Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics
Abstract
:1. Introduction
2. Methods and Data
2.1. Sets of Morphological Data
- The Sand Engine surveys [20] are collected during the Sand Engine project. Measurements in the Sand Engine domain (Figure 2b, blue area) are performed from August 2011 to September 2016 on a monthly time scale for the first year and approximately bi-monthly thereafter. The Sand Engine is surveyed in cross-shore transects with an approximate 40 m alongshore spacing. These transects reach from the dunefoot (around +5 m NAP) to the −8 m NAP depth contour offshore. Half of the transects reach further offshore all the way to the −11 m NAP contour. The surveyed area covers approximately 4.7 km alongshore and 1.6 km cross-shore.
- The Nemo surveys [21] are collected in the Nearshore Monitoring and Modelling: Inter-scale Coastal Behavior (Nemo) research programme. These data cover the remaining alongshore area of the Delfland coastal cell, both to the north and the south of the Sand Engine measurement domain (Figure 2b, yellow area). The first survey was performed in February 2012, and from March 2013, surveys are performed bi-monthly in conjunction with the Sand Engine surveys (Figure 3). Nemo surveys are surveyed in cross-shore transects with a 25 m spacing alongshore. The transects are shorter than around the Sand Engine, with a landward boundary at the dunefoot (+5 m NAP). The offshore boundary is situated round the −5 m NAP isobath in the southern part and −6 m NAP in the northern part. The surveyed areas cover 7.7 km (south) and 5 km (north) alongshore and about 600 m cross-shore. In this way the bulk of the littoral zone is covered in the measurements.
- The jarkus surveys [22] are part of the Dutch yearly coastal monitoring program (in Dutch: JAaRlijkse KUStmeting). The data cover the Delfland coast with an alongshore resolution of 250 m, from the land side of the dunes to approximately the −12 m NAP isobath. The jarkus surveys further cover the entire Dutch coast from the back of the dunes to at least 800 m offshore since 1965, e.g., [11,24].
2.2. Volumetric Analysis
2.3. Wave Data and Transformation
3. Results
3.1. General Observations of Five Years of Sand Engine Development
3.2. Volumetric Changes to the Nourishment and Adjacent Coastal Sections
3.3. Sediment Spreading at Different Depths
3.4. Development of Cross-Shore Profile Shape
3.5. Depth of Closure
3.6. Cross- and Alongshore Response to Changing Forcing Conditions
4. Discussion
4.1. Differences in Behaviour in the First Year Compared to Following Years
4.2. Detection of Planform Parameters
4.3. Cross- and Alongshore Response to Changing Forcing Conditions
4.4. Efficiency of Nourishments
4.5. Considerations for Future Designs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamm, L.; Capobianco, M.; Dette, H.; Lechuga, A.; Spanhoff, R.; Stive, M. A summary of European experience with shore nourishment. Coast. Eng. 2002, 47, 237–264. [Google Scholar] [CrossRef]
- Stive, M.J.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.; van Gelder-Maas, C.; van Thiel de Vries, J.S.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A new alternative to saving our beaches from sea-level rise: The sand engine. J. Coast. Res. 2013, 29, 1001–1008. [Google Scholar] [CrossRef]
- Verhagen, H. Analysis of beach nourishment schemes. J. Coast. Res. 1996, 12, 179–185. [Google Scholar]
- Pilkey, O.H. The Fox Guarding the Hen House. J. Coast. Res. 1995, 11, iii–v. [Google Scholar]
- Hoekstra, P.; Houwman, K.; Kroon, A.; Ruessink, B.; Roelvink, J.; Spanhoff, R. Morphological Development of the Terschelling Shoreface Nourishment in Response to Hydrodynamic and Sediment Transport Processes. In Proceedings of the 25th International Conference, American Society of Civil Engineers, Coastal Engineering 1996, Orlando, FL, USA, 2–6 September 1996; pp. 2897–2910. [Google Scholar] [CrossRef]
- Grunnet, N.M.; Ruessink, B. Morphodynamic response of nearshore bars to a shoreface nourishment. Coast. Eng. 2005, 52, 119–137. [Google Scholar] [CrossRef]
- Van Duin, M.; Wiersma, N.; Walstra, D.; Van Rijn, L.; Stive, M. Nourishing the shoreface: Observations and hindcasting of the Egmond case, The Netherlands. Coast. Eng. 2004, 51, 813–837. [Google Scholar] [CrossRef]
- Ojeda, E.; Ruessink, B.; Guillen, J. Morphodynamic response of a two-barred beach to a shoreface nourishment. Coast. Eng. 2008, 55, 1185–1196. [Google Scholar] [CrossRef]
- Elko, N.A.; Wang, P. Immediate profile and planform evolution of a beach nourishment project with hurricane influences. Coast. Eng. 2007, 54, 49–66. [Google Scholar] [CrossRef]
- Ludka, B.C.; Guza, R.T.; O’Reilly, W.C. Nourishment evolution and impacts at four southern California beaches: A sand volume analysis. Coast. Eng. 2018, 136, 96–105. [Google Scholar] [CrossRef]
- Southgate, H.N. Data-based yearly forecasting of beach volumes along the Dutch North Sea coast. Coast. Eng. 2011, 58, 749–760. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment transport and budget of the central coastal zone of Holland. Coast. Eng. 1997, 32, 61–90. [Google Scholar] [CrossRef]
- Wijnberg, K.M.; Terwindt, J.H. Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Mar. Geol. 1995, 126, 301–330. [Google Scholar] [CrossRef]
- Verkeer & Waterstaat. Kustverdediging na 1990: Beleidskeuze voor de Kustlijnzorg (Coastal Defense after 1990: Policy for the Coastline Preservation); Technical Report; Ministerie van Verkeer en Waterstaat: The Hague, The Netherlands, 1990. (In Dutch) [Google Scholar]
- De Schipper, M.A.; De Vries, S.; Ruessink, B.G.; De Zeeuw, R.C.; Rutten, J.; Van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Hoonhout, B.; de Vries, S. Aeolian sediment supply at a mega nourishment. Coast. Eng. 2017, 123, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Tonnon, P.K.; Van der Werf, J.; Mulder, J. Achtergronddocument Morfologische Berekeningen MER Zandmotor; Part of the Environmental Impact Assessment of the Sand Engine; Technical Report; Deltares: Delft, The Netherlands, 2009. (In Dutch) [Google Scholar]
- Fiselier, J.; Hilders, M.; Sokolewicz, M.; Frederikse, H.; Ter Hoeve, J.; Henrotte, J.; Smit, A.; Baijens, I.; Mulder, S.; Ebbens, E.; et al. Projectnota/MER, Aanleg en Zandwinning Zandmotor Delflandse Kust; Part of the Environmental Impact Assessment of the Sand Engine; Main Report; DHV BV: Amersfoort, The Netherlands, 2010. (In Dutch) [Google Scholar]
- Hinton, C.L.; Nicholls, R.J. Spatial and temportal behavior of depth of closure along the Holland coast. Coast. Eng. Proc. 1998, 1, 2913–2925. [Google Scholar] [CrossRef]
- De Zeeuw, R.C.; De Schipper, M.A.; de Vries, S. Sand Motor Topographic Survey, Actual Surveyed Path [Data Set]; TU Delft: Delft, The Netherlands, 2016. [Google Scholar] [CrossRef]
- De Zeeuw, R.C.; De Schipper, M.A.; de Vries, S. NeMo Morphology Data Survey Path Delfland 2012–2016 [Data Set]; TU Delft: Delft, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Rijkswaterstaat. Annual Cross-Shore Transect Bathymetry Measurements along the Dutch Coast Since 1965 [Data Set]. 2016. Available online: https://opendap.deltares.nl/thredds/catalog/opendap/rijkswaterstaat/jarkus/profiles/catalog.html (accessed on 1 November 2017).
- Roest, L.W.M.; De Schipper, M.A.; De Vries, S.; De Zeeuw, R. Combined Morphology Surveys Delfland 2011–2016 [Data Set]; TU Delft: Delft, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Knoester, D. De Morfologie van de Hollandse Kustzone (Analyse van Het Jarkusbestand 1964–1986); Technical Report; Rijkswaterstaat, RIKZ (Dienst Getijdewateren): Delft, The Netherlands, 1990. [Google Scholar]
- Van Son, S.; Lindenbergh, R.; De Schipper, M.; De Vries, S.; Duijnmayer, K. Using a personal watercraft for monitoring bathymetric changes at storm scale. In Proceedings of the Hydro9 Conference, Cape Town, South Africa, 10–12 November 2009. [Google Scholar]
- Wiegman, N.; Perluka, R.; Boogaard, K. Onderzoek Naar Efficiency Verbetering Kustlodingen; AGI/110105/GAM010; Technical Report; Rijkswaterstaat, RIKZ: Delft, The Netherlands, 2002. (In Dutch) [Google Scholar]
- Wijnberg, K.M. Environmental controls on decadal morphologic behaviour of the Holland coast. Mar. Geol. 2002, 189, 227–247. [Google Scholar] [CrossRef]
- De Fockert, A.; Luijendijk, A. Memo on Technical Background: Wave Look-Up Table; Wave Look-Up Table for the Dutch Coast, Documentation and Validation; Technical Report; Deltares: Delft, The Netherlands, 2011. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.K.; Dean, R.G. Shoreline variability via empirical orthogonal function analysis: Part II relationship to nearshore conditions. Coast. Eng. 2007, 54, 133–150. [Google Scholar] [CrossRef]
- Gourlay, M.; Van der Meulen, T. Beach and Dune Erosion Tests (I); Technical Report M 935/M 936; Waterloopkundig Laboratorium: De Voorst, The Netherlands, 1968. [Google Scholar]
- Dean, R.G. Heuristic models of sand transport in the surf zone. In Proceedings of the First Australian Conference on Coastal Engineering, 1973: Engineering Dynamics of the Coastal Zone, Sydney, Australia, 14–17 May 1973; Institution of Engineers: Barton, Australia, 1973; pp. 215–221. [Google Scholar]
- Luijendijk, A.P.; Ranasinghe, R.; De Schipper, M.A.; Huisman, B.A.; Swinkels, C.M.; Walstra, D.J.; Stive, M.J. The initial morphological response of the Sand Engine: A process-based modelling study. Coast. Eng. 2017, 119, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Huisman, B.; De Schipper, M.; Ruessink, B. Sediment sorting at the Sand Motor at storm and annual time scales. Mar. Geol. 2016, 381, 209–226. [Google Scholar] [CrossRef]
- Radermacher, M.; de Schipper, M.A.; Swinkels, C.; MacMahan, J.H.; Reniers, A.J. Tidal flow separation at protruding beach nourishments. J. Geophys. Res. Ocean. 2017, 122, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Hallermeier, R. Uses for a calculated limit depth to beach erosion. Coast. Eng. Proc. 1978, 1. [Google Scholar] [CrossRef]
- De Schipper, M.A.; De Vries, S.; Mil-Homens, J.; Reniers, A.; Ranasinghe, R.; Stive, M. Initial volume losses at nourished beaches and the effect of surfzone slope. In The Proceedings of the Coastal Sediments 2015; World Scientific: Singapore, 2015. [Google Scholar] [CrossRef]
- Arriaga, J.; Rutten, J.; Ribas, F.; Falqués, A.; Ruessink, G. Modeling the long-term diffusion and feeding capability of a mega-nourishment. Coast. Eng. 2017, 121, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dean, R.G. Beach Nourishment: Theory and Practice; Advanced series on ocean engineering; World Scientific: River Edge, NJ, USA, 2002; Volume 18. [Google Scholar]
- Wittebrood, M.; de Vries, S.; Goessen, P.; Aarninkhof, S. Aeolian sediment transport at a man-made dune system; building with nature at the Hondsbossche dunes. Coast. Eng. Proc. 2018, 1, 83. [Google Scholar] [CrossRef]
Dataset | Alongshore Extent (km) | Alongshore Spacing (m) | Cross-Shore Spacing (m) | Temporal Spacing (Months) | Number of Surveys (-) |
---|---|---|---|---|---|
jarkus | 17.3 | 250 | 5 | 12 | 5 |
Sand Engine | 4.7 | 40 | 5 | 1–2 | 37 |
Nemo | 7.7 + 4.9 | 25 | 5 | 2–3 | 21 |
Gross Volume Change | Net Volume Change | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Min | Mean | Max | Rms | Min | Mean | Max | Rms |
Hs | 0.13 | 0.70 | 0.69 | 0.72 | −0.65 | −0.74 | −0.68 | |
Tp | 0.51 | 0.57 | 0.55 | −0.54 | −0.47 | |||
P | 0.64 | 0.68 | 0.63 | −0.59 | −0.74 | −0.61 | ||
Pcs | −0.54 | 0.59 | 0.69 | 0.58 | 0.59 | −0.56 | −0.77 | −0.59 |
Pls | −0.78 | −0.61 | 0.37 | 0.76 | 0.75 | 0.52 | −0.51 | −0.65 |
|Pls| | 0.74 | 0.76 | 0.76 | −0.63 | −0.75 | −0.65 | ||
0.69 | 0.73 | 0.72 | −0.65 | −0.61 | −0.69 | |||
Frsurf | −0.72 | 0.72 | ||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roest, B.; de Vries, S.; de Schipper, M.; Aarninkhof, S. Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics. J. Mar. Sci. Eng. 2021, 9, 37. https://doi.org/10.3390/jmse9010037
Roest B, de Vries S, de Schipper M, Aarninkhof S. Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics. Journal of Marine Science and Engineering. 2021; 9(1):37. https://doi.org/10.3390/jmse9010037
Chicago/Turabian StyleRoest, Bart, Sierd de Vries, Matthieu de Schipper, and Stefan Aarninkhof. 2021. "Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics" Journal of Marine Science and Engineering 9, no. 1: 37. https://doi.org/10.3390/jmse9010037
APA StyleRoest, B., de Vries, S., de Schipper, M., & Aarninkhof, S. (2021). Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics. Journal of Marine Science and Engineering, 9(1), 37. https://doi.org/10.3390/jmse9010037