Cross-Shore Profile Evolution after an Extreme Erosion Event—Palanga, Lithuania
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aagaard, T.; Hughes, M.G. Equilibrium shoreface profiles: A sediment transport approach. Mar. Geol. 2017, 390, 321–330. [Google Scholar] [CrossRef]
- Baldock, T.E.; Birrien, F.; Atkinson, A.; Shimamoto, T.; Wu, S.; Callaghan, D.P.; Nielsen, P. Morphological hysteresis in the evolution of beach profiles under sequences of wave climates—Part 1; observations. Coast. Eng. 2017, 128, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Arcilla, A.; Caceres, I. An analysis of nearshore profile and bar development under large scale erosive and accretive waves. J. Hydraul. Res. 2017, 56, 231–244. [Google Scholar] [CrossRef]
- Baldock, T.E.; Alsina, J.A.; Caceres, I.; Vicinanza, D.; Contestabile, P.; Power, H.; Sanchez-Arcilla, A. Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coast. Eng. 2011, 58, 214–227. [Google Scholar] [CrossRef]
- Baldock, T.E.; Manoonvoravong, P.; Pham, K.S. Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups. Coast. Eng. 2010, 57, 898–916. [Google Scholar] [CrossRef]
- Beuzen, T.; Turner, I.L.; Blenkinsopp, C.E.; Atkinson, A.; Flocard, F.; Baldock, T.E. Physical model study of beach profile evolution by sea level rise in the presence of seawalls. Coast. Eng. 2018, 136, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.; Masselink, G.; O’Hare, T.; Russell, P. Onshore sediment transport on a sandy beach under varied wave conditions: Flow velocity skewness, wave asymmetry or bed ventilation? Mar. Geol. 2009, 259, 86–101. [Google Scholar] [CrossRef]
- Kobayashi, N.; Zhu, T.; Mallavarapu, S. Equilibrium beach profile with net cross-shore sand transport. J. Waterw. Port Coast. Ocean Eng. 2018, 144. [Google Scholar] [CrossRef] [Green Version]
- Patterson, D.C.; Nielsen, P. Depth, bed slope and wave climate dependence of long term average sand transport across the lower shoreface. Coast. Eng. 2016, 117, 113–125. [Google Scholar] [CrossRef]
- Roelvink, J.A.; Stive, M.F.J. Bar-generating cross-shore flow mechanisms on a beach. J. Geophys. Res. 1989, 94, 4785–4800. [Google Scholar] [CrossRef]
- Žaromskis, R. Impact of different hydrometeorological condition on Palanga shore zone relief. Geografija 2005, 41, 17–24. [Google Scholar]
- Bagdanavičiūtė, I.; Kelpšaitė, L.; Daunys, D. Assessment of shoreline changes along the Lithuanian Baltic Sea coast during the period 1947–2010. Baltica 2012, 25, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Soomere, T.; Viška, M. Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J. Mar. Syst. 2014, 129, 96–105. [Google Scholar] [CrossRef]
- Knaps, R. Sediment transport in the coastal area of the Eastern Baltic. In Development of Marine Coasts within the Conditions of Fluctuation Movements of the Earth Crust; Valgus: Tallinn, Estonia, 1966. [Google Scholar]
- Viška, M. Sediment Transport Patterns along the Eastern Coasts of the Baltic Sea; Tallin University of Technology: Tallinn, Estonia, 2014. [Google Scholar]
- Žaromskis, R.; Gulbinskas, S. Main patterns of coastal zone development of the Curonian Spit, Lithuania. Baltica 2010, 23, 146–156. [Google Scholar]
- Lapinskis, J. Coastal sediment balance in the eastern part of the Gulf of Riga (2005–2016). Baltica 2017, 30, 87–95. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Kelpšaitė-Rimkienė, L.; Galinienė, J.; Soomere, T. Index based multi-criteria approach to coastal risk assesment. J. Coast. Conserv. 2018. [Google Scholar] [CrossRef]
- Eberhards, G.; Grine, I.; Lapinskis, J.; Purgalis, I.; Saltupe, B.; Toklere, A. Changes in Latvia’s seacoast (1935–2007). Baltica 2009, 22, 12. [Google Scholar]
- Bagdanavičiūtė, I.; Kelpšaitė, L.; Soomere, T. Multi-criteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast. Manag. 2015, 104, 124–135. [Google Scholar] [CrossRef]
- Eberhards, G.; Lapinskis, J. Processes on the Latvian coast of the Baltic Sea. In Atlas; University of Latvia: Riga, Latvia, 2008; p. 64. [Google Scholar]
- Bagdanavičiutė, I.; Kelpšaitė, L.; Daunys, D. Long term shoreline changes of the Lithuanian Baltic Sea continental coast. In Proceedings of the 2012 IEEE/OES Baltic International Symposium (BALTIC), Klaipeda, Lithuania, 8–10 May 2012; pp. 1–6. [Google Scholar]
- Łabuz, T.A.; Grunewald, R.; Bobykina, V.; Chubarenko, B.; Česnulevičius, A.; Bautrėnas, A.; Morkūnaitė, R.; Tonisson, H. Coastal dunes of the Baltic Sea shores: A review. Quaest. Geogr. 2018, 37, 47–71. [Google Scholar] [CrossRef] [Green Version]
- Povilanskas, R.; Riepšas, E.; Armaitienė, A.; Dučinskas, K.; Taminskas, J. Shifting Dune Typesof the Curonian Spit and Factors of Their Development. Baltic For. 2011, 17, 215–226. [Google Scholar]
- Urboniene, R.; Kelpšaite, L.; Borisenko, I. Vegetation impact on the dune stability and formation on the Lithuanian coast of the Baltic sea. J. Environ. Eng. Landsc. Manag. 2015, 23, 230–239. [Google Scholar] [CrossRef]
- Kelpšaitė, L.; Dailidienė, I. Influence of wind wave climate change to the coastal processes in the eastern part of the Baltic Proper. J. Coast. Res. 2011, 64, 220–224. [Google Scholar]
- Soomere, T.; Räämet, A. Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 2011, 53, 335–371. [Google Scholar] [CrossRef] [Green Version]
- Pindsoo, K.; Soomere, T.; Zujev, M. Decadal and long-term variations in the wave climate at the Latvian coast of the Baltic Proper. In Proceedings of the Ocean: Past, Present and Future—2012 IEEE/OES Baltic International Symposium, BALTIC 2012, Klaipėda, Lithuania, 8–11 May 2012. [Google Scholar]
- Suursaar, Ü.; Kullas, T. Decadal variations in waveheights off Cape Kelba, Saaremaa Island, andtheir relationships withchanges in wind climate. Oceanologia 2009, 51, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Povilanskas, R.; Armaitienė, A. Seaside resort-hinterland Nexus: Palanga, Lithuania. Ann. Tour. Res. 2011, 38, 1156–1177. [Google Scholar] [CrossRef]
- Dubra, V. Influence of hydrotechnical structures on the dynamics of sandy shores: The case of Palanga on the Baltic coast. Baltica 2006, 19, 3–9. [Google Scholar]
- Jarmalavičius, D. Sea Coast Dynamics Next to the Palanga in Last Century. Available online: https://www.lrt.lt/naujienos/tavo-lrt/15/47235/d-jarmalavicius-juros-kranto-ties-palanga-kaita-per-paskutini-simtmeti-radijo-paskaita (accessed on 29 November 2019).
- Jarmalavicius, D.; Šmatas, V.; Stankunavicius, G.; Pupienis, D.; Žilinskas, G. Factors controlling coastal erosion during storm events. J. Coast. Res. 2016, 1, 1112–1116. [Google Scholar] [CrossRef]
- Jarmalavičius, D.; Satkunas, J.; Žilinskas, G.; Pupienis, D. Dynamics of beaches of the Lithuanian coast (the Baltic Sea) for the period 1993-2008 based on morphometric indicators. Environ. Earth Sci. 2012, 65, 1727–1736. [Google Scholar] [CrossRef]
- Ulbrich, U.; Fink, A.H.; Klawa, M.; Pinto, J.G. Three extreme storms over Europe in December 1999. Weather 2001, S56, 10. [Google Scholar] [CrossRef] [Green Version]
- Mäll, M.; Suursaar, Ü.; Nakamura, R.; Shibayama, T. Modelling a storm surge under future climate scenarios: Case study of extratropical cyclone Gudrun (2005). Nat. Hazards 2017, 89, 1119–1144. [Google Scholar] [CrossRef]
- Fink, A.H.; Brücher, T.; Ermert, V.; Krüger, A.; Pinto, J.G. The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci. 2007, 9, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Orviku, K.; Suursaar, Ü.; Tonisson, H.; Kullas, T.; Rivis, R.; Kont, A. Coastal changes in Saaremaa Island, Estonia, caused by winter storms in 1999, 2001, 2005 and 2007. J. Coast. Res. 2007, II, 1651–1655. [Google Scholar]
- Žilinskas, G. Distinguishing priority sectors for the Lithuanian Baltic Sea coastal management. Baltica 2008, 21, 85–94. [Google Scholar]
- Stankevičius, A. Conditions of the Baltic Sea environment; JTD, A., Ed.; AAA JTD: Vilnius, Lithuania, 2013. [Google Scholar]
- Žilinskas, G.; Pupienis, D.; Jarmalavičius, D. Possibilities of Regeneration of Palanga Coastal Zone. J. Environ. Eng. Landsc. Manag. 2010, 18, 92–101. [Google Scholar] [CrossRef]
- United States Army Corps of Engineers. CEM: Coastal Engineering Manual; U.S. Army Corps of Engineers: Washington, DC, USA, 2002. [Google Scholar]
- Soomere, T.; Viška, M.; Eelsalu, M. Spatial variations of wave loads and closure depths along the coast of the eastern Baltic Sea. Est. J. Eng. 2013, 19, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Soomere, T.; Männikus, R.; Pindsoo, K.; Kudryavtseva, N.; Eelsalu, M. Modification of closure depths by synchronisation of severe seas and high water levels. Geo-Mar. Lett. 2017, 37, 35–46. [Google Scholar] [CrossRef]
- Laccetti, G.; Lapegna, M.; Mele, V.; Romano, D.; Szustak, L. Performance enhancement of a dynamic K-means algorithm through a parallel adaptive strategy on multicore CPUs. J. Parallel Distrib. Comput. 2020, 145, 34–41. [Google Scholar] [CrossRef]
- Steinley, D.; Brusco, M.J. Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques. J. Classif. 2007, 24, 99–121. [Google Scholar] [CrossRef]
- Melnykov, V.; Michael, S. Clustering Large Datasets by Merging K-Means Solutions. J. Classif. 2019. [Google Scholar] [CrossRef]
- Žilinskas, G.; Jarmalavičius, D.; Kulvičienė, G. Assessment of the effects caused by the hurricane ‘Anatoli’ on the Lithuanian marine coast. Geogr. Metraštis 2000, 33, 191–206. [Google Scholar]
- Jarmalavičius, D.; Žilinskas, G.; Pupienis, D.; Kriaučiuniene, J. Subaerial beach volume change on a decadal time scale: The Lithuanian Baltic Sea coast. Z. Geomorphol. 2017, 61, 149–158. [Google Scholar] [CrossRef]
- Pupienis, D.; Jarmalavičius, D.; Žilinskas, G.; Fedorovič, J. Beach nourishment experiment in Palanga, Lithuania. J. Coast. Res. 2014, 70, 490–495. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Coastal Processes with Engineering Applications; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Miller, J.K.; Dean, R.G. A simple new shoreline change model. Coast. Eng. 2004, 51, 531–556. [Google Scholar] [CrossRef]
- Sousa, W.R.N.d.; Souto, M.V.S.; Matos, S.S.; Duarte, C.R.; Salgueiro, A.R.G.N.L.; Neto, C.A.d.S. Creation of a coastal evolution prognostic model using shoreline historical data and techniques of digital image processing in a GIS environment for generating future scenarios. Int. J. Remote Sens. 2018, 1–15. [Google Scholar] [CrossRef]
- Jara, M.S.; González, M.; Medina, R.; Jaramillo, C. Time-Varying Beach Memory Applied to Cross-Shore Shoreline Evolution Modelling. J. Coast. Res. 2018, 345, 1256–1269. [Google Scholar] [CrossRef]
- Dean, R.G. Equilibrium beach profiles: Characteristics and applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Žilinskas, G. Trends in dynamic processes along the Lithuanian Baltic coast. Acta Zool. Litu. 2005, 15, 204–207. [Google Scholar] [CrossRef]
- Gittman, R.K.; Fodrie, F.J.; Popowich, A.M.; Keller, D.A.; Bruno, J.F.; Currin, C.A.; Peterson, C.H.; Piehler, M.F. Engineering away our natural defenses: An analysis of shoreline hardening in the US. Front. Ecol. Environ. 2015, 13, 301–307. [Google Scholar] [CrossRef]
- Summers, A.; Fletcher, C.H.; Spirandelli, D.; McDonald, K.; Over, J.-S.; Anderson, T.; Barbee, M.; Romine, B.M. Failure to protect beaches under slowly rising sea level. Clim. Chang. 2018, 151, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.B.; Lazarus, E.D. Masked Shoreline Erosion at Large Spatial Scales as a Collective Effect of Beach Nourishment. Earth’s Future 2019, 7, 74–84. [Google Scholar] [CrossRef]
- Romine, B.M.; Fletcher, C.H. Hardening on eroding coasts leads to beach narrowing and loss on Oahu, Hawaii. In Pitfalls of Shoreline Stabilization: Selected Case Studies; Cooper, J., Andrew, G., Pilkey, O., Eds.; Springer Science and Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- De Almeida, L.R.; González, M.; Medina, R. Morphometric characterization of foredunes along the coast of northern Spain. Geomorphology 2019, 338, 68–78. [Google Scholar] [CrossRef]
- Jarmalavičius, D.; Pupienis, D.; Žilinskas, G.; Janušaitė, R.; Karaliūnas, V. Beach-Foredune Sediment Budget Response to Sea Level Fluctuation. Curonian Spit, Lithuania. Water 2020, 12, 583. [Google Scholar] [CrossRef] [Green Version]
- Pellón, E.; de Almeida, L.R.; González, M.; Medina, R. Relationship between foredune profile morphology and aeolian and marine dynamics: A conceptual model. Geomorphology 2020, 351. [Google Scholar] [CrossRef]
- Castelle, B.; Bujan, S.; Ferreira, S.; Dodet, G. Foredune morphological changes and beach recovery from the extreme 2013/2014 winter at a high-energy sandy coast. Mar. Geol. 2017, 385, 41–55. [Google Scholar] [CrossRef]
- Komar, P.D. Coastal erosion processes and impacts: The consequences of Earth’s changing climate and human modifications of the environment. Earth Syst. Environ. Sci. 2011, 285–308. [Google Scholar] [CrossRef]
- Komar, P.D. Beach Processes and Sedimentation; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Viška, M.; Soomere, T. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern baltic sea coast. Baltica 2013, 26, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Soomere, T.; Bishop, S.R.; Viška, M.; Räämet, A. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 2015, 62, 163–171. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelpšaitė-Rimkienė, L.; Parnell, K.E.; Žaromskis, R.; Kondrat, V. Cross-Shore Profile Evolution after an Extreme Erosion Event—Palanga, Lithuania. J. Mar. Sci. Eng. 2021, 9, 38. https://doi.org/10.3390/jmse9010038
Kelpšaitė-Rimkienė L, Parnell KE, Žaromskis R, Kondrat V. Cross-Shore Profile Evolution after an Extreme Erosion Event—Palanga, Lithuania. Journal of Marine Science and Engineering. 2021; 9(1):38. https://doi.org/10.3390/jmse9010038
Chicago/Turabian StyleKelpšaitė-Rimkienė, Loreta, Kevin E. Parnell, Rimas Žaromskis, and Vitalijus Kondrat. 2021. "Cross-Shore Profile Evolution after an Extreme Erosion Event—Palanga, Lithuania" Journal of Marine Science and Engineering 9, no. 1: 38. https://doi.org/10.3390/jmse9010038
APA StyleKelpšaitė-Rimkienė, L., Parnell, K. E., Žaromskis, R., & Kondrat, V. (2021). Cross-Shore Profile Evolution after an Extreme Erosion Event—Palanga, Lithuania. Journal of Marine Science and Engineering, 9(1), 38. https://doi.org/10.3390/jmse9010038