensionless form. The displacement 𝛿  = 𝑥  − 𝑥   is 
made dimensionless using the height of the cage H for the vertical displacement and the 
undisturbed radius of the cage R for the horizontal displacement: 

𝛿  → 𝛿 ∗ = ⎩⎨
⎧𝛿 𝑅 for horizontal components𝛿 𝐻 for vertical components  (8)

For the simulation forced by a sea current, the time scale is taken equal to ඥ𝑅/𝑔, 
while for the simulation forced by the waves, the time scale is the wave period T: 

𝑡 → 𝑡∗ = ⎩⎨
⎧ 𝑡ඥ𝑅/𝑔 for the sea current test𝑡𝑇 for the wave test  (9)

In the following, results are reported for four significant points at the mid-height 
nodes of the cage upstream (point F at z = 0.5 m and θ = 0° in Figure 1), downstream (point 
B at z = 0.5 m and θ = 180° in Figure 1) and at the two lateral sides (points L and R at z = 
0.5 m and θ = 90° and θ = 270°, respectively, in Figure 1). 

3.1. Cage Dynamics in Steady Sea Currents 
The simulation for the steady current case starts from an undeformed configuration. 

Hence, the first phase of the simulation reproduces the transient. This is evident from the 
time evolution of the displacement of the four significant nodes, reported in Figure 3. 

Figure 2. Comparison of the drag forces measured experimentally (red dashed line and red squares)
and evaluated numerically (blue lines and blue circles) by [29], and the drag forces evaluated
numerically with the proposed method (green line and triangles). Modified figure from [29].

3. Results

The model has been applied to two cases: one with forcing due to a steady sea
current only, and one with forcing due to a linear wave only. The initial condition was
the undeformed condition, with zero motion. The total time of simulation has been set to
4 s for the simulation with the sea current and to 32 s for the simulation with the waves.
The total run time has been discretized in time steps of size ∆t = 0.00005 s.

The results are reported in dimensionless form. The displacement δn
ij = xn

ij − x0
ij is

made dimensionless using the height of the cage H for the vertical displacement and the
undisturbed radius of the cage R for the horizontal displacement:

δn
ij → δn∗

ij =


δn

ij
R for horizontal components

δn
ij

H for vertical components
(8)

For the simulation forced by a sea current, the time scale is taken equal to
√

R/g,
while for the simulation forced by the waves, the time scale is the wave period T:

t→ t∗ =


t√
R/g

for the sea current test

t
T for the wave test

(9)

In the following, results are reported for four significant points at the mid-height
nodes of the cage upstream (point F at z = 0.5 m and θ = 0◦ in Figure 1), downstream
(point B at z = 0.5 m and θ = 180◦ in Figure 1) and at the two lateral sides (points L and R at
z = 0.5 m and θ = 90◦ and θ = 270◦, respectively, in Figure 1).

3.1. Cage Dynamics in Steady Sea Currents

The simulation for the steady current case starts from an undeformed configuration.
Hence, the first phase of the simulation reproduces the transient. This is evident from
the time evolution of the displacement of the four significant nodes, reported in Figure 3.
After t* = 0.5, the steady condition is attained. The displacement in the flow direction
(top panel in Figure 3) is obviously the largest one, with a maximum displacement of about
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δ∗x ~ 0.05 in the back point and about δ∗x ~ 0.04 in the frontal and lateral points. Further,
displacement of the lateral points is evident in the cross-flow direction (middle panel in
Figure 3). The magnitude of this displacement is of about

∣∣∣δ∗y ∣∣∣ ~ 0.005 and it is positive
(i.e., toward the right direction) for the point on the left side L, and negative (i.e., toward
the left direction) for the point on the right side R. Finally, the displacement in the vertical
direction (bottom panel in Figure 3) is negligible at the four check points.
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3.2. Cage Dynamics in Sea Waves

Additionally, the simulation with waves starts from an undeformed configuration
and displays an initial transient phase, after which the time evolution of the displacement
is quasi-steady. The simulation reproduces two periods (see the time evolution of the
displacement in the three directions of the significant nodes reported in Figure 4). The max-
imum and minimum displacements in each direction of the reference points in the first
reproduced period after the transient phase, i.e., 0.25 ≤ t* ≤ 1.25, with the corresponding
time, are reported in Table 1.

Table 1. Maximum and minimum displacements in each direction of the reference points, with the
corresponding time, in the first simulated period after the transient phase (0.25 ≤ t* ≤ 1.25).

δ*
x max t* δ*

y max (m 10−3) t* δ*
z max (m 10−3) t*

F 0.034 1.00 2.708 0.44 123.340 0.86
B 0.033 1.01 47.298 0.67 139.640 0.65
L 0.026 1.01 4085.900 0.49 45.534 0.81
R 0.026 1.01 370.190 0.77 47.086 0.82

δ*
x min t* δ*

y min(m 10−3) t* δ*
z min(m 10−3) t*

F −0.032 0.503 −0.084 0.164 −0.126 1.147
B −0.035 0.516 −0.012 0.782 −0.136 0.363
L −0.026 0.505 −0.488 0.783 −0.055 0.323
R −0.026 0.505 −4.043 1.027 −0.056 0.308
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The displacement in the wave direction (top panel in Figure 4) is very similar to the
wave profile evolution, even if some sharp-cornered inflection points appears after every
zero-upcrossing and zero-downcrossing point. The amplitude of the displacements of the
frontal and back points (about δ∗x ~ 0.035) is larger than the amplitude of the displacements
of the lateral points (about δ∗x ~ 0.025). Instead, the displacement in the cross-flow direction
(middle panel in Figure 4) is characterized by a more complicated behaviour. It is smaller
than 10−3 at the frontal and back points, while the displacement of the lateral points are
complex specular functions, toward the right direction for the left point L and toward the
left direction for the right point R. These displacements resemble positive wave functions,
whose amplitude reaches a maximum displacement of about δ∗y ~ 0.004 and occurs when
the forcing wave is in its crest and trough conditions. Further, higher frequency oscillations
of the crossflow displacement of the lateral point occur during the zero-downcrossing and
zero-upcrossing of the forcing wave. Finally, the displacement in the vertical direction
(bottom panel in Figure 4) shows a complex evolution, characterized by a quasi-steady
evolution, significantly different from the wave oscillation. Oscillations of frontal and back
points show larger amplitudes than those of the lateral points, but the values are always
smaller than 10−3 at the four check points.

Comparison of the sea wave forcing signal with the displacement of the reference
points in the wave direction, reported in Figure 4, reveals a difference in phase, the
cage displacement been delayed to the sea wave forcing. Such delay is evaluated as
the difference between the zero upcrossing/downcrossing time of the sea wave η(t) and
the zero upcrossing/downcrossing time of the reference point displacement. Delays are
reported, for each zero upcrossing/downcrossing and each reference point in Table 2.
The delay ranges between t* = 0.025 and t* = 0.032 for the frontal and lateral reference
points, while is higher for the back point, where it ranges between t* = 0.037 and t* = 0.039.
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Table 2. Timing of zero down crossing (0-DC) and zero up crossing (0-UC) of the wave and of the
cage displacement and delay.

1st 0-DC 1st 0-UC 2nd 0-DC 2nd 0-UC 3rd 0-DC

t*(η = 0) 0.250 0.750 1.250 1.750 2.250
t*(δ∗x = 0) in F 0.278 0.775 1.278 1.775 2.278

delay for F 0.028 0.025 0.028 0.025 0.028
t*(δ∗x = 0) in B 0.287 0.789 1.287 1.789 2.287

delay for B 0.037 0.039 0.037 0.039 0.037
t*(δ∗x = 0) in L 0.279 0.781 1.279 1.782 2.279

delay for L 0.029 0.031 0.029 0.032 0.029
t*(δ∗x = 0) in R 0.279 0.781 1.279 1.782 2.279

delay for R 0.029 0.031 0.029 0.032 0.029

4. Discussion and Conclusions

The proposed numerical solver is based on a model currently available in the literature,
but the application is characterized by an accurate representation of the net. In fact, the
net grid is an exact reproduction of the physical mesh (without any grouping procedure),
and the net elastic response is included in the model using a tension-deformation relation.
In this manner, the proposed numerical model is suitable for simulating accurately the
behaviors of a fish-farm cage. It can provide the displacement, the deformation, and
the tension of each truss of the net. In this manner it is possible to evaluate important
design parameters, such as the maximum displacement and specific evolution of the net
displacement. The numerical model is used to reproduce the dynamics of a pile-moored
fish cage with a simple cylindrical shape. The variation in space of displacement are
accurately reproduced in both the forcing conditions of current and linear wave (typical
forcing for marine deep waters). The capability of the numerical model in representing
complex behaviors is evident from the analysis of the results of the simulation where the
cage is forced by the wave. In fact, the model can track in time the displacement of each
node. For example, the complex oscillations in time of the displacements of the reference
points were accurately described and reported in Figure 4.

As expected, the maximum displacements of the net occur at the location where the net
is perpendicular to the flow, i.e., at the frontal and back points. In particular, the maximum
displacements due to wave forcing occur in the wave direction during the crest stage and
in the opposite direction during the trough stage. Further, in both configurations, with sea
current forcing and wave forcing the displacement in the cross-flow direction of the lateral
points (where the net is parallel to the flow) is always toward the center of the net.

Conclusions and Outlooks

• We used an accurate numerical model to describe carefully the reaction of a cylin-
drical pile-moored fish cage in sea currents and waves, representative for a possible
application in the overall re-use strategy of an offshore platform foundation.

• We investigated the response of a fish farm new with respect to those treated so far
in the sector, represented by a net cage fixed at the top and at the bottom, to two
rigid rings).

• Simulations show expected major displacements of the frontal and back points of the
net in the sea current and wave direction (at crest and trough stages), while unexpected
displacements of the lateral points have been found in the crossflow direction, toward
the center of the net.

• Beyond evaluating the significant parameters of the net displacement, the numerical
model can also provide an accurate description of the distribution of deformation and
tension in space and a more detailed description of the complex changes in shape of
the net.

• In the future, a grouping method will be implemented in the numerical model, for the
study of realistic pile-moored fish cage forced by realistic sea states.
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