Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acoustic Data Collection
2.3. Experimental Noise Source
2.4. Sound Speed Profiles (SPP)
2.5. Transmission Loss and Sound Propagation Modeling
3. Results
3.1. Experimental Noise Source
3.2. Sound Speed Profiles
3.3. Transmission Loss and Sound Propagation Modeling
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erbe, C.; MacGillivray, A.; Williams, R. Mapping cumulative noise from shipping to inform marine spatial planning. J. Acoust. Soc. Am. 2012, 132, EL423–EL428. [Google Scholar] [CrossRef] [Green Version]
- Richardson, W.J.; Greene, C.R., Jr.; Malme, C.I.; Thomson, D. Marine Mammals and Noise; Academic Press: San Diego, CA, USA, 1995; p. 576. [Google Scholar]
- Jasny, M. Sounding the Depths. II: The Rising Toll of Sonar, Shipping and Industrial Ocean Noise on Marine Life; Natural Resource Defence Council: Washington, DC, USA, 2005. [Google Scholar]
- National Research Council, NRC. Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- McDonald, M.A.; Hildebrand, J.A.; Wiggins, S.M. Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J. Acoust. Soc. Am. 2006, 120, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, M.A.; Hildebrand, J.A.; Wiggins, S.M.; Ross, D. A 50-year comparison of ambient ocean noise near San Clemente Island: A bathymetrically complex coastal region off Southern California. J. Acoust. Soc. Am. 2008, 124, 1985–1992. [Google Scholar] [CrossRef]
- Chapman, N.R.; Price, A. Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. J. Acoust. Soc. Am. 2011, 129, EL161–EL165. [Google Scholar] [CrossRef] [PubMed]
- Miksis-Olds, J.L.; Nichols, S.M. Is low frequency ocean sound increasing globally? J. Acoust. Soc. Am. 2016, 139, 501–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A.; Dzieciuch, M.A. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online 2002, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, J.A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 2009, 395, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, F.; McCully, S.R.; Weisse, L.R.; Wood, D.T.; Warr, K.J.; Barry, J.; Law, R.J. Cetacean stock assessments in relation to exploration and production industry activity and other human pressures: Review and data needs. Aquat. Mam. 2011, 37, 1–93. [Google Scholar] [CrossRef]
- Frisk, G.V. Noiseonomics: The relationship between ambient noise levels in the sea and global economic trends. Sci. Rep. 2012, 2, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchant, N.D. Underwater noise abatement: Economic factors and policy options. Environ. Sci. Pol. 2019, 92, 116–123. [Google Scholar] [CrossRef]
- Merchant, N.; Brookes, K.; Faulkner, R.; Bicknell, A.W.; Godley, B.J.; Witt, M.J. Underwater noise levels in UK waters. Sci. Rep. 2016, 6, 36942. [Google Scholar] [CrossRef] [PubMed]
- Širović, A.; Evans, K.; Garcia-Soto, C. Trends in inputs of anthropogenic noise into the marine environment. In UN World Ocean Assessment II; United Nations Publications: New York, NY, USA, 2021; Chapter 20; Volume II. [Google Scholar]
- Hatch, L.T.; Fristrup, K.M. No barrier at the boundaries: Implementing regional frameworks for noise management in protected natural areas. Mar. Ecol. Prog. Ser. 2009, 395, 223–244. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.; Erbe, C.; Ashe, E.; Clark, C.W. Quiet(er) marine protected areas. Mar. Poll. Bull. 2015, 10, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Pirotta, E.; Merchant, N.D.; Thompson, P.M.; Barton, T.R.; Lusseau, D. Quantifying the effect of boat disturbance on bottlenose dolphin foraging. Biol. Cons. 2015, 181, 82–89. [Google Scholar] [CrossRef]
- Cominelli, S.; Devillers, R.; Yurk, H.; MacGillivray, A.; McWhinnie, L.; Canessa, R. Noise exposure from commercial shipping for the southern resident killer whale population. Mar. Poll. Bull. 2018, 136, 177–200. [Google Scholar] [CrossRef] [PubMed]
- National Research Council, NRC. Ocean Noise and Marine Mammals; The National Academies Press: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- Simmonds, M.; Dolman, S.; Weilgart, L. Oceans of Noise; A WDCS Science Report WDCS; The Whale and Dolphin Conservation Society: Wiltshire, UK, 2004; p. 168. [Google Scholar]
- Weilgart, L.S. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can. J. Zool. 2007, 85, 1091–1116. [Google Scholar] [CrossRef]
- Southall, B.L.; Bowles, A.E.; Ellison, W.T.; Finneran, J.J.; Gentry, R.L.; Greene, C.R., Jr.; Kastak, D.; Ketten, D.R.; Miller, J.H.; Nachtigall, P.E. Marine mammal noise-exposure criteria: Initial scientific recommendations. Bioacoust.-Int. J. Anim. Sound Record. 2007, 17, 273–275. [Google Scholar]
- Clark, C.W.; Ellison, W.T.; Southall, B.L.; Hatch, L.; Van Parijs, S.M.; Frankel, A.; Ponirakis, D. Acoustic masking in marine ecosystems: Intuitions, analysis, and implication. Mar. Ecol. Prog. Ser. 2009, 395, 201–222. [Google Scholar] [CrossRef]
- Rolland, R.M.; Parks, S.E.; Hunt, K.E.; Castellote, M.; Corkeron, P.J.; Nowacek, D.P.; Wasser, S.K.; Kraus, S.D. Evidence that ship noise increases stress in right whales. Proc. Royal Soc. B Biol. Sci. 2012, 279, 2363–2368. [Google Scholar] [CrossRef]
- Erbe, C.; Reichmuth, C.; Cunningham, K.; Lucke, K.; Dooling, R. Communication masking in marine mammals: A review and research strategy. Mar. Poll. Bullet. 2016, 103, 15–38. [Google Scholar] [CrossRef]
- Wiley, D.; Hatch, L.; Thompson, M.; Schwehr, K.; MacDonald, C. Marine Sanctuaries and Marine Planning: Protecting endangered marine life. Proc. Mar. Saf. Secur. Counc. 2013, 70, 10–15. [Google Scholar]
- Hatch, L.T.; Wahle, C.M.; Gedamke, J.; Harrison, J.; Laws, B.; Moore, S.E.; Van Parijs, S.M. Can you hear me here? Managing acoustic habitat in US waters. Endanger. Species Res. 2016, 30, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Haver, S.M.; Fournet, M.E.H.; Dziak, R.P.; Gabriele, C.; Gedamke, J.; Hatch, L.T.; Haxel, J.; Heppell, S.A.; McKenna, M.F.; Mellinger, D.K.; et al. Comparing the Underwater Soundscapes of Four U.S. National Parks and Marine Sanctuaries. Front. Mar. Sci. 2019, 6, 500. [Google Scholar] [CrossRef] [Green Version]
- Vagle, S.; Neves, M. Evaluation of the effects on underwater noise levels from shifting vessel traffic away from Southern Resident Killer Whale foraging areas in the Strait of Juan de Fuca in 2018. Can. Tech. Rep. Hydrogr. Ocean Sci. 2019, 329, 6–64. [Google Scholar]
- Vagle, S. Evaluation of the efficacy of the Juan de Fuca lateral displacement trial and Swiftsure Bank plus Swanson Channel interim sanctuary zones, 2019. Can. Tech. Rep. Hydrogr. Ocean Sci. 2020, 332, 6–60. [Google Scholar]
- Burnham, R.E.; Vagle, S.; O’Neill, C.; Trounce, K. The Efficacy of Management Measures to Reduce Vessel Noise in Critical Habitat of Southern Resident Killer Whales in the Salish Sea. Front. Mar. Sci. 2021, 8, 664691. [Google Scholar] [CrossRef]
- Payne, R.; Webb, D. Orientation by means of long-range acoustic signaling in baleen whales. Ann. N. Y. Acad. Sci. 1971, 188, 110–141. [Google Scholar] [CrossRef]
- Thompson, T.J.; Winn, H.E.; Perkins, P.J. Mysticete Sounds. In Behavior of Marine Animals; Cetaceans, Winn, H.E., Plenum, B.L.O., Eds.; Plenum Press: New York, NY, USA, 1979; Volume 3, pp. 403–431. [Google Scholar]
- Watkins, W.A.; Wartzok, D. Sensory biophysics of marine mammals. Mar. Mamm. Sci. 1985, 1, 219–260. [Google Scholar] [CrossRef]
- Clark, C.W. Acoustic behavior of mysticete whales. In Sensory Abilities of Cetaceans; Thomas, J.A., Kastelein, R.A., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 571–583. [Google Scholar]
- Firestone, J.; Jarvis, C. Response and Responsibility: Regulating Noise Pollution in the Marine Environment. J. Int. Wild. Law Pol. 2007, 10, 109–152. [Google Scholar] [CrossRef]
- Sehgal, A.; Tumar, I.; Schonwalder, J. Effects of climate change and anthropogenic ocean acidification on underwater acoustic communications. In Proceedings of the OCEANS’10 IEEE SYDNEY, Sydney, Australia, 24–27 May 2010; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Farina, A. Soundscape Ecology, Principles, Patterns, Methods and Applications; Springer Science and Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Medwin, H.; Clay, C.S. Fundamentals of Acoustical Oceanography; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Southall, B.L.; Finneran, J.J.; Reichmuth, C.; Nachtigall, P.E.; Ketten, D.R.; Bowles, A.E.; Tyack, P.L. Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquat. Mamm. 2019, 45, 125–132. [Google Scholar] [CrossRef]
- Veirs, S.; Veirs, V.; Wood, J. Ship noise in an urban estuary extends to frequencies used for echolocation by endangered killer whales. PeerJ PrePrints 2015, 3, e955v3. [Google Scholar]
- MacGillivray, A.; Li, Z.; Yurk, H. Modelling of Cumulative Vessel Noise for Haro Strait Slowdown Trial: Phase 1: Pre-Trial Interim Report; Version 1.0; Document Number 01443, Technical Report by JASCO Applied Sciences for Vancouver Fraser Port Authority ECHO Program; JASCO Applied Sciences: Victoria, BC, USA, 2017. [Google Scholar]
- Gaskin, D.E.; Arnold, P.W.; Blair, B.A. Phocoena phocoena. Mamm. Species 1974, 42, 1–8. [Google Scholar]
- Baird, R.W. Update COSEWIC Status Report on Harbour Porpoise (Phocoena phocoena) in British Columbia; Committee on the Status of Endangered Wildlife (COSEWIC): Ottawa, ON, Canada, 2003. [Google Scholar]
- Ford, J.K. Killer Whale: Orcinus Orca. In Encyclopedia of Marine Mammals; Perrin, W., Wursig, B., Thewissen, J., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 650–657. [Google Scholar]
- Dalla Rosa, L.; Ford, J.K.B.; Trites, A.W. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Cont. Shelf Res. 2012, 36, 89–104. [Google Scholar] [CrossRef]
- Department of Fisheries and Oceans Canada, DFO. Recovery Strategy for the Northern and Southern Resident Killer Whales (Orcinus orca) in Canada; Species at Risk Act Recovery Strategy Series; Fisheries & Oceans Canada: Ottawa, ON, Canada, 2018; p. x+84. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). Endangered and Threatened Species; Designation of Critical Habitat for Southern Resident Killer Whale; 50 CFR Part 226; National Oceanic and Atmospheric Administration (NOAA): National Marine Fisheries Service, Northwest Region, 2006. Available online: https://www.federalregister.gov/documents/2006/11/29/06-9453/endangered-and-threatened-species-designation-of-critical-habitat-for-southern-resident-killer-whale (accessed on 16 September 2021).
- National Oceanic and Atmospheric Administration (NOAA). Critical Habitat for the Southern Resident Killer Whales; National Oceanic and Atmospheric Administration (NOAA): National Marine Fisheries, West Coast Region, 2019. Available online: https://www.fisheries.noaa.gov/action/critical-habitat-southern-resident-killer-whale (accessed on 16 September 2021).
- Enhancing Cetacean Habitat and Observation (ECHO) Program. 2018 Annual Report; Enhancing Cetacean Habitat and Observation (ECHO) Program: Vancouver, BC, Canada, 2019; p. 18. [Google Scholar]
- Merchant, N.D.; Fristrup, K.M.; Johnson, M.P.; Tyack, P.L.; Witt, M.J.; Blondel, P.; Parks, S. Measuring acoustic habitats. Methods Ecol. Evol. 2015, 6, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Trevorrow, M.V.; Vasiliev, B.; Vagle, S. Directionality and maneuvering effects on a surface ship underwater acoustic signature. J. Acoust. Soc. Am. 2008, 124, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Carey, W.M. Lloyd’s Mirror—Image Interference Effects. Acoust. Today 2009, 5, 14. [Google Scholar] [CrossRef]
- Young, R. Image interference in the presence of refraction. J. Acoust. Soc. Am. 1947, 19, 1–7. [Google Scholar] [CrossRef]
- Leroy, C.C.; Robinson, S.P.; Goldsmith, M.J. A New Equation for the Accurate Calculation of Sound Speed in All Oceans. J. Acoust. Soc. Am. 2008, 124, 2774–2782. [Google Scholar] [CrossRef] [Green Version]
- Soontiens, N.; Allen, S.E.; Latornell, D.; Le Souef, K.; Machuca, I.; Paquin, J.-P.; Lu, Y.; Thompson, K.; Korabel, V. Storm surges in the Strait of Georgia simulated with a regional model. Atmos. Ocean 2016, 54, 1–21. [Google Scholar] [CrossRef]
- Soontiens, N.; Allen, S.E. Modelling sensitivities to mixing and advection in a sill-basin estuarine system. Ocean Model. 2017, 112, 17–32. [Google Scholar] [CrossRef]
- Francois, R.; Garrison, G. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 1982, 72, 1879–1890. [Google Scholar] [CrossRef]
- Bowlin, J.; Spiesberger, J.; Duda, T.; Freitag, L. Ocean Acoustical Ray Tracing Software RAY; Technical Report; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 1992; p. 47. [Google Scholar]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean; American Institute of Physics: Melville, NY, USA, 1994; p. 634. [Google Scholar]
- Hovem, J.M. Ray Trace Modeling of Underwater Sound Propagation. In Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices; Beghi, M.G., Ed.; Intech: Rijeka, Croatia, 2013; pp. 573–598. [Google Scholar]
- Collins, M.D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 1993, 93, 1736–1742. [Google Scholar] [CrossRef]
- Collins, M.D. An energy-conserving parabolic equation for elastic media. J. Acoust. Soc. Am. 1993, 94, 975–982. [Google Scholar] [CrossRef]
- Hannah, C.G.; Dupont, F.; Collins, A.K.; Dunphy, M.; Greenberg, D. Revisions to a Modelling System for Tides in the Canadian Arctic Archipelago. Can. Tech. Rep. Hydrogr. Ocean Sci. 2008, 259, 6–62. [Google Scholar]
- Williams, T.M.; Davis, R.W.; Fuiman, L.A.; Francis, J.; Le Boeuf, B.J.; Horning, M.; Calambokidis, J.; Croll, D.A. Sink or swim: Strategies for cost-efficient diving by marine mammals. Science 2000, 288, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Goldbogen, J.A.; Calambokidis, J.; Croll, D.A.; Harvey, J.T.; Newton, K.M.; Oleson, E.M.; Schorr, G.; Shadwick, R.E. Foraging behavior of humpback whales: Kinematic and respiratory patterns suggest a high cost for a lunge. J. Exp. Biol. 2008, 211, 3712–3719. [Google Scholar] [CrossRef] [Green Version]
- Doniol-Valcroze, T.; Lesage, V.; Giard, J.; Michaud, R. Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav. Ecol. 2011, 22, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.M.; Ford, J.K.; Ellis, G.M.; Deecke, V.B.; Shapiro, A.D.; Battaile, B.C.; Trites, A.W. Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.). Move. Ecol. 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Riera, A.; Pilkington, J.F.; Ford, J.K.B.; Stredulinsky, E.H.; Chapman, N.R. Passive acoustic monitoring off Vancouver Island reveals extensive use by at-risk resident killer whale (Orcinus orca) populations. Endang. Spec. Res. 2019, 39, 221–234. [Google Scholar] [CrossRef]
- Tennessen, J.B.; Holt, M.M.; Hansen, M.B.; Emmons, C.K.; Giles, D.A.; Hogan, J.T. Kinematic signatures of prey capture from archival tags reveal sex differences in killer whale foraging activity. J. Exp. Biol. 2019, 222, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Au, W.W.L.; Hastings, M.C. Principles of Marine Bioacoustics; Springer Science & Business Media: New York, NY, USA, 2008; p. 680. [Google Scholar]
- Haggarty, D.; Gregr, E.; Lessard, J.; Fields Co Davies, S. Deep Substrate (100 m) for the Pacific Canadian Shelf; Fisheries and Oceans Canada: Nanaimo, BC, Canada, 2018; Available online: https://www.gis-hub.ca/dataset/substrate100m-data (accessed on 1 April 2021).
- Mullan, S. Tidal Sedimentology and Geomorphology in the Central Salish Sea Straits, British Columbia and Washington State. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2010. [Google Scholar]
- Frey, S.E.; Dashtgard, S. Sedimentology, ichnology and hydrodynamics of strait-margin, sand and gravel beaches and shorefaces: Juan de Fuca Strait, British Columbia, Canada. Sedimentology 2011, 58, 1326–1346. [Google Scholar] [CrossRef]
- Hamilton, E.L. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 1976, 68, 1313–1340. [Google Scholar] [CrossRef]
- Hamilton, E.L. Compressional Waves in marine sediments. Geophysics 1982, 37, 620–646. [Google Scholar] [CrossRef]
- Department of Fisheries and Oceans Canada, DFO. Evaluation of the Scientific Evidence to Inform the Probability of Effectiveness of Mitigation Measures in Reducing Shipping-Related Noise Levels by Southern Resident Killer Whales; Department of Fisheries and Oceans Canada, DFO: Ottawa, ON, Canada, 2017; DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017; 2017/041. [Google Scholar]
- Lacy, R.C.; Williams, R.; Ashe, E.; Balcomb, K.C., III; Brent, L.J.N.; Clark, C.W.; Croft, D.P.; Giles, D.A.; MacDuffee, M.; Paquet, P.C. Evaluating anthropogenic threats to endangered killer whales to inform effective recovery plans. Sci. Rep. 2017, 7, 14119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirotta, V.; Grech, A.; Jonsen, I.D.; Laurance, W.F.; Harcourt, R.G. Consequences of global shipping traffic for marine giants. Front. Ecol. Environ. 2019, 17, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.J. Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations. J. Comp. Physiol. A 2006, 192, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Holt, M.M.; Noren, D.P.; Emmons, C.K. Effects of noise levels and call types on the source levels of killer whale calls. J. Acoust. Soc. Am. 2011, 130, 3100–3106. [Google Scholar] [CrossRef]
- Heise, K.A.; Barrett-Lennard, L.G.; Chapman, N.R.; Dakin, D.T.; Erbe, C.; Hannay, D.E.; Merchant, N.D.; Pilkington, J.S.; Thornton, S.J.; Tollit, D.J.; et al. Proposed Metrics for the Management of Underwater Noise for Southern Resident Killer Whales; Coastal Ocean Report Series (2); Ocean Wise: Vancouver, BC, Canada, 2017; p. 30. [Google Scholar]
- Bigg, M.A.; Olesiuk, P.F.; Ellis, G.M.; Ford, J.K.B.; Balcomb, K.C. Social Organization and Genealogy of Resident Killer Whales (Orcinus Orca) in the Coastal Waters of British Columbia and Washington State; Report of the International Whaling Commission; The International Whaling Commission: Cambridge, UK, 1990; Volume 12, pp. 383–405. [Google Scholar]
- Hertel, H. Structure, Form, Movement; Reinhold Publishing Company: New York, NY, USA, 1966. [Google Scholar]
- Baird, R.W.; Hanson, M.B.; Dill, L.M. Factors influencing the diving behaviour of fish-eating killer whales: Sex differences and diel and interannual variation in diving rates. Can. J. Zool. 2005, 83, 257–267. [Google Scholar] [CrossRef]
- Audoly, C.; Rousset, C.; Folegot, T.; Andre, M.; Benedetti, L.; Baudin, E.; Salinas, R. AQUO Project ‘Achieve quieter oceans by shipping noise footprint reduction’. In Proceedings of the 3rd International Conference on Advanced Model Measurement Technology for the EU Maritime Industry, Gdansk, Poland, 17–18 September 2013. [Google Scholar]
- MacGillivray, A.O.; Li, Z.; Hannay, D.E.; Trounce, K.B.; Robinson, O. Slowing deep-sea commercial vessels reduces underwater radiated noise. J. Acoust. Soc. Am. 2019, 146, 340–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, D.J.M.; Barclay, D.R. Real-time observations of the impact of COVID-19 on underwater noise. J. Acoust. Soc. Am. 2020, 147, 3390. [Google Scholar] [CrossRef]
- Dransfield, A.; Hines, E.; McGowan, J.; Holzman, B.; Nur, N.; Elliott, M.; Howar, J.; Jahncke, J. Where the whales are: Using habitat modeling to support changes in shipping regulations within National Marine Sanctuaries in Central California. Endanger. Species Res. 2014, 26, 39–57. [Google Scholar] [CrossRef] [Green Version]
- McGregor, P.K.; Horn, A.G.; Leonard, M.L.; Thomsen, F. Anthropogenic noise and Conservation. In Animal Communication and Noise; Brumm, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 409–444. [Google Scholar]
- Ruser, A.; Dähne, M.; van Neer, A.; Lucke, K.; Sundermeyer, J.; Siebert, U.; Teilmann, J. Assessing auditory evoked potentials of wild harbor porpoises (Phocoena phocoena). J. Acoust. Soc. Am. 2016, 140, 442–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooney, T.A.; Castellote, M.; Quakenbush, L.; Hobbs, R.; Gaglione, E.; Goertz, C. Variation in hearing within a wild population of beluga whales (Delphinapterus leucas). J. Exp. Biol. 2018, 221, jeb171959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnham, R.E.; Vagle, S.; O’Neill, C. Spatiotemporal patterns in the natural and anthropogenic additions to the soundscape in parts of the Salish Sea, British Columbia, 2018–2020. Mar. Poll. Bull. 2021, 170, 112647. [Google Scholar] [CrossRef]
- Council of Canadian Academies, CCA. The Value of Commercial Marine Shipping to Canada; The Expert Panel on the Social and Economic Value of Marine Shipping to Canada, Council of Canadian Academies: Ottawa, ON, Canada, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagle, S.; Burnham, R.E.; O’Neill, C.; Yurk, H. Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics. J. Mar. Sci. Eng. 2021, 9, 1047. https://doi.org/10.3390/jmse9101047
Vagle S, Burnham RE, O’Neill C, Yurk H. Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics. Journal of Marine Science and Engineering. 2021; 9(10):1047. https://doi.org/10.3390/jmse9101047
Chicago/Turabian StyleVagle, Svein, Rianna E. Burnham, Caitlin O’Neill, and Harald Yurk. 2021. "Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics" Journal of Marine Science and Engineering 9, no. 10: 1047. https://doi.org/10.3390/jmse9101047
APA StyleVagle, S., Burnham, R. E., O’Neill, C., & Yurk, H. (2021). Variability in Anthropogenic Underwater Noise Due to Bathymetry and Sound Speed Characteristics. Journal of Marine Science and Engineering, 9(10), 1047. https://doi.org/10.3390/jmse9101047