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Abstract: During the past few decades, the need to intervene in underwater scenarios has grown
due to the increasing necessity to perform tasks like underwater infrastructure inspection and
maintenance or archaeology and geology exploration. In the last few years, the usage of Autonomous
Underwater Vehicles (AUVs) has eased the workload and risks of such interventions. To automate
these tasks, the AUVs have to gather the information of their surroundings, interpret it and make
decisions based on it. The two main perception modalities used at close range are laser and video.
In this paper, we propose the usage of a deep neural network to recognise pipes and valves in
multiple underwater scenarios, using 3D RGB point cloud information provided by a stereo camera.
We generate a diverse and rich dataset for the network training and testing, assessing the effect of a
broad selection of hyperparameters and values. Results show F1-scores of up to 97.2% for a test set
containing images with similar characteristics to the training set and up to 89.3% for a secondary
test set containing images taken at different environments and with distinct characteristics from
the training set. This work demonstrates the validity and robust training of the PointNet neural in
underwater scenarios and its applicability for AUV intervention tasks.

Keywords: point cloud segmentation; deep learning; pipe and valve recognition; underwater per-
ception; computer vision

1. Introduction

During the past few decades, the interest in underwater intervention has grown expo-
nentially as more often it is necessary to perform underwater tasks like surveying, sampling,
archaeology exploration or industrial infrastructure inspection and maintenance of offshore
oil and gas structures, submerged oil wells or pipeline networks, among others [1–5].

Historically, scuba diving has been the prevailing method of conducting the afore-
mentioned tasks. However, performing these missions in a harsh environment like open
water scenarios is slow, dangerous, and resource consuming. More recently, thanks to
technological advances such as Remotely Operated Vehicles (ROVs) equipped with ma-
nipulators, more deep and complex underwater scenarios are accessible for scientific
and industrial activities.

Nonetheless, these ROVs have complex dynamics that make their piloting a difficult
and error-prone task, requiring trained operators. In addition, these vehicles require a
support vessel, which leads to expensive operational costs. To mitigate that, some research
centres have started working towards intervention Autonomous Underwater Vehicles
(AUVs) [6–8]. In addition, due to the complexity of the Underwater Vehicle Manipulator
Systems (UVMS), recent studies have been published towards its control [9,10].

Traditionally, when operating in unknown underwater environments, acoustic bathy-
metric maps are used to get a first identification of the environment. Once the bathymetric
information is available, ROVs or AUVs can be sent to obtain more detailed information
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using short distance sensors with higher resolution. The two main perception modalities
used at close range are laser and video, thanks to their high resolution. They are used
during the approach, object recognition and intervention phases. Existing solutions for all
perception modalities are reviewed in Section 2.1.

The underwater environment is one of the most problematic in terms of sensing in
general and in terms of object perception in particular. The main challenges of underwater
perception include distortion in signals, light propagation artefacts like absorption and
scattering, water turbidity changes or depth-depending colour distortion.

Accurate and robust object detection, identification of target objects in different ex-
perimental conditions and pose estimation are essential requirements for the execution of
manipulation tasks.

In this work, we propose a deep learning based approach to recognise pipes and valves
in multiple underwater scenarios , using the 3D RGB point cloud information provided by
a stereo camera, for real-time AUV inspection and manipulation tasks.

The remainder of this paper is structured as follows: Section 2 reviews related work
on underwater perception and pipe and valve identification and highlights the main
contributions of this work. Section 3 describes the adopted methodology and materials
used in this study. The experimental results are presented and discussed in Section 4.
Finally, Section 5 outlines the main conclusions and future work.

2. Related Work and Contributions
2.1. State of the Art

Even though computer vision is one of the most complete and used perception modal-
ities in robotics and object recognition tasks, it has not been widely used in underwater
scenarios. Light transmission problems and water turbidity affect the images clarity,
colouring and produce distortions; these factors have favoured the usage of other percep-
tion techniques.

Sonar sensing has been largely used for object localisation or environment identi-
fication in underwater scenarios [11,12]. In [13], Kim et al. present an AdaBoost based
method for underwater object detection, while Wang et al. [14] propose a combination of
non-local spatial information and frog leaping algorithm to detect underwater objects in
sonar images. More recently, object detection deep learning techniques have started to
apply over sonar imaging in applications such as detection of underwater bodies in [15,16]
or underwater mine detection in [17]. Sonar imaging also presents some drawbacks as it
tends to generate noisy images, losing texture information; and are not capable of gathering
colour information, which is useful in object recognition tasks.

Underwater laser scans are another perception technique used for object recognition,
providing accurate 3D data. In [18], Palomer et al. present the calibration and integration
of a laser scanner on an AUV for object manipulation. Himri et al. [19,20] use the same
system to detect objects using a recognition and pose estimation pipeline based on point
cloud matching. Inzartsev et al. [21] simulate the use of a single beam laser paired with a
camera to capture its deformation and track an underwater pipeline. Laser scans are also
affected by light transmission problems, have a very high initial cost and can only provide
colourless point clouds.

The only perception modality that allows gathering of colour information for the scene
is computer vision. Furthermore, some of its aforementioned weaknesses can be mitigated
by adapting to the environmental conditions, adjusting the operation range, calibrating the
cameras or colour correcting the obtained images.

Traditional computer vision approaches have been used to detect and track submerged
artifacts [22–25], cables [26–28] and even pipelines [28–31]. Some works are based on
shape and texture descriptors [28,31] or template matching [32,33], while others exploit
colour segmentation to find regions of interest in the images, which are later further
processed [25,34].
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On pipeline detection, Kallasi et al. in [35] and Razzini et al. in [7,36] present tra-
ditional computer vision methods combining shape and colouring information to detect
pipes in underwater scenarios and later project them into point clouds obtained from
stereo vision. In these works, the point cloud information is not used to assist the pipe
recognition process.

The first found trainable system to detect pipelines is presented in [37] by Rekik et al.
using the objects structure and content features along a Support Vector Machine to classify
between positive and negative underwater pipe images samples. Later, Nunes et. al
introduced the application of a Convolutional Neural Network in [38] to classify up to five
underwater objects, including a pipeline. In both of these works, no position of the object
is given, but simply a binary output on the object’s presence.

The application of computer vision approaches based on deep learning in underwater
scenarios has been limited to the detection and pose estimation of 3D-printed objects
in [39] or for living organisms detection like fishes [40] or jellyfishes [41]. Few research
studies involving pipelines are restricted to damage evaluation [42,43] or valve detection
for navigation [44] working with images taken from inside the pipelines. The only known
work addressing pipeline recognition using deep learning is from Guerra et al. in [45],
where a camera-equipped drone is used to detect pipelines in industrial environments.

To the best knowledge of the authors, there are not works applying deep learning tech-
niques in underwater computer vision pipeline and valve recognition, nor implementing
the usage of point cloud information on the detection process itself.

2.2. Main Contributions

The main contributions of this paper are composed of:

1. Generation of a novel point cloud dataset containing pipes and different types of
valves in varied underwater scenarios, providing enough data to perform a robust
training and testing of the selected deep neural network.

2. Implementation and testing of the PointNet architecture in underwater environments
to detect pipes and valves.

3. Studying the suitability of the PointNet network on real-time autonomous underwater
recognition tasks in terms of detection performance and inference time by tuning
diverse hyperparameter values.

4. The datasets (point clouds and corresponding ground truths) along with a trained
model are provided to the scientific community.

3. Materials and Methods

This section presents an overview of the selected network; explains the acquisition,
labelling and organisation of the data; and details the studied network hyperparameters,
the validation process and the evaluation metrics.

3.1. Deep Learning Network

To perform the pipe and valve 3D recognition from point cloud segmentation, we se-
lected the PointNet deep neural network [46]. This is a unified architecture for applications
ranging from object classification and part segmentation to scene semantic segmentation.
PointNet is a highly efficient and effective network, obtaining great metrics in both object
classification and segmentation tasks in indoor and outdoor scenarios [46]. However, it has
never been tested in underwater scenarios. The whole PointNet architecture is shown in
Figure 1.
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Figure 1. PointNet architecture. Reproduced from [46], with permission from publisher Hao Su, 2020.

In this paper, we use the Segmentation Network of PointNet. This network is an
extension to the Classification Network, as it can be seen in Figure 1. Some of its key
features include:

• The integration of max pooling layers as symmetric function to aggregate the informa-
tion from each point, making the model invariant to input permutations.

• Being able to predict per point features that rely both on local structures from nearby
points and global information which makes the prediction invariant to object trans-
formations such as translations or rotations. This combination of local and global
information is obtained by concatenating the global point cloud feature vector with
the local per point features.

• Making the semantic labeling of a point cloud invariant to the point cloud geometric
transformations by aligning all input set to a canonical space before feature extraction.
To achieve this, an affine transformation matrix is predicted using a mini-network
(T-net in Figure 1) and directly applied to the coordinates of input points.

The PointNet architecture takes as input point clouds and it outputs a class label for
each point. During the training, the network is also fed with ground truth point clouds,
where each point is labelled with its pertaining class. The labelling process is further
detailed in Section 3.2.2.

As the original PointNet implementation, we used a softmax cross-entropy loss along
an Adam optimiser. The decay rate for batch normalisation starts with 0.5 and is gradually
increased to 0.99. In addition, we applied a dropout with keep ratio 0.7 on the last fully
connected layer, before class score prediction. Other hyperparameters values such as
learning rate or batch size are discussed, along other parameters, on Section 3.3.

Furthermore, to improve the network performance, we implemented an early stopping
strategy based on the work of Prechelt in [47], assuring that the network training process
stops at an epoch that ensures minimum divergence between validation and training losses.
This technique allows for obtaining a more general and broad training, avoiding overfitting.

3.2. Data

This subsection explains the acquisition, labelling and organisation of the data used to
train and test the PointNet neural network.

3.2.1. Acquisition

As mentioned in Section 3.1, the PointNet uses pointclouds for its training and infer-
ence. To obtain the point clouds, we set up a Bumblebee2 Firewire stereo rig [48] on an
Autonomous Surface Vehicle (ASV) through a Robot Operating System (ROS) framework.

First, we calibrated the stereo rig both on fresh and salt water using the ROS package
image_pipeline/camera_calibration [49,50]. It uses a chessboard pattern to obtain the camera,
rectification and projection matrices along the distortion coefficients for both cameras.

The acquired synchronised pairs of left-right images (resolution: 1024× 768 pixels) are
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processed as follows by the image_pipeline/stere_image_proc ROS package [51] to calculate
the disparity between pairs of images based on epipolar matching [52], obtaining the
corresponding depth of each pixel from the stereo rig.

Finally, combining this depth information with the RGB colouring from the original
images, we generate the point clouds. An example of the acquisition is pictured in Figure 2.

−→ −→

(a) (b) (c)

Figure 2. Data acquisition process. (a) left and right stereo images, (b) disparity image, (c) point cloud.

3.2.2. Ground Truth Labelling

Ground truth annotations are manually built from the point clouds, where the pixels
corresponding to each class are marked with a different label. The studied classes and their
RGB labels are: Pipe (0, 255, 0), Valve (0, 0, 255) and Background (0, 0, 0). Figure 3 shows a
couple of point clouds along with their corresponding ground truth annotations.

(a) (b)

Figure 3. (a) Original point cloud; (b) ground truth annotations, points corresponding to pipes are
marked in green; to valves, in blue; and to background, in black.

3.2.3. Dataset Managing

Following the steps described in the previous section, we generated two datasets.
The first one includes a total of 262 point clouds along with their ground truths. It was
obtained on an artificial pool and contains diverse connections between pipes of different
diameters and 2/3 way valves. It also contains other objects such as cement blocks and
ceramic vessels, always over a plastic sheeting simulating different textures. This dataset is
split into a train-validation set (90% of the data, 236 point clouds) and a test set (10% of
the data, 26 point clouds). The different combinations of elements and textures increase its
diversity, helping to assure the robustness in the training and reduce overfitting. From now
on, we will refer to this dataset as the Pool dataset.
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The second dataset includes a total of 22 point clouds and their corresponding ground
truths. It was obtained in the sea and contains different pipe connections and valves
positions. In addition, these 22 point clouds were obtained over diverse types of seabed,
such as sand, rocks, algae, or a combination of them. This dataset is used to perform a
secondary test, as it contains point clouds with different characteristics of the ones used to
train and validate the network, allowing us to assess how well the network generalises its
training to new conditions. From now on, we will refer to this dataset as the Sea dataset.

Figure 4 illustrates the dataset managing, while in Figure 5 some examples of point
clouds from both datasets are shown.

SeaPool

Figure 4. Dataset managing.

(a) (b)

Figure 5. Examples of point clouds from (a) Pool dataset and (b) Sea dataset.

3.3. Hyperparameter Study

When training a neural network, there are hyperparameters which can be tuned,
changing some of the features of the network or the training process itself. We selected some
of these hyperparameters and trained the network using different values to study their
effect over its performance in underwater scenarios. The considered hyperparameters were:

• Batch size: number of training samples utilised in one iteration before backpropagating.
• Learning rate: affects the size of the matrix changes that the network takes when

searching for an optimal solution.
• Block (B) and stride (S) size: to prepare the network input, the point clouds are

sampled into blocks of BxB meters, with a sliding window of stride S meters.
• Number of points: maximum number of allowed points per block. If it exceeds,

random points are deleted. Used to control the point cloud density.

The tested values for each hyperparameter are shown in Table 1. In total, 13 experi-
ments are conducted, one using the hyperparameter values used in the original PointNet
implementation [46] (marked in bold in Table 1); and 12 more, each one fixing three of the
aforementioned hyperparameters to their original values and using one of the other tested
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values for the fourth hyperparameter. This way, the effect of each hyperparameter and its
value over the performance is isolated.

Table 1. Tested hyperparameter values. Original values are marked in bold.

Hyperparameter Tested Values

Batch size 16 24 32
Learning rate 0.005 0.001 0.0002
Block-stride 2-2 2-1 1-1 1-0.75
Num. points 4096 2048 1024 512 256 128

3.4. Validation
3.4.1. Validation Process

To ensure the robustness of the results generated for the 13 experiments, we used
the 10 k-fold cross-validation method [53]. Using this method, the train-validation set of
the Pool dataset is split into ten equally sized subsets. The network is trained ten times
as follows, each one using a different subset as validation (23 point clouds) and the nine
remaining as training (213 point clouds), generating ten models which are tested against
both Pool and Sea test sets. Finally, each experiment performance is computed as the mean
of the results of its 10 cross-validation models. This method reduces the variability of
the results, as these are less dependent on the selected training and validation subsets,
therefore obtaining a more accurate performance estimation. Figure 6 depicts the k-fold
cross-validation technique applied to the dataset managing described in Section 3.2.3

SeaPool

Train

...

k1

k2

k10

Train

Train

Figure 6. Implementation of the 10k-fold cross-validation method.

3.4.2. Evaluation Metrics

To evaluate a model performance, we make a point-wise comparison between its
predictions and their corresponding ground truth annotations, generating a multi-class
confusion matrix. This confusion matrix indicates, for each class: the number of points
correctly identified belonging to that class, True Positives (TP) and not belonging to it,
True Negatives (TN); the number of points misclassified as the studied class, False Positives
(FP); and the number of points belonging to that class misclassified as another one, False
Negatives (FN). Finally, the TP, FP and FN values are used to calculate the Precision, Recall
and F1-score for each class, following Equations (1)–(3):

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1-score = 2× Recall × Precision
Recall + Precision

. (3)

Additionally, the mean time that a model takes to perform the inference of a point
cloud is calculated. This metric is very important, as it defines the frequency that infor-
mation is provided to the system. In underwater applications, it would directly affect the
agility and responsiveness of the AUV that this network could be integrated in, having an
impact over the final operation time.
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4. Experimental Results and Discussion

This section reports the performance obtained for each experiment over the Pool and
Sea test sets and discusses the effect of each hyperparameter over it. The notation used to
name each experiment corresponds as follows: “Base” for the experiment conducted using
the original hyperparameter values, marked in bold in Table 1; the other experiments are
notated as an abbreviation of the modified hyperparameter for that experiment (“Batch”
for batch size, “Lr” for learning rate, “BS” for block-stride and “Np” for number of points)
followed by the actual value of the hyperparameter for that experiment. For instance,
experiment Batch 24 uses all original hyperparameter values except for the batch size,
which in this case is 24.

4.1. Pool Dataset Results

Table 2 shows the F1-scores obtained for the studied classes and its mean for all
experiments when evaluated over the Pool test set. The mean inference time for each
experiment is showcased in Figure 7 as follows.

Table 2. Pool test set F1-scores.

Experiment F1_Pipe F1_Valve F1_Background F1_Mean

Base 97.0% 93.1% 99.8% 96.6%

Batch 24 96.8% 92.7% 99.8% 96.4%
Batch 16 96.7% 92.3% 99.8% 96.2%

Lr 0005 96.4% 91.0% 99.7% 95.7%
Lr 00002 96.5% 92.5% 99.7% 96.2%

BS 2_2 96.0% 90.8% 99.7% 95.5%
BS 2_1 96.9% 93.3% 99.8% 96.7%
BS 1_075 97.1% 94.9% 99.7% 97.2%

Np 2048 96.7% 92.2% 99.8% 96.2%
Np 1024 96.9% 93.2% 99.8% 96.6%
Np 512 96.8% 92.6% 99.8% 96.4%
Np 256 96.9% 93.4% 99.8% 96.7%
Np 128 96.7% 92.8% 99.8% 96.4%
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Figure 7. Pool test set mean inference time.

The results presented in Table 2 show that all experiments achieved a mean F1-score
greater than 95.5%, with the highest value of 97.2% for the experiment BS 1_075, which
has a smaller block stride than its size, overlapping information. Considering the figures
of mean F1-score for all experiments, it is safe to say that no hyperparameter seemed to
represent a major shift in the network behaviour.
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Looking at the metrics presented by the best performing experiment for each class,
it can be seen that the Pipe class achieved an F1-score of 97.1%, outperforming other state-
of-the-art methods for underwater pipe segmentation: [35]—traditional computer vision
algorithms over 2D underwater images achieving an F1-score of 94.1%, [7]—traditional
computer vision algorithms over 2D underwater images achieving a mean F1-score over
three datasets of 88.0% and [45]—deep leaning approach for 2D drone imagery achieving
a pixel-wise accuracy of 73.1%. For the valve class, the BS 1_075 experiment achieved a
F1-score of 94.9%, being a more challenging class due to its complex geometry. As far as
the authors know, no comparable work on underwater valve detection has been identified.
Finally, for the more prevailing Background class, the best performing experiment achieved
an F1-score of 99.7%.

The results on mean inference time for each experiment presented in Figure 7 shows
that the batch size and learning rate hyperparameter values do not influence the inference
time or have little impact, as their value is very similar to the one obtained in the Base
experiment. On the contrary, the block and stride size highly affect the inference time,
the bigger the information block or the stride between blocks, the faster the network can
analyse a point cloud, and vice versa. Finally, the maximum number of allowed points per
block also has a direct impact over the inference time, the lower it is, the faster the network
can analyse a point cloud, as it becomes less dense. The time analysis was carried out in a
computer with the following specs—processor: Intel i7-7700, RAM: 16 GB, GPU: NVIDIA
GeForce GTX 1080.

Taking into account both metrics, BS 1_075 presented the best F1-score and has the
highest inference time. In this experiment, the network uses a small block size and stride,
being able to analyse the data and extract its features better, at the cost of taking longer.
The hyperparameter values of this experiment are a good fit for a system in which quick
responsiveness to changes and high frequency of information are not a priority, allowing
for maximising the recognition performance.

On the other hand, experiments such as BS 2_2 or Np 1024, 512, 256, 128 were able to
maintain very high F1-scores while significantly reducing the inference time. The hyperpa-
rameter values tested in these experiments are a good fit for more agile systems that need a
higher frequency of information and responsiveness to changes.

Figure 8 shows some examples of original point clouds from the Pool test set along
with their corresponding ground truth annotations and network predictions.

(a) (b) (c)

Figure 8. Qualitative results for the Pool test set. (a) original point cloud, (b) ground truth annotations,
(c) network prediction.
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4.2. Sea Dataset Results

Table 3 shows the F1-scores obtained for the studied classes and its mean, for all
experiments when evaluated over the Sea test set. The mean inference time for each
experiment is showcased in Figure 9 as follows.

Table 3. Sea test set F1-scores.

Experiment F1_Pipe F1_Valve F1_Background F1_Mean

Base 85.9% 79.5% 98.8% 88.1%

Batch 24 87.2% 79.9% 98.9% 88.7%
Batch 16 88.1% 80.9% 99.0% 89.3%

Lr 0005 86.2% 81.2% 98.8% 88.7%
Lr 00002 85.2% 76.3% 98.7% 86.8%

BS 2_2 80.7% 77.2% 97.9% 85.3%
BS 2_1 80.2% 79.7% 97.6% 85.8%
BS 1_075 86.7% 73.9% 99.0% 86.5%

Np 2048 85.2% 80.1% 98.5% 87.9%
Np 1024 86.1% 77.8% 98.8% 87.6%
Np 512 85.4% 70.7% 98.8% 85.0%
Np 256 87.1% 80.2% 98.9% 88.8%
Np 128 84.5% 71.5% 98.7% 84.9%
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Figure 9. Sea test set mean inference time.

The results presented in Table 3 show that all experiments achieved a mean F1-score
greater than 84.9% with the highest value of 89.3% for the experiment Batch 16. On average,
the mean F1-score was around 9% lower than for the Pool test set. Even so, all experiments
maintained high F1-scores. Again, the F1-scores of the Pipe and Valve classes are relatively
lower than for the Background class. Even though the Sea test set is more challenging, as it
contains unseen pipe and valve connections and environment conditions, the network was
able to generalise its training and avoid overfitting.

The results on mean inference time for each experiment presented in Figure 9 shows
that the mean inference times for the Sea test set are proportionally lower than the Pool test
set for all experiments. This occurs because the Sea test set contains smaller point clouds
with fewer points.

Figure 10 shows some examples of original point clouds from the Sea test set along
with their corresponding ground truth annotations and network predictions.
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(a) (b) (c)

Figure 10. Qualitative results for the Sea test set. (a) original point cloud; (b) ground truth annotations;
(c) network prediction.

5. Conclusions and Future Work

This work studied the implementation of the PointNet deep neural network in under-
water scenarios to recognise pipes and valves from point clouds. First, two datasets of point
clouds were gathered, providing enough data for the training and testing of the network.
From these, a train-validation set and two test sets were generated, a primary test set with
similar characteristics as the training data and a secondary one containing unseen pipe and
valve links and environment conditions to test the network training generalisation and
overfitting. Then, diverse hyperparameter values were tested to study their effect over the
network performance, both in the recognition task and inference time.

Results from the recognition task concluded that the network was able to identify
pipes and valves with high accuracy for all experiments in both Pool and Sea test sets,
reaching F1-scores of 97.2% and 89.3%, respectively. Regarding the network inference time,
results showed that it is highly dependent on the size of information block and its stride;
and to the point clouds density.

From the performed experiments, we obtained a range of models covering different
trade-offs between detection performance and inference time, enabling the network imple-
mentation into a wider spectrum of systems, adapting to its detection and computational
cost requirements. The BS 1_075 experiment presented metrics that fitted a slower, more
still system, while experiments like BS 2_2 or Np 1024, 512, 256, 128 are a good fit for more
agile and dynamic systems.

The implementation of the PointNet network in underwater scenarios presented some
challenges, like ensuring its recognition performance when trained with point clouds
obtained from underwater images, and its suitability to be integrated on an AUV due to
its computational cost. With the results obtained in this work, we have demonstrated the
validity of the PointNet deep neural network to detect pipes and valves in underwater
scenarios for AUV manipulation and inspection tasks.

The datasets and code, along with one of the Base experiment trained models, are
publicly available at http://srv.uib.es/3d-pipes-1/ (UIB-SRV-3D-pipes) for the scientific
community to test or replicate our experiments.

http://srv.uib.es/3d-pipes-1/
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Further steps need to be taken in order to achieve an underwater object localisation
and positioning for ROV and AUV intervention using the object recognition presented in
this work. We propose the following future work:

1. Performing an instance-based detection from the presented pixel-based one, allowing
for recognition of pipes and valves as a whole object and to classify them by type
(two or three way) or status (opened or closed).

2. Using the depth information provided by the stereo cameras along with the instance
detection to achieve a spatial 3D positioning of each object. Once the network is
implemented in an AUV, this would provide the vehicle with the information to
manipulate and intervene with the recognised objects.
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