Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review
Abstract
:1. Introduction
2. Susceptibility/Vulnerability Characterization
2.1. Forcing Characteristics
- : maximum wave height along the coast [36].
2.2. Coastal Characteristics
2.3. Complementary Information
3. Coastal Adaptation Strategies Approaches
- Vertical, which establishes a height above a sea-level benchmark to prevent infrastructures from inundation.
- Horizontal, a horizontal distance from a seaward benchmark to define an area at greatest risk of coastal hazards; the horizontal distance varies according to country.
4. Government Policies
5. Discussion
6. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Authors | Typology | Scale | Variables |
---|---|---|---|
[81,195] | V | R | Relief, lithology, landforms, vertical/horizontal land movements, tidal range, wave height, tropical storm/hurricane probability. |
[196] | S | R | Shoreline index. Exposed tidal flats, sheltered rocky shores and seawalls, exposed mangroves and marsh, exposed vertical rocky shores and seawalls. |
[22] | S/V | N | Coastal Vulnerability Index. Relief, lithology, landforms, horizontal/vertical land movements, tidal range, wave height. |
[197] | V | R | Coastal Vulnerability Index. Relief, rock type, landform, vertical sea-level change, shoreline displacement, tidal range, wave height. |
[198] | S/V | R | Coastal Vulnerability Index. Elevation, geology, geomorphology, SLR, shoreline displacement, wave height, annual probability of tropical storm and hurricane, Hurricane strike frequency-intensity, mean forward velocity, number of extratropical cyclones, hurricane surge height, tidal range |
[199] | V | L | Wind and wave climate, berm height, maximum depth for shore-normal sediment transport and distance, sea level |
[91] | V | L | Hydrodynamic and energy-related: mean energy flux per unit of coastline, net/gross longshore transport rate. Evolutionary: mean shoreline retreat/accretion. Morphology and sedimentology of the beach: width of the backshore, elevation of the backshore, mean size of the beach sediments. Seafloor: slope of the sea floor, mean size of the sea floor sediment, number of bars. Human intervention: defensive structures and ports. |
[200] | V | N | Climate-induced: Environmental changes (sea-level rice, rainfall, sea surface temperature, wind, wave, El-Nino changes, sediment budget), Socio-economic developments (Autonomous/planned adaptation). Non-climate-induced: Environmental changes (vertical land movements, sediment budget), Socio-economic developments (population, land-use, changes in gross domestic product). |
[26] | V | R | Coastal Vulnerability Index. Geomorphology, coastal slope, relative sea-level change, shoreline erosion/accretion, mean tide range, mean wave height. |
[95] | V | L | Costral Vulnerability Impact. Physical parameters: rate of SLR, geomorphology, coastal slope, H 1/3, Sediment budget, tidal range, proximity to coast, type of aquifer, hydraulic conductivity, water depth at downstream, discharge. Human influence parameters: reduction of sediment supply, river flow regulation, engineered frontage, natural protection degradation, coastal protection structures, growndwater consumption, land-use pattern. |
[26] | V | R | Coastal Vulnerability Index. Geomorphology, coastal slope, relative sea-level change, shoreline erosion/accretion, mean tide range, mean wave height. |
[95] | V | L | Costral Vulnerability Impact. Physical parameters: rate of SLR, geomorphology, coastal slope, H 1/3, Sediment budget, tidal range, proximity to coast, type of aquifer, hydraulic conductivity, water depth at downstream, discharge. Human influence parameters: reduction of sediment supply, river flow regulation, engineered frontage, natural protection degradation, coastal protection structures, growndwater consumption, land-use pattern. |
[201] | V | R | Coastal Vulnerability Index. Geological/geomorphological: resistance of the geological/geomorphological substrate to erosion, erosion rates, coastal slope. Physics/hydrodynamic: significant average swell, rate of change in relative sea level, mid tidal range. |
[116] | V | L | Coastal Vuulnerability Index. Mean Elevation, geology, coastal landform, shoreline, wave height, tide range. Impact Index. Wave run-up, short/long-term erosion, stability coastal protections, tide range. |
[202] | V | R | Social economic index. Population, roads, industrial and agricultural output value, residential land. Land-use index. Farming land, Aquaculture, Arable land. Eco-environmental index. Beaches and wetlands, mangroves, rivers. Coastal construction index. Coastal engineering, coastal highways, coastal buildings. Disaster-bearing capability index. Seawalls, labor population, financial revenue. |
[106] | V | L | Physical Vulnerability Index. Barrier island width, lithology, width of back-beach vegetation, percentage of low areas, shoreline change rate. Socio-economic Vulnerability Index. Land use |
[203] | V | R | Shoreline retreat, coastal defense works, events due to sea wave action, emergency interventions, coastal defense costs. |
[82] | V | R | Elevation referred to Chart Datum, distance to shore, tidal range, maximum wave height, erosion/Accretion rate, geology, geomorphology, ground cover, anthropogenic actions. |
[204] | S/V | L | Beach Vulnerability Index. Longshore/cross-shore sediment transport, riverine inputs, relative sea-level change, wave run-up, aeolian sediment transport. Beach Value. Accommodation facilities, coastal business, tourism area, beach width, distance from the city, beach attendance, sector length. |
[18] | S/V | L | Vulnerability sub-index. Coastal forcing: significant wave height, storm surge, degree of littoral exposure to wave fronts, tidal range. Coastal Susceptibility: SANDY (dune height, percentage of washovers, dry beach width as a multiple of the ICZ, beach slope/morphodynamic state, foreshore slope, K Index); ROCKY (type, lithology, structures, slope, cliff edge width as a multiple of the ICZ, weathering, K Index. Socio-economic: land uses, percentage of urbanized areas, population density. Ecological: protected area, ecosystem and habitat cover, level of human intervention. |
[181] | S | L | Cliff, beach face, rocky shore, dunes, valley, skyline landform, tides, coastal landscape features, vistas, water color and clarity, natural vegetation cover, vegetation debris; Human parameters: noise disturbance, litter, sewage discharge evidence, non-built environment, built environment, access type, skyline, utilities. |
[16] | S | L | Morphological Beach Sub-Index. Foreshore slope, grain size, backshore width, number of bars. Morphological Dune Sub-Index. Mean dune height and width, vegetation succession continuity, dune discontinuity. Shoreline Evolution Sub-Index. Short/medium/long-term evolution trend. Coastal Run-Up Sub-Index. Mean and maximum run-up height. Fluvial System Sub-Index. Basin area, mean river discharge, distance from the river mouth. Storm-Surge Sub-Index. Storm-surge effect on beach and dune systems. Topographic Sub-Index. Presence of low-lying areas. |
[205] | V | L | Coastal Vulnerability Assessment. Run-up distance, beach slope, beach retreat, presence of coastal structures, medium-term coastline erosion. |
[44] | V | R | Coastal Vulnerability Index. Storm-surge height, SLR, tidal range, elevation, coastal slope, geomorphology, shoreline change, bathymetry |
[36] | V | R | Coastal Vulnerability Index. Sea-level change, significant wave height, tidal range, geomorphology/geology, coastal slope, shoreline change. |
[45] | V | R | Coastal Vulnerability Index. Significant wave height and direction, SLR, tidal range, geomorphology, coastal slope, shoreline change. |
[43] | S/V | R | Susceptibility Index. Geomorphology, coastal defenses. Value module. Population density, infrastructures, ecology. Exposure module. Distance to shoreline, topography, sea-level trend, Coastal-erosion hazard module. Wave climate, shoreline change. |
[38] | S | R | Sensitivity indicator. Erosion rate, backshore width, accommodation space width and typology |
[17] | V | R | Coastal Vulnerability Index. Elevation, presence/absence of artificial protection structures, dunes coverage, shoreline change, land cover. |
[42] | S/V | R | Hazard sub-index. Coastal Forcing: significant wave height, storm surge, degree of littoral exposure to wave fronts, tidal range. Coastal Susceptibility: SANDY (dune height, percentage of washovers, dry beach width as a multiple of the ICZ, beach slope/morphodynamic state, foreshore slope; ROCKY: type, lithology, structures, slope, cliff edge width as a multiple of the ICZ, weathering, K Index. Vulnerability sub-index. Socio-Economic: land uses, percentage of urbanized area, population density, roads, conservation designation, number of infrastructure services, tourism, economic activities. Ecological: protected area, ecosystem and habitat cover, level of human intervention, protected species, ecosystem services, litter presence, non-built environment. Cultural: cultural heritage, ethnographic interest, state of conservation, national protection, ethnic communities, cultural built environment. |
[177] | S | L | Coastal Sensitivity. Coastal forcing: wave energy flux. Buffer zone assessment: dry beach width. |
References
- Zielinski, G.A. A classification scheme for winter storms in the eastern and central United States with an emphasis on nor’easters. Bull. Am. Meteorol. Soc. 2002, 83, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Bacon, S.; Carter, D.T. Wave climate changes in the North Atlantic and North Sea. Int. J. Climatol. 1991, 11, 545–558. [Google Scholar] [CrossRef]
- Sallenger, A. Island in a Storm: A Rising Sea, a Vanishing Coast, and a Nineteenth-Century Disaster That Warns of a Warmer World; PublicAffairs: New York, NY, USA, 2009. [Google Scholar]
- Lozano, I.; Devoy, R.; May, W.; Andersen, U. Storminess and vulnerability along the Atlantic coastlines of Europe: Analysis of storm records and of a greenhouse gases induced climate scenario. Mar. Geol. 2004, 210, 205–225. [Google Scholar] [CrossRef]
- Beudin, A.; Ganju, N.K.; Defne, Z.; Aretxabaleta, A. Physical response of a back-barrier estuary to a post-tropical cyclone. J. Geophys. Res. Ocean. 2017, 122, 5888–5904. [Google Scholar] [CrossRef] [Green Version]
- Anfuso, G.; Loureiro, C.; Taaouati, M.; Smyth, T.; Jackson, D. Spatial Variability of Beach Impact from Post-Tropical Cyclone Katia (2011) on Northern Ireland’s North Coast. Water 2020, 12, 1380. [Google Scholar] [CrossRef]
- Komar, P.D.; Allan, J.C. Increasing hurricane-generated wave heights along the US East Coast and their climate controls. J. Coast. Res. 2008, 24, 479–488. [Google Scholar] [CrossRef]
- Meyer-Arendt, K. Grand Isle, Louisiana: A historic US Gulf Coast resort adapts to hurricanes, subsidence and sea level rise. In Disappearing Destinations; CAB International: Wallingford, UK, 2011; pp. 203–217. [Google Scholar]
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nuñez, A.M.; Gray, W.M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Hickey, K.R.; Connolly-Johnston, C. The impact of hurricane debbie (1961) and Hurricane Charley (1986) on Ireland. In Advances in Hurricane Research—Modelling, Meteorology, Preparedness and Impacts; Hickey, K., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 183–198. [Google Scholar]
- Gracia, F.; Alonso, C.; Benavente, J.; Anfuso, G.; Del Río, L. The Different Coastal Records of the 1755 Tsunami Waves along the south Atlantic Spanish Coast. Z. Fur Geomorphol. Suppl. 2006, 146, 195–220. [Google Scholar]
- Martínez, C.; Cienfuegos, R.; Inzunza, S.; Urrutia, A.; Guerrero, N. Worst-case tsunami scenario in Cartagena Bay, central Chile: Challenges for coastal risk management. Ocean Coast. Manag. 2020, 185, 105060. [Google Scholar]
- Papadopoulos, G.A.; Dermentzopoulos, T. A tsunami risk management pilot study in Heraklion, Crete. Nat. Hazards 1998, 18, 91–118. [Google Scholar] [CrossRef]
- Papathoma, M.; Dominey-Howes, D. Tsunami Vulnerability Assessment and Its Implications for Coastal Hazard Analysis and Disaster Management Planning, Gulf of Corinth, Greece. Nat. Hazards Earth Syst. Sci. 2003, 3, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Rodríguez, G. Coastal vulnerability to wave storms of Sele littoral plain (southern Italy). Nat. Hazards 2014, 71, 1795–1819. [Google Scholar] [CrossRef]
- Rizzo, A.; Aucelli, P.; Gracia, F.; Anfuso, G. A novelty coastal susceptibility assessment method: Application to Valdelagrana area (SW Spain). J. Coast. Conserv. 2018, 22, 973–987. [Google Scholar] [CrossRef]
- Sekovski, I.; Del Río, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Anfuso, G. Risk Assessment of Storms in Coastal Zones: Case Studies from Cartagena (Colombia) and Cadiz (Spain); Springer: New York, NY, USA, 2015. [Google Scholar]
- McLaughlin, S.; McKenna, J.; Cooper, J. Socio-economic data in coastal vulnerability indices: Constraints and opportunities. J. Coast. Res. 2002, 36, 487–497. [Google Scholar] [CrossRef]
- McLaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Gilbert, J.; Vellinga, P. IPCC Response Strategies Working Group Reports. In Coastal Zone Management; Technical Report; IPCC: Geneva, Switzerland, 1990; Chapter 5. [Google Scholar]
- Gornitz, V. Global coastal hazards from future sea level rise. Glob. Planet. Chang. 1991, 3, 379–398. [Google Scholar] [CrossRef]
- Gornitz, V.M.; Daniels, R.C.; White, T.W.; Birdwell, K.R. The Development of a Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast. J. Coast. Res. 1994, 12, 327–338. [Google Scholar]
- Shaw, J.; Taylor, R.B.; Forbes, D.L.; Ruz, M.; Solomon, S. Sensitivity of the Coasts of Canada to Sea-Level Rise; Geological Survey of Canada Ottawa: Ottawa, ON, Canada, 1998. [Google Scholar]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise; Technical Report; U.S. Geological Survey: Woods Hole, MA, USA, 1999.
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise; Preliminary Results for the US Pacific Coast; Technical Report; U.S. Geological Survey: Woods Hole, MA, USA, 2000.
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J.; Beavers, R.S. Coastal Vulnerability Assessment of Padre Island National Seashore (PAIS) to Sea-Level Rise; US Geological Survey Open-File Report; U.S. Geological Survey: Woods Hole, MA, USA, 2004.
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion hazard vulnerability of US coastal counties. J. Coast. Res. 2005, 21, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Doukakis, E. Coastal vulnerability and risk parameters. Eur. Water 2005, 11, 3–7. [Google Scholar]
- Diez, P.G.; Perillo, G.M.; Piccolo, M. Vulnerability to sea-level rise on the coast of the Buenos Aires Province. J. Coast. Res. 2007, 23, 119–126. [Google Scholar] [CrossRef]
- Rao, K.N.; Subraelu, P.; Rao, T.V.; Malini, B.H.; Ratheesh, R.; Bhattacharya, S.; Rajawat, A. Sea-level rise and coastal vulnerability: An assessment of Andhra Pradesh coast, India through remote sensing and GIS. J. Coast. Conserv. 2008, 12, 195–207. [Google Scholar]
- Ozyurt, G.; Ergin, A.; Baykal, C. Coastal vulnerability assessment to sea level rise integrated with analytical hierarchy process. Coast. Eng. Proc. 2010, 32, 6. [Google Scholar] [CrossRef] [Green Version]
- Abuodha, P.A.; Woodroffe, C.D. Assessing vulnerability to sea-level rise using a coastal sensitivity index: A case study from southeast Australia. J. Coast. Conserv. 2010, 14, 189–205. [Google Scholar] [CrossRef]
- López Royo, M.; Ranasinghe, R.; Jiménez, J.A. A rapid, low-cost approach to coastal vulnerability assessment at a national level. J. Coast. Res. 2016, 32, 932–945. [Google Scholar] [CrossRef]
- Villa, F.; McLeod, H. Environmental vulnerability indicators for environmental planning and decision-making: Guidelines and applications. Environ. Manag. 2002, 29, 335–348. [Google Scholar] [CrossRef]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of coastal vulnerability index applications for Barcelona Province. Ocean Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Díaz-Cuevas, P.; Prieto-Campos, A.; Ojeda-Zújar, J. Developing a beach erosion sensitivity indicator using relational spatial databases and Analytic Hierarchy Process. Ocean Coast. Manag. 2020, 189, 105146. [Google Scholar]
- Balica, S.F.; Wright, N.G.; Van der Meulen, F. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat. Hazards 2012, 64, 73–105. [Google Scholar] [CrossRef] [Green Version]
- Del Río, L.; Gracia, F.J. Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology 2009, 112, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Benassai, G.; Di Paola, G.; Aucelli, P.P.C. Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean Coast. Manag. 2015, 104, 22–35. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.N. Risk assessment as tool for coastal erosion management. Ocean Coast. Manag. 2020, 186, 105099. [Google Scholar] [CrossRef]
- Narra, P.; Coelho, C.; Sancho, F. Multicriteria GIS-based estimation of coastal erosion risk: Implementation to Aveiro sandy coast, Portugal. Ocean Coast. Manag. 2019, 178, 104845. [Google Scholar] [CrossRef]
- Hoque, M.A.A.; Ahmed, N.; Pradhan, B.; Roy, S. Assessment of coastal vulnerability to multi-hazardous events using geospatial techniques along the eastern coast of Bangladesh. Ocean Coast. Manag. 2019, 181, 104898. [Google Scholar] [CrossRef]
- Mohd, F.A.; Maulud, K.N.A.; Karim, O.A.; Begum, R.A.; Awang, N.A.; Ahmad, A.; Azhary, W.A.H.W.M.; Kamarudin, M.K.A.; Jaafar, M.; Mohtar, W.H.M.W. Comprehensive coastal vulnerability assessment and adaptation for Cherating-Pekan coast, Pahang, Malaysia. Ocean Coast. Manag. 2019, 182, 104948. [Google Scholar] [CrossRef]
- Postacchini, M.; Romano, A. Dynamics of the Coastal Zone. J. Mar. Sci. Eng. 2019, 7, 451. [Google Scholar] [CrossRef]
- Amores, A.; Marcos, M.; Carrió, D.S.; Gómez-Pujol, L. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci. 2020, 20, 1955–1968. [Google Scholar] [CrossRef]
- Lin-Ye, J.; García-León, M.; Gràcia, V.; Ortego, M.I.; Lionello, P.; Conte, D.; Pérez-Gómez, B.; Sánchez-Arcilla, A. Modellingof Future Extreme Storm Surges at the NW Mediterranean Coast (Spain). Water 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhang, J.; Zhang, L.; Shen, Y. Computational investigation of typhoon-induced storm surge in Hangzhou Bay, China. Estuarine Coast. Shelf Sci. 2009, 85, 530–536. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Zheng, L. Hurricane storm surge simulations for Tampa Bay. Estuaries Coasts 2006, 29, 899–913. [Google Scholar] [CrossRef]
- Helderop, E.; Grubesic, T.H. Hurricane storm surge in Volusia County, Florida: Evidence of a tipping point for infrastructure damage. Disasters 2019, 43, 157–180. [Google Scholar] [CrossRef]
- Wijnberg, K.M.; Kroon, A. Barred beaches. Geomorphology 2002, 48, 103–120. [Google Scholar] [CrossRef]
- Postacchini, M.; Ludeno, G. Combining numerical simulations and normalized scalar product strategy: A new tool for predicting beach inundation. J. Mar. Sci. Eng. 2019, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Rutten, J.; de Jong, S.M.; Ruessink, G. Accuracy of nearshore bathymetry inverted from X-band radar and optical video data. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1106–1116. [Google Scholar] [CrossRef]
- Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast. Eng. 2018, 136, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Ranasinghe, R. Assessing climate change impacts on open sandy coasts: A review. Earth-Sci. Rev. 2016, 160, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 1–12. [Google Scholar]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Thieblemont, R.; Rohmer, J.; Idier, D.; Manceau, J.C.; Quique, R. Low-end probabilistic sea-level projections. Water 2019, 11, 1507. [Google Scholar] [CrossRef] [Green Version]
- Short, A.D. Handbook of Beach and Shoreface Morphodynamics; Number 551.468; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Masselink, G.; Short, A.D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Boccotti, P. Wave Mechanics for Ocean Engineering; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Bonazzi, A.; Cusack, S.; Mitas, C.; Jewson, S. The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas. Nat. Hazards Earth Syst. Sci. 2012, 12, 1769–1782. [Google Scholar] [CrossRef] [Green Version]
- MacClenahan, P.; McKenna, J.; Cooper, J.; O’Kane, B. Identification of highest magnitude coastal storm events over western Ireland on the basis of wind speed and duration thresholds. Int. J. Climatol. A J. R. Meteorol. Soc. 2001, 21, 829–842. [Google Scholar] [CrossRef]
- Sotillo, M.; Aznar, R.; Valero, F. The 44-year Mediterranean HIPOCAS wind database: A useful tool to analyse offshore extreme wind events from a long-term regional perspective. Coast. Eng. 2008, 55, 930–943. [Google Scholar] [CrossRef]
- Matias, A.; Carrasco, A.R.; Loureiro, C.; Masselink, G.; Andriolo, U.; McCall, R.; Ferreira, Ó.; Plomaritis, T.A.; Pacheco, A.; Guerreiro, M. Field measurements and hydrodynamic modelling to evaluate the importance of factors controlling overwash. Coast. Eng. 2019, 152, 103523. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.; Rao, A.R. Flood Frequency Analysis; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kriebel, D.; Dalrymple, R. A Northeaster Risk Index; R and D Coastal Engineering: Newak, DE, USA, 1995. [Google Scholar]
- Dorsch, W.; Newland, T.; Tassone, D.; Tymons, S.; Walker, D. A statistical approach to modelling the temporal patterns of ocean storms. J. Coast. Res. 2008, 24, 1430–1438. [Google Scholar] [CrossRef]
- Ferreira, Ó. Storm groups versus extreme single storms: Predicted erosion and management consequences. J. Coast. Res. 2005, 42, 221–227. [Google Scholar]
- Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.R.; Capo, S.; Parisot, J.; Brown, J.A.; MacMahan, J.H. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [Google Scholar] [CrossRef]
- Ruessink, B.; Kroon, A. The behaviour of a multiple bar system in the nearshore zone of Terschelling, the Netherlands: 1965–1993. Mar. Geol. 1994, 121, 187–197. [Google Scholar] [CrossRef]
- Postacchini, M.; Soldini, L.; Lorenzoni, C.; Mancinelli, A. Medium-term dynamics of a middle Adriatic barred beach. Ocean Sci. 2017, 13, 719. [Google Scholar] [CrossRef]
- Melito, L.; Parlagreco, L.; Perugini, E.; Postacchini, M.; Devoti, S.; Soldini, L.; Zitti, G.; Liberti, L.; Brocchini, M. Sandbar dynamics in microtidal environments: Migration patterns in unprotected and bounded beaches. Coast. Eng. 2020, 161, 103768. [Google Scholar] [CrossRef]
- Bertin, X.; Prouteau, E.; Letetrel, C. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob. Planet. Chang. 2013, 106, 77–83. [Google Scholar] [CrossRef]
- Ferrarin, C.; Roland, A.; Bajo, M.; Umgiesser, G.; Cucco, A.; Davolio, S.; Buzzi, A.; Malguzzi, P.; Drofa, O. Tide-surge-wave modelling and forecasting in the Mediterranean Sea with focus on the Italian coast. Ocean Model. 2013, 61, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Parlagreco, L.; Melito, L.; Devoti, S.; Perugini, E.; Soldini, L.; Zitti, G.; Brocchini, M. Monitoring for coastal resilience: Preliminary data from five Italian sandy beaches. Sensors 2019, 19, 1854. [Google Scholar] [CrossRef] [Green Version]
- Postacchini, M.; Lalli, F.; Memmola, F.; Bruschi, A.; Bellafiore, D.; Lisi, I.; Zitti, G.; Brocchini, M. A model chain approach for coastal inundation: Application to the bay of Alghero. Estuarine, Coast. Shelf Sci. 2019, 219, 56–70. [Google Scholar] [CrossRef]
- Gornitz, V. Vulnerability of the East Coast, USA to future sea level rise. J. Coast. Res. 1990, 9, 201–237. [Google Scholar]
- Coelho, C.; Silva, R.; Veloso-Gomes, F.; Taveira Pinto, F. A vulnerability analysis approach for the Portuguese west coast. Risk Anal. V Simul. Hazard Mitigation 2006, 1, 251–262. [Google Scholar]
- Mattei, G.; Rizzo, A.; Anfuso, G.; Aucelli, P.; Gracia, F. A tool for evaluating the archaeological heritage vulnerability to coastal processes: The case study of Naples Gulf (southern Italy). Ocean Coast. Manag. 2019, 179, 104876. [Google Scholar] [CrossRef]
- Crowell, M.; Leikin, H.; Buckley, M.K. Evaluation of coastal erosion hazards study: An overview. J. Coast. Res. 1999, 28, 2–9. [Google Scholar]
- Crowell, M.; Buckley, M.K. Calculating erosion rates: Using long-term data to increase data confidence. In Coastal Engineering Considerations in Coastal Zone Management; ASCE: Sheffield, UK, 1993; pp. 117–129. [Google Scholar]
- Smith, G.L.; Zarillo, G.A. Calculating long-term shoreline recession rates using aerial photographic and beach profiling techniques. J. Coast. Res. 1990, 6, 111–120. [Google Scholar]
- Anfuso, G.; Dominguez, L.; Gracia, F. Short and medium-term evolution of a coastal sector in Cadiz, SW Spain. Catena 2007, 70, 229–242. [Google Scholar] [CrossRef]
- Williams, A.; Alveirinho-Dias, J.; Novo, F.G.; Garcıa-Mora, M.; Curr, R.; Pereira, A. Integrated coastal dune management: Checklists. Cont. Shelf Res. 2001, 21, 1937–1960. [Google Scholar] [CrossRef]
- Mullick, M.R.A.; Tanim, A.; Islam, S.M.S. Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospatial techniques. Ocean Coast. Manag. 2019, 174, 154–169. [Google Scholar] [CrossRef]
- Bertoni, D.; Sarti, G.; Alquini, F.; Ciccarelli, D. Implementing a coastal dune vulnerability index (CDVI) to support coastal management in different settings (Brazil and Italy). Ocean Coast. Manag. 2019, 180, 104916. [Google Scholar] [CrossRef]
- Dal Cin, R.; Simeoni, U. A model for determining the classification, vulnerability and risk in the southern coastal zone of the Marche (Italy). J. Coast. Res. 1994, 10, 18–29. [Google Scholar]
- Simeoni, U.; Tessari, U.; Zamariolo, A.; Gabbianelli, G.; Del Grande, C.; Gonella, M.; Polo, P.; Atzeni, P.; Anconetani, P.; Pellizzari, M. Studio dell’Ancona e delle Vene di Bellocchio e del litorale tra Porto Garibaldi e Porto Corsini: Proposta di sistemazione ambientale; Rapporto Conclusivo; Parco del Delta del Po Emilia-Romagna: Ferrara, Italy, 2000. [Google Scholar]
- Anfuso, G.; Martínez Del Pozo, J.Á. Assessment of coastal vulnerability through the use of GIS tools in South Sicily (Italy). Environ. Manag. 2009, 43, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Abuodha, P.A.; Woodroffe, C.D. Assessing Vulnerability of Coasts to Climate Change: A Review of Approaches and Their Application to the Australian Coast; UOW Library: Wollongong, Australia, 2006. [Google Scholar]
- Özyurt, G.; Ergin, A. Application of sea level rise vulnerability assessment model to selected coastal areas of Turkey. J. Coast. Res. 2009, 56, 248–251. [Google Scholar]
- Özyurt, G.; Ergin, A. Improving coastal vulnerability assessments to sea-level rise: A new indicator-based methodology for decision makers. J. Coast. Res. 2010, 26, 265–273. [Google Scholar] [CrossRef]
- Cooper, J.; McLaughlin, S. Contemporary multidisciplinary approaches to coastal classification and environmental risk analysis. J. Coast. Res. 1998, 4, 512–524. [Google Scholar]
- García-Mora, M.; Gallego-Fernández, J.; Williams, A.; García-Novo, F. A coastal dune vulnerability classification. A case study of the SW Iberian Peninsula. J. Coast. Res. 2001, 17, 802–811. [Google Scholar]
- Gracia, F.; Rodríguez Vidal, J.; Benavente, J.; Cáceres, L.; López Aguayo, F. Tectónica cuaternaria en la Bahía de Cádiz. Avances en el estudio del Cuaternario español; Carles Roqué i Pau y Lluís Pallí Buxó: Girona, Spain, 1999; pp. 67–74. [Google Scholar]
- Sunamura, T. Geomorphology of Rocky Coasts; John Wiley & Son Ltd.: Hoboken, NJ, USA, 1992; Volume 3. [Google Scholar]
- Trenhaile, A.S. Rock coasts, with particular emphasis on shore platforms. Geomorphology 2002, 48, 7–22. [Google Scholar] [CrossRef]
- Gomitz, V.M.; Beaty, T.W.; Daniels, R.C. A Coastal Hazards Data Base for the US West Coast; Technical Report; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1997.
- Hammar-Klose, E.S.; Thieler, E.R. Coastal vulnerability to Sea-Level Rise: A Preliminary Database for the US Atlantic, Pacific, and Gulf of Mexico Coasts; Number 68; US Geological Survey: Woods Hole, MA, USA, 2001.
- Thieler, E.; Himmelstoss, E.; Zichichi, J.; Miller, T. Digital shoreline analysis system (DSAS) version 3.0. In ArcGIS© Extension for Calculating Shoreline Change; US Geological Survey Open-File Report; US Geological Survey: Woods Hole, MA, USA, 2005; Volume 1304. [Google Scholar]
- Gracia, F.; Sanjaume, E.; Hernández, L.; Hernández, A.; Flor, G.; Gómez-Serrano, M. Dunas marítimas y Continentals, Bases ecológicas Preliminares para la Conservación de los tipos de hábitat de interés Comunitario en España; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2009.
- Raji, O.; Niazi, S.; Snoussi, M.; Dezileau, L.; Khouakhi, A. Vulnerability assessment of a lagoon to sea level rise and storm events: Nador lagoon (NE Morocco). J. Coast. Res. 2013, 65, 802–807. [Google Scholar] [CrossRef]
- Anfuso, G.; Gracia, F.J.; Battocletti, G. Determination of cliffed coastline sensitivity and associated risk for human structures: A methodological approach. J. Coast. Res. 2013, 29, 1292–1296. [Google Scholar]
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Pendleton, E.A.; Thieler, E.R.; Williams, S.J. Coastal Vulnerability Assessment of Golden Gate National Recreation Area to Sea-Level Rise; US Geological Survey Open-File Report; US Geological Survey: Woods Hole, MA, USA, 2005.
- Santos, M.; Río, L.D.; Benavente, J. GIS-based approach to the assessment of coastal vulnerability to storms. Case study in the Bay of Cádiz (Andalusia, Spain). J. Coast. Res. 2013, 65, 826–831. [Google Scholar] [CrossRef]
- Kraus, N.; Militello, A.; Todoroff, G. Barrier Breaching Processes and Barrier Spit Breach, Stone Lagoon; Engineer Research and Development Centre, MS Coastal and Hydraulics Lab.: Vicksburg, MS, USA, 2002. [Google Scholar]
- Goldsmith, V. Coastal dunes. In Coastal Sedimentary Environments; Springer: Berlin/Heidelberg, Germany, 1985; pp. 303–378. [Google Scholar]
- Ceia, F.R.; Patrício, J.; Marques, J.C.; Dias, J.A. Coastal vulnerability in barrier islands: The high risk areas of the Ria Formosa (Portugal) system. Ocean Coast. Manag. 2010, 53, 478–486. [Google Scholar] [CrossRef]
- Molina, R.; Manno, G.; Lo Re, C.; Anfuso, G. Dune Systems’ Characterization and Evolution in the Andalusia Mediterranean Coast (Spain). Water 2020, 12, 2094. [Google Scholar] [CrossRef]
- Ozyurt, G.; Ergin, A.; Esen, M. Indicator based coastal vulnerability assessment model to sea level rise. In Proceedings of the 7th International Conference on Coastal and Port Engineering in Developing Countries (COPEDEC), Dubai, UAE, 24–28 February 2008. Paper E-06. [Google Scholar]
- Di Paola, G.; Iglesias, J.; Rodríguez, G.; Benassai, G.; Aucelli, P.; Pappone, G. Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi-quantitative methodologies. J. Coast. Res. 2011, 61, 303–308. [Google Scholar] [CrossRef]
- Aybulatov, N.; Artyukhin, Y. Geo-Ecology of the World Ocean’s Shelf and Coasts; World Ocean’s Shelf and Coasts: Sheffield, UK, 1993. [Google Scholar]
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J. Coast. Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- De Serio, F.; Armenio, E.; Mossa, M.; Petrillo, A.F. How to define priorities in coastal vulnerability assessment. Geosciences 2018, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- De Lange, H.; Sala, S.; Vighi, M.; Faber, J. Ecological vulnerability in risk assessment—A review and perspectives. Sci. Total Environ. 2010, 408, 3871–3879. [Google Scholar] [CrossRef]
- Bevacqua, A.; Yu, D.; Zhang, Y. Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environ. Sci. Policy 2018, 82, 19–29. [Google Scholar] [CrossRef]
- Benassai, G.; Migliaccio, M.; Nunziata, F. The use of COSMO-SkyMed© SAR data for coastal management. J. Mar. Sci. Technol. 2015, 20, 542–550. [Google Scholar] [CrossRef]
- Nunziata, F.; Buono, A.; Migliaccio, M.; Benassai, G. Dual-polarimetric C-and X-band SAR data for coastline extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4921–4928. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Mucerino, L.; Buono, A.; Rosskopf, C.M.; Nunziata, F.; Migliaccio, M.; Urciuoli, A.; Montella, R. Shoreline rotation analysis of embayed beaches by means of in situ and remote surveys. Sustainability 2019, 11, 725. [Google Scholar] [CrossRef] [Green Version]
- Benassai, G.; Aucelli, P.; Budillon, G.; De Stefano, M.; Di Luccio, D.; Di Paola, G.; Montella, R.; Mucerino, L.; Sica, M.; Pennetta, M. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation. Nat. Hazards Earth Syst. Sci. 2017, 17, 1493. [Google Scholar] [CrossRef] [Green Version]
- Pugliano, G.; Robustelli, U.; Di Luccio, D.; Mucerino, L.; Benassai, G.; Montella, R. Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations. J. Mar. Sci. Eng. 2019, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, P. Towards participatory geographic information systems for community-based environmental decision making. J. Environ. Manag. 2009, 90, 1966–1971. [Google Scholar] [CrossRef]
- Montella, R.; Kosta, S.; Foster, I. DYNAMO: Distributed leisure yacht-carried sensor-network for atmosphere and marine data crowdsourcing applications. In Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018; pp. 333–339. [Google Scholar]
- Di Luccio, D.; Riccio, A.; Galletti, A.; Laccetti, G.; Lapegna, M.; Marcellino, L.; Kosta, S.; Montella, R. Coastal marine data crowdsourcing using the Internet of Floating Things: Improving the results of a water quality model. IEEE Access 2020, 8, 101209–101223. [Google Scholar] [CrossRef]
- Keating, M.; Rhodes, B.; Richards, A. Crowdsourcing: A flexible method for innovation, data collection, and analysis in social science research. Soc. Media Soc. Surv. Res. 2013, 1, 179–201. [Google Scholar]
- Taeihagh, A. Crowdsourcing, sharing economies and development. J. Dev. Soc. 2017, 33, 191–222. [Google Scholar] [CrossRef]
- Cilliers, L.; Flowerday, S. Information security in a public safety, participatory crowdsourcing smart city project. In Proceedings of the World Congress on Internet Security (WorldCIS-2014), London, UK, 20 September 2014; pp. 36–41. [Google Scholar]
- Kong, X.; Liu, X.; Jedari, B.; Li, M.; Wan, L.; Xia, F. Mobile crowdsourcing in smart cities: Technologies, applications, and future challenges. IEEE Internet Things J. 2019, 6, 8095–8113. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Dasgupta, R.; Hazra, S.; Mitra, D. Coastal hazards and vulnerability: A review. Int. J. Geol. Earth Environ. Sci. 2012, 2, 57–69. [Google Scholar]
- May, V. Integrating the geomorphological environment, cultural heritage, tourism and coastal hazards in practice. Geografia Fisica e Dinamica Quaternaria 2008, 31, 187–194. [Google Scholar]
- Donovan, K.H.M. Cultural Responses to Volcanic Hazards on Mt Merapi, Indonesia. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2010. [Google Scholar]
- Grattan, J.; Torrence, R. Natural Disasters and Cultural Change; Routledge: London, UK, 2003. [Google Scholar]
- Gregory, G.; Loveridge, A.; Gough, J. Social and cultural aspects of natural hazards perception and response. N. Z. Geogr. 1997, 53, 47–54. [Google Scholar] [CrossRef]
- Klein, R.J.; Nicholls, R.J.; Mimura, N. Coastal adaptation to climate change: Can the IPCC Technical Guidelines be applied? Mitig. Adapt. Strateg. Glob. Chang. 1999, 4, 239–252. [Google Scholar] [CrossRef]
- Klein, R.J.; Nicholls, R.J.; Ragoonaden, S.; Capobianco, M.; Aston, J.; Buckley, E.N. Technological options for adaptation to climate change in coastal zones. J. Coast. Res. 2001, 17, 531–543. [Google Scholar]
- VanKoningsveld, M.; Mulder, J.P.; Stive, M.J.; VanDerValk, L.; VanDerWeck, A. Living with sea-level rise and climate change: A case study of the Netherlands. J. Coast. Res. 2008, 24, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Niemeyer, H.D.; Berkenbrink, C.; Ritzmann, A.; Knaack, H.; Wurpts, A.; Kaiser, R. Evaluation of coastal protection strategies in respect of climate change impacts. Die Küste 81 Model. 2014, 81, 565–577. [Google Scholar]
- Williams, A.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Foti, E.; Musumeci, R.E.; Stagnitti, M. Coastal defence techniques and climate change: A review. Rend. Lincei. Sci. Fis. E Nat. 2020, 31, 123–138. [Google Scholar] [CrossRef]
- Airoldi, L.; Abbiati, M.; Beck, M.W.; Hawkins, S.J.; Jonsson, P.R.; Martin, D.; Moschella, P.S.; Sundelöf, A.; Thompson, R.C.; Åberg, P. An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coast. Eng. 2005, 52, 1073–1087. [Google Scholar] [CrossRef] [Green Version]
- Bertasi, F.; Colangelo, M.A.; Abbiati, M.; Ceccherelli, V.U. Effects of an artificial protection structure on the sandy shore macrofaunal community: The special case of Lido di Dante (Northern Adriatic Sea). Hydrobiologia 2007, 586, 277–290. [Google Scholar] [CrossRef]
- Walker, S.J.; Schlacher, T.A.; Thompson, L.M. Habitat modification in a dynamic environment: The influence of a small artificial groyne on macrofaunal assemblages of a sandy beach. Estuarine Coast. Shelf Sci. 2008, 79, 24–34. [Google Scholar] [CrossRef]
- Bastos, L.; Bio, A.; Pinho, J.; Granja, H.; da Silva, A.J. Dynamics of the Douro estuary sand spit before and after breakwater construction. Estuarine Coast. Shelf Sci. 2012, 109, 53–69. [Google Scholar] [CrossRef]
- Veloso-Gomes, F.; Taveira-Pinto, F.; das Neves, L.; Barbosa, J.P.; Coelho, C. Erosion risk levels at the NW Portuguese coast: The Douro mouth—Cape Mondego stretch. J. Coast. Conserv. 2004, 10, 43–52. [Google Scholar] [CrossRef]
- Finkl, C.; Walker, H.J. Beach nourishment. In Engineered Coasts; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–22. [Google Scholar]
- Cooper, J.; Anfuso, G.; Del Río, L. Bad beach management: European perspectives. Geol. Soc. Am. Ser. 2009, 460, 167–179. [Google Scholar]
- Reeve, D.; Spivack, M. Evolution of shoreline position moments. Coast. Eng. 2004, 51, 661–673. [Google Scholar] [CrossRef]
- French, P.W. Coastal Defences: Processes, Problems and Solutions; Psychology Press: East Sussex, UK, 2001. [Google Scholar]
- Huisman, B.; De Schipper, M.; Ruessink, B. Sediment sorting at the Sand Motor at storm and annual time scales. Mar. Geol. 2016, 381, 209–226. [Google Scholar] [CrossRef]
- Barnard, P.; Erikson, L.H.; Hansen, J. Monitoring and modeling shoreline response due to shoreface nourishment on a high-energy coast. J. Coast. Res. 2009, 56, 29–33. [Google Scholar]
- Krumbein, W.C.; James, W.R. A Lognormal Size Distribution Model for Estimating Stability of Beach Fill Material; Number 16; US Army Coastal Engineering Research Center Reston: Evanston, IL, USA, 1965. [Google Scholar]
- James, W.R. Techniques in Evaluating Suitability of Borrow Material for Beach Nourishment; Number 60; US Coastal Engineering Research Center: Fort Belvoir, VA, USA, 1975. [Google Scholar]
- Pranzini, E.; Anfuso, G.; Muñoz-Perez, J.J. A probabilistic approach to borrow sediment selection in beach nourishment projects. Coast. Eng. 2018, 139, 32–35. [Google Scholar] [CrossRef]
- Short, A.; Jackson, D. Beach morphodynamics. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 106–129. [Google Scholar]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [Green Version]
- Jackson, N.L.; Nordstrom, K.F. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Res. 2011, 3, 181–196. [Google Scholar] [CrossRef]
- Van der Nat, A.; Vellinga, P.; Leemans, R.; Van Slobbe, E. Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng. 2016, 87, 80–90. [Google Scholar] [CrossRef]
- McIvor, A.; Möller, I.; Spencer, T.; Spalding, M. Mangroves as a sustainable coastal defence. In Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC) The Nature Conservancy, Bali, Indonesia, 24–26 September 2013; pp. 24–26. [Google Scholar]
- Krauss, K.W.; Doyle, T.W.; Doyle, T.J.; Swarzenski, C.M.; From, A.S.; Day, R.H.; Conner, W.H. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 2009, 29, 142–149. [Google Scholar] [CrossRef]
- Bao, T.Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 2011, 53, 807–818. [Google Scholar]
- IFRC. Breaking the Waves. Impact Analysis of Coastal Afforestation for Disaster Risk Reduction in Viet Nam; International Federation of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2011. [Google Scholar]
- Rey, J.R.; Carlson, D.B.; Brockmeyer, R.E. Coastal wetland management in Florida: Environmental concerns and human health. Wetl. Ecol. Manag. 2012, 20, 197–211. [Google Scholar] [CrossRef]
- Brown, B.; Fadillah, R.; Nurdin, Y.; Soulsby, I.; Ahmad, R. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. From small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales (>5000 ha). Surv. Perspect. Integr. Environ. Soc. 2014, 7, 1–13. [Google Scholar]
- Giri, C.; Zhu, Z.; Tieszen, L.; Singh, A.; Gillette, S.; Kelmelis, J. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [Google Scholar] [CrossRef]
- Villate Daza, D.A.; Sánchez Moreno, H.; Portz, L.; Portantiolo Manzolli, R.; Bolívar-Anillo, H.J.; Anfuso, G. Mangrove forests evolution and threats in the caribbean sea of Colombia. Water 2020, 12, 1113. [Google Scholar] [CrossRef] [Green Version]
- Vanderlinden, J.P.; Baztan, J.; Coates, T.; Dávila, O.G.; Hissel, F.; Kane, I.O.; Koundouri, P.; Mcfadden, L.; Parker, D.; Penning-Rowsell, E.; et al. Nonstructural approaches to coastal risk mitigations. In Coastal Risk Management in a Changing Climate; Elsevier: Amsterdam, The Netherlands, 2015; pp. 237–274. [Google Scholar]
- Bapalu, G.V.; Sinha, R. GIS in flood hazard mapping: A case study of Kosi River Basin, India. GIS Dev. Wkly. 2005, 1, 1–3. [Google Scholar]
- Di Luccio, D.; Benassai, G.; Budillon, G.; Mucerino, L.; Montella, R.; Pugliese Carratelli, E. Wave run-up prediction and observation in a micro-tidal beach. Nat. Hazards Earth Syst. Sci. 2018, 18, 2841–2857. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, G.; Postacchini, M.; Quagliarini, E.; Brocchini, M.; Cianca, C.; D’Orazio, M. A preliminary combined simulation tool for the risk assessment of pedestrians’ flood-induced evacuation. Environ. Model. Softw. 2017, 96, 14–29. [Google Scholar] [CrossRef]
- Esteves, L.S. What is Managed Realignment? In Managed Realignment: A Viable Long-Term Coastal Management Strategy? Springer: Berlin/Heidelberg, Germany, 2014; pp. 19–31. [Google Scholar]
- Ruol, P.; Martinelli, L.; Favaretto, C. Vulnerability analysis of the Venetian littoral and adopted mitigation strategy. Water 2018, 10, 984. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.; Manno, G.; Re, C.L.; Anfuso, G.; Ciraolo, G. A Methodological Approach to Determine Sound Response Modalities to Coastal Erosion Processes in Mediterranean Andalusia (Spain). J. Mar. Sci. Eng. 2020, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.; McKenna, J. Social justice in coastal erosion management: The temporal and spatial dimensions. Geoforum 2008, 39, 294–306. [Google Scholar] [CrossRef]
- Carvalho, T.; Coelho, C. Coastal risk perception: A case study in Aveiro District, Portugal. J. Hazard. Mater. 1998, 61, 263–270. [Google Scholar] [CrossRef]
- Economos, C.D. Beach user values and perceptions of coastal erosion. In Environment Waikato Technical Report; Environment Waikato: Hamilton, New Zealand, 2002. [Google Scholar]
- Anfuso, G.; Williams, A.T.; Martínez, G.C.; Botero, C.; Hernández, J.C.; Pranzini, E. Evaluation of the scenic value of 100 beaches in Cuba: Implications for coastal tourism management. Ocean Coast. Manag. 2017, 142, 173–185. [Google Scholar] [CrossRef]
- Clayton, K.M. Sediment Input from the Norfolk Cliffs, Eastern England A Century of Coast Protection and Its Effect. J. Coast. Res. 1989, 5, 433–442. [Google Scholar]
- Pontee, N.; Drummond, J.; Morrisey, D. Coastline change and implications for habitat loss. In Proceedings of the Institution of Civil Engineers-Maritime Engineering; Thomas Telford Ltd.: London, UK, 2004; Volume 157, pp. 133–142. [Google Scholar]
- Nason, S. Maintenance of Uneconomic Sea Flood Defences: A Way Forward; Department for Environment (DEFRA): London, UK, 2004.
- Nason, S. Adaptation to Climate Change; Department for Environment (DEFRA): London, UK, 2016. [Google Scholar]
- Chatterton, J.; Clarke, C.; Daly, E.; Dawks, S.; Elding, C.; Fenn, T.; Hick, E.; Miller, J.; Morris, J.; Ogunyoye, F.; et al. The Costs and Impacts of the Winter 2013 to 2014 Floods; Report SC140025; Environment Agency: Bristol, UK, 2016. [Google Scholar]
- Leatherman, S.P. Coastal erosion and the United States national flood insurance program. Ocean Coast. Manag. 2018, 156, 35–42. [Google Scholar] [CrossRef]
- Leatherman, S.P.; White, G. Living on the edge: The coastal collision course. Nat. Hazards Obs. 2005, 30, 5–6. [Google Scholar]
- Mileti, D.S.; Design, D. A Reassessment of Natural Hazards in the United State; Joseph Henry Press: Washington, DC, USA, 1999. [Google Scholar]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast. Conserv. 2018, 22, 1001–1015. [Google Scholar] [CrossRef]
- Ramieri, E.; Hartley, A.; Barbanti, A.; Santos, F.D.; Gomes, A.; Hilden, M.; Laihonen, P.; Marinova, N.; Santini, M. Methods for assessing coastal vulnerability to climate change. ETC CCA Tech. Pap. 2011, 1, 1–93. [Google Scholar]
- Marfai, M.A.; Sekaranom, A.B.; Ward, P. Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia. Nat. Hazards 2015, 75, 1127–1144. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41. [Google Scholar] [CrossRef]
- Idier, D.; Castelle, B.; Poumadère, M.; Balouin, Y.; Bertoldo, R.B.; Bouchette, F.; Boulahya, F.; Brivois, O.; Calvete, D.; Capo, S.; et al. Vulnerability of sandy coasts to climate variability. Clim. Res. 2013, 57, 19–44. [Google Scholar] [CrossRef] [Green Version]
- Gornitz, V. Mean sea level changes in the recent past. In Climate and Sea Level Change, Observations, Projections and Implications; Cambridge University Press: Cambridge, MA, USA, 1993; pp. 25–44. [Google Scholar]
- Jensen, J.R.; Ramsey, E.W., III; Holmes, J.M.; Michel, J.E.; Savitsky, B.; Davis, B.A. Environmental sensitivity index (ESI) mapping for oil spills using remote sensing and geographic information system technology. Int. J. Geogr. Inf. Syst. 1990, 4, 181–201. [Google Scholar] [CrossRef]
- Hughes, G. An index to assess South Africa’s vulnerability to sea-level rise: News and views. S. Afr. J. Sci. 1992, 88, 308–311. [Google Scholar]
- Daniels, R.; Gornitz, V.; Mehta, A.; Lee, S.; Cushman, R. Adapting to Sea-Level Rise in the US Southeast: The Influence of Built Infrastructure and Biophysical Factors on the Inundation of Coastal Areas; Technical Report; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1992.
- Hughes, P.; Brundrit, G.; Searson, S. The vulnerability of Walvis Bay to rising sea levels. J. Coast. Res. 1992, 8, 868–881. [Google Scholar]
- Klein, R.J.; Nicholls, R.J. Assessment of coastal vulnerability to climate change. Ambio 1999, 28, 182–187. [Google Scholar]
- Ojeda Zújar, J.; Álvarez Francoso, J.; Martín Cajaraville, D.; Fraile Jurado, P. El uso de las tecnologías de la información geográfica para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (España). GeoFocus 2009, 9, 83–100. [Google Scholar]
- Li, K.; Li, G.S.; Loukas, A.; Topouzelis, K. Vulnerability assessment of storm surges in the coastal area of Guangdong Province. Nat. Hazards Earth Syst. Sci. 2011, 11, 2003–2010. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.; Coelho, C. Northwest coast of Portugal–Past behavior and future coastal defense options. J. Coast. Res. 2013, 65, 921–926. [Google Scholar] [CrossRef]
- Alexandrakis, G.; Manasakis, C.; Kampanis, N.A. Valuating the effects of beach erosion to tourism revenue. A management perspective. Ocean Coast. Manag. 2015, 111, 1–11. [Google Scholar] [CrossRef]
- Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.M.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and modelling coastal vulnerability and mitigation proposal for an archaeological site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. [Google Scholar] [CrossRef] [Green Version]
1. |
“Protect” Option | |
---|---|
Hard engineering defenses | breakwaters, groins, seawalls dikes |
Soft engineering interventions | beach nourishment |
Ecosystem-based solutions | wetland/mangrove maintenance dune replenishment barrier island and coastal wetland maintenance mangrove conservation/restoration |
“Accomodate” Options | |
Non-structural mitigation options | land-use regulations/restrictions relocation programs |
Information systems | flood hazard mapping emergency preparedness programs good warning |
“Retreat” Option | |
Marraged realignment | setback zones (vertical/horizontal) soft tolerant crops change of land use |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. J. Mar. Sci. Eng. 2021, 9, 72. https://doi.org/10.3390/jmse9010072
Anfuso G, Postacchini M, Di Luccio D, Benassai G. Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. Journal of Marine Science and Engineering. 2021; 9(1):72. https://doi.org/10.3390/jmse9010072
Chicago/Turabian StyleAnfuso, Giorgio, Matteo Postacchini, Diana Di Luccio, and Guido Benassai. 2021. "Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review" Journal of Marine Science and Engineering 9, no. 1: 72. https://doi.org/10.3390/jmse9010072
APA StyleAnfuso, G., Postacchini, M., Di Luccio, D., & Benassai, G. (2021). Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. Journal of Marine Science and Engineering, 9(1), 72. https://doi.org/10.3390/jmse9010072