
Journal of

Marine Science 
and Engineering

Article

Large-Scale Laboratory Experiments on Mussel Dropper Lines
in Ocean Surface Waves

Rebekka Gieschen 1,* , Christian Schwartpaul 1, Jannis Landmann 2, Lukas Fröhling 2, Arndt Hildebrandt 2

and Nils Goseberg 1,3

����������
�������

Citation: Gieschen, R.; Schwartpaul,

C.; Landmann, J.; Fröhling, L.;

Hildebrandt, A.; Goseberg, N.

Large-Scale Laboratory Experiments

on Mussel Dropper Lines in Ocean

Surface Waves. J. Mar. Sci. Eng. 2021,

9, 29. https://doi.org/10.3390/jmse

9010029

Received: 26 November 2020

Accepted: 23 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig,
Beethovenstraße 51a, 38106 Braunschweig, Germany; c.schwartpaul@tu-braunschweig.de (C.S.);
n.goseberg@tu-braunschweig.de (N.G.)

2 Ludwig-Franzius-Institut for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover,
Nienburger Str. 4, 30167 Hannover, Germany; landmann@lufi.uni-hannover.de (J.L.);
froehling@lufi.uni-hannover.de (L.F.); hildebrandt@lufi.uni-hannover.de (A.H.)

3 Coastal Research Center, Leibniz Universität Hannover and Technische Universität Braunschweig,
Merkurstraße 11, 30419 Hannover, Germany

* Correspondence: r.gieschen@tu-braunschweig.de

Abstract: The rapid growth of marine aquaculture around the world accentuates issues of sustainabil-
ity and environmental impacts of large-scale farming systems. One potential mitigation strategy is to
relocate to more energetic offshore locations. However, research regarding the forces which waves
and currents impose on aquaculture structures in such conditions is still scarce. The present study
aimed at extending the knowledge related to live blue mussels (Mytilus edulis), cultivated on dropper
lines, by unique, large-scale laboratory experiments in the Large Wave Flume of the Coastal Research
Center in Hannover, Germany. Nine-months-old live dropper lines and a surrogate of 2.0 m length
each are exposed to regular waves with wave heights between 0.2 and 1.0 m and periods between 1.5
and 8.0 s. Force time histories are recorded to investigate the inertia and drag characteristics of live
mussel and surrogate dropper lines. The surrogate dropper line was developed from 3D scans of
blue mussel dropper lines, using the surface descriptor Abbott–Firestone Curve as quality parameter.
Pull-off tests of individual mussels are conducted that reveal maximum attachment strength ranges
of 0.48 to 10.55 N for mussels that had medium 3.04 cm length, 1.60 cm height and 1.25 cm width.
Mean drag coefficients of CD = 3.9 were found for live blue mussel lines and CD = 3.4 for the surrogate
model, for conditions of Keulegan–Carpenter number (KC) 10 to 380, using regular wave tests.

Keywords: aquaculture; bivalves; waves; physical model tests; Large Wave Flume

1. Introduction

The world’s population is projected to increase to ten billion people by the middle
of the twenty-first century [1]. Humankind faces the enormous challenge to establish
sustainable food production structures as described in the seventeen Sustainable Devel-
opment Goals in the United Nations’ 2030 Agenda [2]. One aspect to a multi-faceted
solution could be an efficient and sustainable marine aquaculture bivalve production [3,4],
with all its health benefits as prevention of cardiovascular diseases or age-related macular
degeneration [5,6]. The total aquaculture production is predicted to reach 109 million
tons in 2030, as reported by the [7]. In contrast to freshwater aquaculture or agriculture,
marine aquaculture has little to no dependence on the scarce resource freshwater [8,9]
or on available arable land [10,11]. Capture production is stagnating at 95 million tons
per year [7,12] due to overexploitation and resulting legal restrictions [13,14]. However,
in 2018, only 10% of total aquaculture production was molluscs [7]; although fish and
crustaceans marine aquaculture depends on feeds from wild fisheries [15], approximately
20 to 25 million tons of fish meal is required to produce only 30 million tons of fish and
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crustaceans [16], and lowering the trophic level of food production is commonly suggested
to lower environmental impacts [15,17–19]. Still, even lower intensity aquaculture is prone
to escaping individuals, which could become invasive or genetically alternative stocks,
distribution of parasites and diseases, release of antibiotics and drugs, eutrophication
due to marine litter, loss of benthic biodiversity, change of local hydrodynamics, change
of species assemblage including mammals and reduction of the native stocks by spat
recruiting [17,20–22]. More specific to bivalve marine aquaculture, filter feeders alter the
composition of the water column, leading to changes in bloom, light penetration and
primary production, which could be positive or negative, depending on the biological situ-
ation [23]. Sustainable technologies, integrated farm siting, effluent management, disease
control, and culture of native species, as well as government, market and self-regulation,
are suggested to overcome these impacts [24]. In addition, rising space limitations near
shore, as well as conflicts between food supply, infrastructure and tourism [15,18,25], are
drivers to relocate to offshore locations [25–27], which would also reduce negative envi-
ronmental impacts and increase carrying and assimilative capacity [28]. Reference [29]
describes offshore aquaculture developments in Belgium, France, Germany, Ireland, Italy,
Netherlands, New Zealand, the UK and the USA, of which multifunctional systems are
researched by [3] in wind farms in the North Sea or [30] for oil and gas platforms in the Gulf
of Mexico. However, the more energetic wind, wave and current environment offshore
requires research on reliable offshore marine aquaculture structures, as well as harvest and
monitoring technology [4,25,31,32].

Bivalve marine aquaculture production can be classified into on-bottom and off-
bottom, or suspended culture [33], which is divided in intertidal, raft or longline sys-
tems [34]. In intertidal systems, mussels grown on collecting ropes or in net sockings,
which are wound up around wooden poles after spat collecting offshore [29,35]. In raft
systems, mussel ropes are hung from swimming or submerged platforms [36]. Longline
systems, found to show the highest crop yield by [35], consist of two parallel backbone
ropes supported by buoys from which mussel ropes, so called droppers, are hung in loops
down to ten to fifteen meters in depth. The system is moored with single warps to anchor
blocks [37]. Reference [29] emphasizes that off-bottom culture, in general, makes better
use of the water column and is less vulnerable to predators, and that longline systems are
cheaper than rafts, are easily constructed and maintained, are more suitable to winter storm
conditions, and allow a highly mechanized culture, which is why [4] suggest that bivalve
longline culture should be researched for offshore applications. However, even research on
nearshore bivalve structures is scarce, a fact that makes accurate design assumptions and
design force estimation difficult.

The effect of mussel farms on the surrounding current and wave conditions was
previously investigated [37–39]; the first observations of a longline farm in the field were
conducted [40,41], and numerical models for whole longline farms were set up [42]. What
is widely missing, as essential parameters for the design of offshore longline structures, are
experimental based force coefficients on mussel dropper lines [42,43]. These coefficients
were so far only presented for rigid oyster trays [44], suspended canopies [45], biofouled
nets [46] or bivalve encrusted piles [47–49]. Drag and inertia coefficients of smooth, rough
or flexible cylinders and combinations of those are more widely researched. Reference [50]
laid the foundation with the MOJS equation (Equation (4)) for the force exerted on piles
by currents or waves. Reference [51] compared several methods for the determination
of force coefficients of heavily roughened cylinders from experimental force data and
recommend the Least Square Method, as well as wave-by-wave comparison with mean
drag coefficient (CD) 1.88 and mean inertia coefficient (CM) 2.08 for a pile with diameter
of 5.13 cm. Reference [52] found that the same method can be applied, to a certain extent,
to smooth flexible cylinders in random waves when the relative motion leads to wide
scatter or negative values for the coefficients. Using the Least Square Method and relative
motion analysis mean drag coefficient at the middle of the cylinder is 1.9 and mean inertia
coefficient is 0.87. To the authors’ knowledge, reference [37] were the first to estimate
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the drag coefficient of dropper lines as 0.89 with a towing test, but later chose values of
reference [51] for their mussel farm model because that value was difficult to apply in
waves. Reference [53] were the first to conduct extensive towing and wave tests with
live blue mussel dropper lines for experimentally verified force coefficients for offshore
bivalve farm design. In light of the large difficulties with live shellfish in freshwater-based
laboratory wave tanks, the quality of a dropper line surrogate for wave tests [54], as
a strategy of substituting live shellfish testing, was additionally yielding a mean drag
coefficient of CD = 2.3 for the live line and CD = 2.4 for the surrogate, as well as mean inertia
coefficient of CM = 2.1 for the live line and CM = 2.3 of the surrogate.

Based on the above presented state-of-the-art review on mussel marine aquaculture
and force determination of bivalve-encrusted aquaculture gear, the overall objective of
this work is to enhance the knowledge on the force regime acting on ultra-rough, bivalve
covered surfaces and ropes, which is still strongly debated and more accurate design basis
could be obtained. Despite the overall force acting on shellfish-encrusted rope, that is, a
result of global velocity and pressure field conditions surrounding the immersed specimen,
it has often been an aspect of research how strong individual mussel specimen adhere to a
piece of rope. This aspect is important, and yet unaddressed in large-scale experimental
settings, as soon as the local drag and pressure-related forces exceed the ability of the
animals to hold on to the rope. Hence, the following specific objectives are addressed to
shed light on the above knowledge gaps:

• To understand the adhesive forces of live mussels attached to farming rope;
• To quantify the drag and inertia coefficients of bivalve-encrusted dropper lines when

exposed to waves in large, near full-scale experiments;
• To comparing the force response of live mussels with a surrogate specimen.

To the authors knowledge, this is the first near full-scale experimental series with live
mussel dropper lines in waves and only the second comprehensive experimental campaign
with live mussel dropper lines [53].

2. Materials and Methods
2.1. Testing Specimen

The experiments are based on ten marketable nine-months-old juvenile dropper lines
grown with blue mussels (Mytilus edulis) from an aquaculture farm at the Baltic Sea, at the
Bay of Kiel, Germany, whereof six selected lines were tested in the Large Wave Flume. Blue
mussels were selected as cultured species due to their high importance in aquaculture: They
made up for 82% of global mussel fisheries in 2011, due to the high protein content [29]. At
the local scale, blue mussels are widely distributed from sheltered to high wave-exposed
conditions, from marine to estuarine regions, from subtidal to intertidal shores and various
substrates as wood, rock, cement or shell [29]. That extensive distribution pattern displays
their euryhaline and eurythermal capabilities [34,55–61], as well as their independence of
respiration and filtration over several hours [61].

For attachment, mussels secret a byssus containing several threads off their foot [62,63]
where thread thickness can be increased to adapt to changes in water motion [64,65]. Mean
maximum dislodgement forces for blue mussels grown on polyester nets formed as tubes
was 3.6 N and grown on artificial seaweed 5.6 N [66]. A peak force of 15 N was measured
for a single blue mussel attached by nine byssus threads by [67]. Reference [68] found
mean attachment strength of 0.6 N for blue mussels of 1 to 3 cm off the North Sea and [69]
found 2.5 N for blue mussels of 6.8 to 8.8 cm length.

Reference [29] lists the following environmental factors for mussel growth as the
most important modulators: temperature, salinity, water flow, water depth, tidal level,
wave action, pollutants, aerial exposure and stock density, as well as endogenous factors,
such as genotype and physiological status. Reference [70] shows that, at the Baltic Sea,
mussels grew to 4 cm length at 4 m depth and to 2.5 cm length in 15 m depth in 12 years.
Reference [71] reports mussel lengths between 2.5 and 6.5 cm for mussels of the East
Yorkshire Coast aged five to ten years old. Mussels harvested on several materials in the
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Jade estuary reached a mean length of 4.61 cm, mean width of 5.08 cm and mean height of
1.67 cm after 16 months [66]. Mean length and mean width of mussels grown on a dropper
line at the Baltic Sea near Kiel are 4.7 and 2.2 cm, respectively [54].

2.2. Surrogate Model of the Live Mussel Dropper Lines

Reference [54] gives a detailed description of the creation of three mussel dropper lines
surrogates based on a 3D-Scan of an adult blue mussel line encrusted with newly seeded
spat from the same aquaculture farm as the lines tested in this work. The authors used the
surface descriptor Abbott–Firestone Curve [72] to develop surrogate model geometries
with similar characteristics regarding the weighed arithmetic average material distribution.
The best fit regarding drag and inertia coefficients in towing and wave tests, with towing
velocities from 0.25 to 1.00 m/s and wave height from 0.1 to 0.15 m, with wave period
1.2 to 2.4 s, respectively, is a surrogate created by adding uniform mussels to a slender
cylinder at different angles of incidence until mean weight was equal to the original
mussel data [53]. An identical, appropriately scaled surrogate model is used in this work;
the mussel dropper line is made by threading twenty individual surrogate sections of
8.42 cm height onto a 2.2 m wire rope, corresponding to the total length of the live dropper
lines. The characteristics of the surrogate are listed in Table 3 for comparability to the live
dropper lines.

2.3. Experimental Setup

The experiments are conducted in the Large Wave Flume of the Coastal Research
Center in Hannover, Germany; a joint facility of the Technische Universität Braunschweig
and the Leibniz Universität Hannover. The Large Wave Flume has an effective length of
307 m, a width of 5 m and a depth of 7 m. The hydraulically driven wave machine (900 kW)
gives a maximum stroke of 4 m to the wave paddle, generating waves up to a height of
2 m, allowing for quasi-prototype conditions of regular, irregular and breaking waves to
be tested. Wave generation is controlled by an active absorption system. Figure 1 depicts
a side view of the Large Wave Flume, including the wave paddle (x = zero, reference
position), measuring equipment, test rack with mussel dropper lines and wave dampening
beach. Forward wave propagation direction is defined as x-direction; vertical direction is
defined as z-direction.
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Figure 1. Side view of the Large Wave Flume with wave paddle, measuring equipment, test rack with mussel dropper lines
and wave dampening beach (sketch not to scale).

The test rack (Figure 2) is located at a distance of 97.2 m to the wave paddle. The test
rack includes a trapezoidal concrete slab at the bottom of the flume, a t-beam spanning the
width of the flume as well as three mussel dropper lines clamped between the concrete slab
and the t-beam with wire ropes, allowing for free rotation, but restricting natural motion.
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This setup does not depict natural behavior of suspended dropper lines but allows an
efficient determination of force coefficients. The mussel dropper lines have a length of 2 m
and are positioned in a distance of 1.5 m to the flume walls and 1.0 m to each other. The
upper wire ropes, connecting the t-beam and the mussel lines, include a rope tensioner
to set uniform pretension conditions for all mussel lines. The lines are submerged by
half-length, to prevent wave acting on the wire ropes at all times, as well as to allow for
observation throughout all runs.
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2.4. Instrumentation

Wave induced forces in x- and y-direction on each of the dropper lines are measured
with load cells (CTL100, XSENSOR, Darmstadt, Germany) at the top and bottom of each
line. The CTL100 has a nominal load range of up to 100 kg, a combined error of 0.02 kg
and is hermetically sealed according to IP68 standard. The inline tension is recorded by
one-axis force transducers (U2B, HBM, Darmstadt, Germany). The U2B has a nominal
force range of 2 kN, a combined error of 2 N and IP67 specification. The sampling rate for
both force sensor groups is set to 1000 Hz. An identical instrumentation setup is used for
all three line locations, as shown in Figure 2.

Incident wave conditions are measured in close vicinity to the dropper lines by two
wave gauges and four inductive current meters. All wave gauges are attached to the
South wall of the flume. The wave gauges are wire type wave gauges based on combined
electrical resistance and capacity technique and consist of two electrodes, a measuring
wire and a ground plane, with an accuracy of ±1 mm. The sampling rate is set to 100 Hz.
Wave gauge 1 is positioned in a distance of 94.28 m to the idle position of the wave paddle,
and wave gauge 2 is positioned in a distance of 96.94 m corresponding to a distance of
2.92 m and 0.26 m to the test rack, respectively. Right next to these two wave gauges, two
inductive current meters (ISM-2001F, hs engineers, Hannover, Germany) are positioned
each in different heights so that water particle velocity u and v in x- and z-direction is
acquired at four spots, twice in a distance of 2.92 m (ICMs1) and twice in a distance of
0.26 m (ICMs2) to the test rack as well as 0.31 m to the wall of the flume. Velocity in
y-direction is assumed to be negligible which is proven by evaluating measured force in
y-direction. The lower current meters (ICMs_bottom) are located at a height of 1 m above
the flumes bottom each, while the upper current meters (ICMs_top) are attached in a height
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of 2.5 m, corresponding to 2.5 and 1 m below water surface, respectively. The current
meters have a nominal velocity range of ±3 m/s and a measuring accuracy of ± (0.5%
reading + 0.5% limit range). The sampling rate is set to 100 Hz. All testing is recorded by a
GoPro Hero4 with a high-definition resolution and a sample rate of 100 fps.

2.5. Experimental Procedures

Ten nine-month-old blue mussel dropper lines of 2.5 m length are transported and
stored in a water tank filled with Baltic Sea water from the Bay of Kiel. Temperature and
aeration are controlled throughout transport and storage prior to the experiments. The
mussels are fed with approximately 4 g of plankton every evening. Each dropper line is
cut into 2.1 m length, weighed and numbered for later distinction (labeled from Nos. 1 to
10). The width of each line is measured in approximately 0.1 m steps, to determine mean
diameter and its standard deviation. Volume determination is conducted by measuring their
displacement in a water-filled container of known dimensions. In the following, density,
weight per meter, ratio of dropper weight to clamp weight and equivalent diameter is
determined. The equivalent diameter, Deq, is calculated as the diameter of an ideal cylinder
with the same volume, V, as the mussel dropper line of length, L.

Deq =

√
4· V

π·L (1)

The live mussel dropper lines Nos. 1 to 6 are clamped (Figure 3a) and mounted
into the test rack, with remaining 2 length, so that two live lines and the surrogate were
tested at the same time. The lines are exposed to thirteen wave trains with thirty single
waves of targeted wave heights H of 0.2 to 1 m and targeted wave period T of 1.5 to 8 s
(Table 1 and Figure 4). Still water depth is 3.5 m, so that each dropper is submerged over
a length of 1 m. In between all wave tests, a waiting period ensures settling of the water
level, to avoid biased influence of previous tests. In addition, rack-only tests are conducted
for each wave train, to obtain forces acting on the blue mussel dropper line alone, without
forces acting on the test rack.
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Table 1. Wave parameters for experiments at a water depth of 3.5 m.

Wave Train 1 2 3 4 5 6 7 8 9 10 11 12 13

Height H (m) 0.2 0.2 0.4 0.4 0.4 0.6 0.6 0.6 0.8 0.8 0.8 1.0 1.0
Period T (s) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Length L (m) 6.2 9.6 13.1 16.6 20.0 23.3 26.5 29.7 32.9 36.0 39.1 42.1 45.2
Steepness H/L 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
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50 N, measuring accuracy ± 0.2% at 23 °C, resolution 0.01 N and sampling rate 1000 Hz. 
Figure 5 shows the procedure: the device pulling at a single mussel by backward motion 
on a carriage, controlled by a rotary screw for repeatability. The display of the force gauge 
is recorded with a Nikon Coolpix L810 with a sampling rate of 25 Hz. The recordings are 
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Individual mussels that were pulled off are additionally selected for data acquisition of 
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ICM2, is only used to show that there is neither change in wave height nor particle velocity 

Figure 4. Exposure of dropper lines in waves. (a) Forward motion in wave trough. (b) Backward motion in wave crest. (c)
Wake formation behind lines at approximately zero crossing.

The remaining parts of the original blue mussel lines (cutoffs) are used in pull-off
tests, to determine maximum attachment strength of single mussels, to help and provide
new data on the tested shellfish individuals under experimental conditions in large-scale
testing. Adhesive forces are measured with a FMI-100B5, by Alluris, with nominal range
50 N, measuring accuracy ± 0.2% at 23 ◦C, resolution 0.01 N and sampling rate 1000 Hz.
Figure 5 shows the procedure: the device pulling at a single mussel by backward motion
on a carriage, controlled by a rotary screw for repeatability. The display of the force gauge
is recorded with a Nikon Coolpix L810 with a sampling rate of 25 Hz. The recordings are
evaluated, frame by frame, for time histories of adhesive force, as well as maximum force.
Individual mussels that were pulled off are additionally selected for data acquisition of
length, height and width (Figure 3b). The sample is evaluated with descriptive statistics
parameters. Outliers are defined as values which are more than 1.5 times of the interquartile
range above the third quartile or below the first quartile and are removed from the dataset,
to obtain the statistic parameters.
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Figure 5. The attachment strength of an individual mussel to a line cutoff is measured with a
force transducer.

The data of the wave gauges, current meters and load cells are evaluated regarding
water-level evaluation, orbital velocity and wave-induced forces on mussel lines. Water-
level elevation of wave gauge 1, as well as horizontal and vertical particle velocity at ICM2,
is only used to show that there is neither change in wave height nor particle velocity over
the distance of 2.66 m from wave gauge 1 to wave gauge 2 or ICM1 to ICM2. Hence, water
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elevation of wave gauge 2 and horizontal particle velocity of ICM1 are used to describe the
wave conditions at the test rack after applying the respective time shift. Inline tension is
used for attaining equal pretension of all dropper lines in the test setup while the measured
force in y-direction is used to state 2D conditions in the Large Wave Flume.

The raw data is filtered with an eight-order, low pass Butterworth filter with sampling
frequency of 100 Hz and cutoff frequency of 5 Hz. The cutoff frequency is determined by
evaluating Fast-Fourier Transformations of each raw data sets for maximum amplitude
spectra. The frequency dependent phase shift due to the Butterworth filter is corrected. The
filtered time histories are cut to the relevant time frames, leaving 28 to 6 waves from wave
train 1 to wave train 13 for further evaluation. Every single wave of each wave train is
analyzed regarding wave height and wave period. Table 2 lists exemplarily the results for
wave height and period at wave gauge 2 for the tests with line 1, line 2 and the surrogate
as well as averaged results over all tests with mean and standard deviation (std).

Table 2. Wave height and period of individual waves at wave gauge 2.

Wave
Train

No. of
Waves

Tests with Line 1, Line 2 and Surrogate All Tests

Mean H
(m) Std H (m) Mean P

(s) Std P (s) Mean H
(m) Std H (m) Mean P

(s) Std P (s)

1 28 0.19 0.01 2.00 0.03 0.19 0.01 2.00 0.04
2 28 0.18 0.00 2.50 0.04 0.19 0.01 2.50 0.04
3 23 0.39 0.01 2.99 0.06 0.39 0.01 3.00 0.06
4 18 0.42 0.01 3.49 0.06 0.42 0.01 3.50 0.05
5 15 0.43 0.01 3.98 0.05 0.43 0.01 4.00 0.06
6 13 0.64 0.01 4.51 0.06 0.64 0.01 4.50 0.06
7 11 0.63 0.01 4.98 0.05 0.64 0.01 5.01 0.05
8 10 0.64 0.00 5.49 0.06 0.64 0.01 5.50 0.05
9 8 0.83 0.00 5.98 0.05 0.84 0.01 5.99 0.05
10 8 0.85 0.01 6.53 0.06 0.85 0.01 6.53 0.07
11 7 0.84 0.01 7.02 0.05 0.84 0.02 7.02 0.06
12 6 1.09 0.01 7.51 0.02 1.10 0.01 7.52 0.04
13 6 1.06 0.01 8.03 0.08 1.07 0.02 8.02 0.06

The force time histories used for the investigation are corrected to obtain forces acting
on the mussel dropper line alone, without forces acting on the test rack, by subtracting the
filtered and cut time histories of the measured forces of the rack-only tests. Comparability
of the wave conditions generating these forces is proven by comparison, firstly, of the
mean minima and maxima of each wave train as well as their phase shifts in the water
level elevation and, secondly, of the wave height and period of each single wave. Since
the rack-only tests are conducted without the steel clamps, the correction of the measured
forces results in the hydrodynamic forces on the mussel dropper lines plus steel clamps.
Both force time histories in x-direction, measured at the top and the bottom of the test rack,
are added to a total force history in x-direction on each line. The quality of the surrogate is
evaluated by comparing mean force peaks of each wave train i between live lines FP,Line
and surrogate FP,Surrogate of the joint test run, firstly, with the normalized mean error.

MNE =
100
NWt
·

NWt

∑
i=1

FP,Surrogate,i − FP,Line, i

FP,Surrogate,i
(2)

with NWt as total number of wave trains acting on the lines and, secondly, with the root
mean square error.

RMSE = 100·

√√√√ 1
NWt
·

NWt

∑
i=1

[
FP,Surrogate,i − FP,Line, i

FP,Surrogate,i

]2

(3)
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In addition, each force peak of the live lines is compared to the respective force peak
of the surrogate of the joint rest run. The data of the three test runs of the surrogate is
also compared, regarding the force peaks, using mean normal error (MNE) and root mean
square error (RMSE).

The time histories of summed force in x-direction is applied in the MOJS equation
of [50] to estimate drag and inertia coefficients of the mussel dropper lines. The MOJS
equation superimposes drag force, FD, and inertia force, FM, to a line force, F, in hori-
zontal direction on an object in surface waves, using horizontal particle velocity, u, and
acceleration, du/dt:

F(t, z) = FD(t, z) + FM(t, z) = CD·ρW ·
D
2
·u(t, z)·|u(t, z)|+ CM·ρW ·π·

D2

4
·du(t, z)

dt
(4)

where time is t, immersion depth is z, drag coefficient is CD, inertia coefficient is CM, water
density is ρW and object diameter is D. Integration of the line force, F(t,z), over the entire
immersion depth gives Ftot,t as approximated total force in x-direction on the object at time
step, t. The MOJS equation was already successfully used on live mussel lines in related
research activities [53,54,73]. Water density is set to 1000 kg/m3, the freshwater value.
As the equivalent diameter, Deq, object diameter, D, is used. Since water particle velocity
was not measured along the entire immersion depth of the dropper lines, the required
horizontal particle velocity u(t,z) and acceleration du(t,z)/dt is calculated with Stokes 3
Wave Theory, yielding the smallest mean square error for the measured velocities of the
ICMs. The theoretical maximum horizontal particle velocity umax at z = 0 m is additionally
used to determine the Keulegan–Carpenter number (KC, [74] of each single wave of each
wave train. The KC number is calculated as the ratio of drag force and inertia force,
as follows:

KC =
umax · T

Deq
(5)

with the individual wave period as T and the equivalent diameter of the dropper line as Deq.
Combinations of drag and inertia coefficients CD and CM are applied to the MOJS equation
to calculate theoretical line force, F, in the horizontal direction, on the mussel dropper line
for each single wave of each wave train [51]. The line forces over the whole immersion
depth are integrated to attain the approximated force, Fapp,t, for each time step. Total force
on the mussel lines is measured, so the most fitting combination of force coefficients CD
and CM can be estimated by minimizing the least square error, ε2, between measured force,
Fmeas,t, and MOJS approximated force, Fapp,t, with the function following function:

ε2(CD, CM) =
∫ T

0
|Fmeas,t|k·

[
Fmeas,t − Fapp,t(CD, CM)

]2dt (6)

where the weighting factor is k [51,54]. In this evaluation, k is set to zero, so that all
deviations are weighted equally [75]. The best fit of CD is depicted with corresponding
KC number. Since the least square error addresses the derivation over the whole time
history of one individual wave, additionally, the root mean square error RMSE (Equation
(3)) between the force peaks i of time histories Fmeas and Fapp is determined with the total
number of evaluated force peaks in N. Last, mean values, as well as standard deviation of
force coefficients, are calculated for the lie lines and the surrogate.

3. Results
3.1. Dropper Line Testing

The results of specimen analysis, that is weighting and measuring the ten nine-month-
old mussel dropper lines before wave testing, are summarized in Table 3. The density,
weight per meter and the ratio of the weight of the line to the weight of the clamps range
widely, while the mean diameter spans from 7.5 to 10.3 cm. The equivalent diameter, de-
pending on the individual volume, again ranges widely from 2.99 to 6.72 cm, whereas [54]
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determined a mean equivalent diameter of 10.31 cm for their more mature dropper lines
from the same shellfish farm in the Bay of Kiel. The equivalent parameters of the surrogate
are added in Table 3, to facilitate comparisons. Compared to lines 1 to 6, used in the
wave tests, the surrogate is only fifth in regard to total weight, but second regarding mean
and equivalent diameter. Overall, due to the biological variabilities, scattered results for
the force coefficients of the live mussel lines are expected, and less variance for the force
coefficients of the surrogate is expected.

Table 3. Results of the dropper line testing.

Line
No.

Density
(kg/m3)

Weight
(kg/m)

Total Weight with
Clamps (kg)

Ratio Weight Line
to Weight Clamps

Mean
Diameter (cm)

Std Diameter
(cm)

Equivalent
Diameter (cm)

1 2593.55 1.82 6.53 0.70 8.09 1.79 2.99
2 1757.76 1.87 6.63 0.68 8.80 2.33 3.69
3 2841.60 3.86 10.79 0.33 10.31 2.80 4.16
4 1389.37 2.89 8.76 0.44 9.44 1.56 5.14
5 1304.05 4.63 12.41 0.28 9.66 1.87 6.72
6 1241.59 3.62 10.30 0.35 9.13 1.86 6.09
7 1797.95 2.13 No wave test No wave test 8.36 1.33 3.99
8 363.58 0.85 No wave tests No wave tests 7.79 1.63 5.47
9 922.39 1.19 No wave tests No wave tests 7.52 1.67 4.05
10 509.21 1.02 No wave tests No wave tests 8.04 1.52 5.04

Sur. 1220.00 4.25 8.5, no clamps No clamps 10.30 - 6.62

During the experiments, drop-off of individual mussels and groups of mussels is
observed. Minor loss is observed after wave train 9, and strong loss is observed after
wave train 11. After wave train 13, approximately two-thirds of mussels are lost. A photo
documentation of the mussel drop-off process is depicted in Figure 6, with a sequential loss
with increasing experimental time. Exemplarily, four mussel dropper lines were weighted
after exposure to all wave trains. Minimum drop-off weight was 71.4% and maximum
88.1%, resulting in a mean weight loss of 67% for this small sample, throughout thirteen
wave trains with thirty waves. Since only equivalent diameter before testing could be
applied in the evaluation, an overestimation of the force coefficients might be present for
high KC numbers. The mussel drop-off is hypothesized to occur as the blue mussels may
have got into a state of stress through the increase of water temperature, external force
increase and freshwater conditions.
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3.2. Individual Mussel Attachment Strength

A set of 82 pull-off tests was successfully conducted. Figure 7 depicts a box plot for
each measurement in this sample set, as well as a histogram of attachment strength that
follows a Gaussian distribution. One outlier was found and is marked with a red cross.
Maximum adhesive force is 10.55 N, while minimum adhesive force is 0.48 N. The mean
of the measurements is 5.07 ± 2.26 N. References [76,77] suggest connecting attachment
strength with shell area, which was not measured in this work. Comparing the results with
mussels grown on polyester nets formed as tubes of the work of [66], the mean adhesive
force measured found in this work is higher. This is indicating a well-chosen substrate for
mussel farming for our live mussel dropper lines, as material is crucial for settlement [66].
The peak force of 15 N measured by [67] is reached by one mussel with 12.69 N, but is
declared as an outlier, and the sample quantity of [67] only contained one single test.

J. Mar. Sci. Eng. 2021, 9, 29 11 of 21 
 

 

 
Figure 6. Mussel drop-off for line 6, depicted from before the tests to after the last test, resulting in a loss of weight of 88.1%. 

3.2. Individual Mussel Attachment Strength 
A set of 82 pull-off tests was successfully conducted. Figure 7 depicts a box plot for 

each measurement in this sample set, as well as a histogram of attachment strength that 
follows a Gaussian distribution. One outlier was found and is marked with a red cross. 
Maximum adhesive force is 10.55 N, while minimum adhesive force is 0.48 N. The mean 
of the measurements is 5.07 ± 2.26 N. References [76,77] suggest connecting attachment 
strength with shell area, which was not measured in this work. Comparing the results 
with mussels grown on polyester nets formed as tubes of the work of [66], the mean ad-
hesive force measured found in this work is higher. This is indicating a well-chosen sub-
strate for mussel farming for our live mussel dropper lines, as material is crucial for set-
tlement [66]. The peak force of 15 N measured by [67] is reached by one mussel with 12.69 
N, but is declared as an outlier, and the sample quantity of [67] only contained one single 
test. 

 
Figure 7. (a) Box plot, outlier as red crosses, and (b) histogram and probability distribution for 
maximum attachment strength of individual mussels in a sample of 82 mussels. 

The evaluation of the camera recordings of the pull-off tests showed varying failure 
mechanisms. Three classes are suggested to cluster the observed failure mechanisms more 
methodologically: slow, instant and mixed fracture. Examples of equivalent measured 
force time histories are depicted in Figure 8. A slow failure mechanism is characterized as 
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maximum attachment strength of individual mussels in a sample of 82 mussels.

The evaluation of the camera recordings of the pull-off tests showed varying failure
mechanisms. Three classes are suggested to cluster the observed failure mechanisms more
methodologically: slow, instant and mixed fracture. Examples of equivalent measured force
time histories are depicted in Figure 8. A slow failure mechanism is characterized as slow
drop to zero after measured force is reaching its maximum, interpreted as the yield strength
of the byssus material. It is assumed that only single byssus threads or small groups thereof
tear at a time while the remaining, intact threads continue to withstand. In contrast to
that, an immediate force drop towards zero is defined as instant fracture. Presumably, all
threads tear quasi-simultaneously after reaching the maximum adhesion force by yielding.
In the depicted cases in Figure 8, measured force drops to zero within 0.5 s for the instant
failure and within 12 s for the slow break. The last class is a combination of the slow and
instant fracture, where either a fast force drop is followed by a slow decrease to zero or vice
versa. In the 82 pull-off tests, 39 slow, 26 instant and 17 mixed failures were observed. The
results of the camera recordings go in line with previous results of [65], who describes the
yielding of threads as the essential ability to recruit threads of different length for higher
attachment strength.
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failure of mussel attachment.

3.3. Properties of Mussel Individuals

A sample of 102 single mussels was used for determining mussel properties. The mean
values for the nine-month-old juvenile mussels correspond to a mean single mussel length
of 3.04 ± 0.36 cm, a mean height of 1.69 ± 0.16 cm and a mean width of 1.25 ± 0.18 cm.
In more detail, Figure 9 depicts a box plot for each measured single mussel parameter
in this sample. Outliers are marked with red crosses. Individual mussel length has the
highest sample standard deviation, which is approximately double the values for height
and width. Comparing the results to the literature, we see that the mean mussel parameters
are lower than the values of [70], with mussels at the age of twelve years off the Baltic Sea
at 4 m depth, but fit into the range of [71], who characterized dimensions of mussels at
the age of five to ten years, off the East Yorkshire Coast. Although these indications from
the literature refer to samples four-to-nine-years older, the wave impact at their settlement
location, a rocky shore, could be the reason for slower growth [77], whereas the Bay of Kiel
had favorable conditions, with open water and fairly little wave-energy exposure. A good
comparison is the sixteen-month-old mussels in the tests of [66], off the Jade estuary, that
were seven months older and a few decimeters longer, higher and wider, indicating similar
growing conditions. The mussels grown on the dropper lines from the same farm in Kiel
are found to be slightly larger and wider [54]; therefore, they are older, assuming that the
farming site was chosen due to constant growing conditions.
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3.4. Force Time Histories

Example force time histories of wave-induced forces in x-direction on the dropper
lines tested in the Large Wave Flume are displayed in Figure 10 for wave trains 2, 5, 9
and 12. Provisional visual inspection of the data and evaluation allows firstly to state
that similar forms of time histories are observed for all lines and all wave trains. For
smaller wave trains, the surrogate shows higher force peaks than all live lines. Starting
with wave train 4, the surrogate underestimates the force peaks of the live lines. Generally,
the dynamics of the immersed shellfish dropper lines remain constant throughout the
experimental conditions tested.
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Force peaks of each individual wave (wave-per-wave maxima) are determined and
used to evaluate the force response of the surrogate, as compared to the live dropper lines.
The MNE (Equation (2)) between the mean force peaks of all wave trains of the live lines
and of the surrogate from the same experimental runs is highest for line 6, with 53.15%,
and lowest for line 2, with 11.97%. The RMSE (Equation (3)) is also highest for line 6, with
87.48%, and lowest for line 2, with 28.86%. The highest deviation between individual force
peaks is 182.28% for line 6 at wave 9 of wave train 8; the lowest deviation is 0.04% for line
5 at wave 9 of wave train 4. This evaluation of force extrema shows a considerable scatter
of the data, since the interaction of wave-induced flows and the ultra-rough surfaces of
the shellfish dropper lines is a combined process of turbulence and most likely nonlinear
material behavior. Wave-to-wave processes, i.e., out of phase response of the dropper lines,
may also contribute to the scatter in MNE and RMSE, and, thus, an averaging approach
seems appropriate to summarize and report the relevant forces found in this work. The
averaged force peaks of all live lines and all experimental runs of the surrogate, as well
as descriptive statistics parameter, are listed in Table 4. Here, starting with wave train 6,
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the surrogate underestimates the averaged force peaks of the live lines. The MNE sinks to
22.58% and the RMSE to 48.69% after the averaging approach. Maximum values, as well as
standard deviation, are significantly higher for the live lines for higher wave trains.

Table 4. Force peaks of total force in x-direction averaged over all live lines and over all runs of the surrogate.

Wave Train
Live Lines Surrogate

No. of
Waves Fmax (N) Mean Fmax

(N)
Std Fmax

(m)
No. of
Waves Fmax (N) Mean Fmax

(m)
Std Fmax

(N)

1 168 7.39 4.70 1.33 84 17.28 9.23 3.39
2 168 9.44 5.86 1.79 84 12.97 10.00 0.98
3 138 29.79 17.83 4.58 69 34.72 23.89 3.87
4 108 34.09 18.56 5.12 54 28.07 22.04 3.42
5 90 36.75 18.61 4.82 45 30.70 20.29 3.84
6 78 83.11 52.42 11.76 39 56.63 42.33 7.17
7 66 80.26 56.43 12.66 33 53.32 40.40 7.71
8 60 83.82 60.66 11.51 30 47.56 36.57 7.06
9 48 136.68 104.73 17.52 24 70.12 58.19 6.58
10 48 135.13 103.83 19.36 24 75.61 63.12 7.52
11 43 162.79 124.04 24.47 31 94.25 77.25 7.63
12 36 245.47 207.51 34.24 18 147.68 133.15 7.91
13 36 244.23 190.11 32.85 18 146.83 132.65 8.62

3.5. Force Coefficients

All computed drag coefficients of the nine-month-old live lines over KC number are
depicted in Figure 11, as derived from the wave-per-wave analysis and all experimental
runs that were conducted. As expected, values for the live dropper lines scatter over a
range of CD values, and this is mostly attributed to biological irregularities. The values for
the surrogate model are generally lower and scatter less. Over the whole KC range from 10
to 380, the mean drag coefficient for the live dropper lines is found to be CD = 3.9 ± 2.2,
and for the surrogate, CD = 3.4 ± 2.1.
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The mean RMSE (Equation (3)) of the measured and MOJS approximated force peaks,
using the experimentally determined drag coefficients, are listed exemplarily for line 3
and the surrogate in Table 5. RMSE decreases from wave train 1 to wave train 13 for all
lines; RMSE of force peaks of wave train 1 is 3.1 to 9.5 times higher than the RMSE of force
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peaks due to wave train 13. Examples of the force time history of the smallest and highest
wave trains in these experiments are depicted for the dropper line 3 in Figure 12. RMSE for
the force peaks of wave train 1 is 85.7% and 13% for wave train 13. There is no significant
difference between mean RMSE of the live mussel dropper lines and the surrogate with
33.3% and 24.6%, respectively.

Table 5. Mean root mean square error (RMSE) of measured and MOJS approximated force peaks of total force in x-direction
for Line 3 and surrogate for all wave trains.

Wave Train 1 2 3 4 5 6 7 8 9 10 11 12 13 Mean

Line 3 RMSE (%) 85.7 70.7 35.7 20.6 11.6 13.7 16.2 14.4 12.4 8.1 18.3 18.5 13.0 26.1

Surrogate RMSE (%) 66.8 25.3 32.0 32.4 32.5 30.5 28.2 21.5 8.3 9.6 12.9 11.6 8.2 24.6
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The experimentally determined drag coefficients are next compared to the drag coeffi-
cients of rough cylinders in waves [78], overgrown cylinders in oscillating flow [79], both
with relative roughness k/D = 0.02, and the surrogate in smaller waves [53] (Figure 13). The
drag coefficients of rough and overgrown piles are comparable to the coefficients of the
surrogate for KC numbers between 25 and 60, where mean drag coefficient of the surrogate
is 2.4 ± 0.3. The drag coefficients of live lines and the surrogate of [53] were extended in
this work above KC numbers greater than 10. Mean drag coefficients of the surrogate for
KC numbers below 10 are very well comparable to the coefficients in the KC range from
25 to 380 of this work, with 2.4 and 2.6, respectively, whereas the mean drag coefficient
of the live lines is significantly higher for higher KC ranges. One similarity of all datasets
seems to be decreasing scatter with increasing KC number, whereas scatter is highest for
the live mussel lines and smallest for the overgrown piles. As the live dropper lines and the
surrogate model used in this work have considerably higher h/D values, it seems clear that
these ultra-rough surfaces yield larger forces, indicated by the increase in CD-values. While
for closed cylinder surfaces with some surface roughness, the flow around these cylinders
will be governed by the overall circular circumference, for the naturally rough surfaces
much more interaction, turbulence production and pressure gradients within the vicinity
of the structure will occur; this is overall indicated by the increase force that was observed.
Future research will have to provide a better picture of the specific hydrodynamic flow
field close to these ultra-rough surfaces that was previously unaddressed in the literature.
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4. Discussion

This work aimed at the quantification of drag coefficients of live bivalve-encrusted
dropper lines in waves in large, near full-scale experiments, as well as at the comparison of
their force response to a surrogate specimen. As a result of the nature of the live dropper
lines, a relative motion, a deflection in the horizontal direction, of the dropper line was
observed. This was the inevitable result of the delicate clamping mechanism used to
hold the dropper lines in place, and the difficulty to apply vertical pretension, as a too-
large pretension would have resulted in excessive mussel drop-off. Due to that relative
horizontal motion of the dropper lines, further enhancement of the evaluation method
is required for a more precise estimation of drag coefficients, but more importantly of
inertia coefficients, CM [51,52], which will be presented in an upcoming publication. As the
relative motion, and thus relative velocity of the fluid field driving the force response is
decreased through the elastic behavior of the dropper lines, differences in force coefficients,
as well as measured force peaks, are expected; however, the determination of the maximum
deflection amplitude was not determined as optical access in the Large Wave Flume and is
greatly reduced through suspended sediments.

Drag coefficients of all nine-month-old live lines show high scatter in low KC range,
additionally underlined by high RMSE (Equation (3)) of force peaks of measured and
approximated force. This is connected to the relative motion of the lines and the resulting
phase shift between water-level elevation and force in x-direction. The phase-shift decreases
with increasing KC number since fast waves (high KC number) accelerate the lines faster to
the maximum point of deflection than slow waves (low KC number), leading to decreasing
RMSE. Since the drag force is also more dominant at higher KC numbers, experimentally
determined drag coefficients for low KC numbers are suggested to be used carefully only,
bearing in mind how these were obtained. Drag coefficients of higher KC numbers show the
expected scatter due to biological variabilities, stated in high ranges of density, weight per
meter and diameter, from live line to live line, but also along an individual line itself. The
most decisive factor for the wide scatter could be varying weight in-between the live lines
sample, since weight is not included in the MOJS equation, which is assuming rigid objects
in waves. As describes above, in these large scale experiments, the mussel lines are flexible
and thereof accelerated to a maximum point of deflection in each wave, where measured
force results from mass times acceleration. Since acceleration is dependent on drag and is
not measured in these experiments, in this publication, no precise description can be given
for the correlation of weight of live lines and their estimate drag coefficients. However,
one indication might be the very similar drag coefficients of lines 5 and 6 with similar
weight, but also similar equivalent diameter. Future tests could ensure higher stiffness by
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shortening of the wire ropes between lines and test rack or inserting metal rods into the
line before growing mussels, to exclude mass as a factor. The effect of higher stiffness can
be seen at the results of live lines and the surrogate of [53], where less scatter occurs for the
drag coefficients of the live lines. However, the tests presented in this work highlight many
of the effects dropper lines would also experience in natural conditions, and, thus, they
provide a first insight into the dynamics relevant for future design approaches.

Lines 5 and 6 also show the lowest values of drag coefficients, which might be a result
of highest equivalent diameter, as [53] describe small changes in that parameter as trigger
for large changes in the values of force coefficients. Instead, [53] suggest to use a mean
diameter in the force coefficient evaluation, which would lead to a decrease of all drag
coefficients of live lines in this work. Moreover, important to consider is the effect of mussel
drop-off, meaning decreased volume and diameter, which could not be considered in the
evaluation. Hence, at high KC numbers, the drag coefficients are potentially overestimated,
posing economic questions in a design process due to overestimation of the forces. Volume
and diameter determination after each wave train in future tests allows for adaptation of
the equivalent diameter and avoiding overestimation of the drag coefficient.

The surrogate shows less scatter and lower values for measured force peaks and drag
coefficients than the individual live lines, both underlining the previous assumptions of
mass and distribution effects of live dropper lines. Although the surrogate was created by
imitating the surface of live mussel lines, it has higher stiffness and a regular shape with
lower roughness, whereas live dropper lines are ultra-rough due to soft, flexible growth, as
algae, anemones, seaweed and sponges, therefore inducing higher drag forces [80]. That
high roughness affects the surrounding flow regime as vortex shedding, the interaction of
vortices, the separation angle, the turbulence level and the vortex strength [81,82]. This
argumentation is supported by similar behavior of drag coefficients for live lines and the
surrogate in smaller waves [53], as well as the comparison of the estimated drag coefficients
of live mussel dropper lines to rough [78] and overgrown [79] cylinders, also covered with
lower roughness and without soft, flexible growth. In the given KC range, drag coefficients
of the mussel lines are significantly higher than of rough or overgrown cylinder, whereas
the best comparability is given by the surrogate. For the sake of completeness, it should be
also mentioned that [73] found no influence on drag by mussel feeding; however, feeding is
excluded here, since the tests were conducted with saltwater mussels in a freshwater flume.

Last, results for attachment strength, as well as individual mussel length, width and
height, are in good agreement with the literature. However, for future work, a horizontal
setup is suggested to minimize weakening of the mussel threads during assembly, as in [66].
Regarding future experiments with live mussel dropper lines, mussel drop-off could not
only be quantified to determine actual equivalent or mean diameter for the estimation of
force coefficients, but also set into context to adhesive forces.

5. Conclusions

Measurements in the Large Wave Flume in Hannover of forces on live blue mussel
dropper lines and their surrogate, as well as of wave hydrodynamics, were combined
to determine corresponding drag coefficients and to evaluate the comparability of their
surrogate. In addition, maximum adhesive forces of individual mussels, including measure-
ments of length, width and height, were determined. A mean drag coefficient is estimated
to be CD = 3.9 for nine-months-old live blue mussel dropper lines and CD = 3.4 for their sur-
rogate, valid for KC numbers 10 to 380. Lower measured force and lower drag coefficients
of the surrogate are a result of lower roughness. The range for drag coefficients for six live
lines scatters widely due to biological irregularities. Overestimation of the drag coefficients
for high KC numbers has to be considered due to mussel drop-off during the experiments.
Measured force time histories are well comparable between live lines and the surrogate.
Overall, this work shows a surrogate well able to mimic the dynamic response of live blue
mussel dropper lines to equivalent waves. Hence, it can be recommended for application
in future experiments and in the absence of live specimens for testing line mussel farming.
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The maximum adhesive force of a single mussel was determined to be 10.55 N with a mean
of 5.07 N in a sample of 82 pull-off tests. The mean mussel was determined to be 3.04
cm long, 1.69 cm high and 1.25 cm wide in a sample of 102 mussels. The results of this
work offer knowledge to improve design tools for offshore aquaculture structures and to
facilitate the ultimate goal to sustainably nourish a growing world population.
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