The Use of Geoinformatics in Coastal Atmospheric Transport Phenomena: The Athens Experiment
Abstract
:1. Introduction
- Evaluation of the state-of-the-art of available geoinformatics tools and ongoing developments in progress;
- Evaluation of the accessibility and contents of available meteorological and other relevant data sets;
- Evaluation of the potential and restrictions of geoinformatics tools for spatialisation of necessary input data;
- Development of a new scheme regarding the surface parameters which is a joining mechanism between surface layer and the Atmospheric Boundary Layer (ABL).
- Development of an accurate geo-database that fulfills the needs of the surface parameters modification scheme.
- Εvaluation of the performance of the Enhanced version for different time periods in a well-known study area which is a necessary and appropriate step to ensure the reliability of the new model version.
2. Mesoscale Meteorological Model Enhanced Version
3. Description of the Study Area and Model Setup
4. Development of the Input Geo-Database
5. Model Evaluation Results
5.1. Wind Speed
5.2. Wind Direction
5.3. Temperature
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dragaud, I.C.D.A.V.; Soares da Silva, M.; Assad, L.P.D.F.; Cataldi, M.; Landau, L.; Elias, R.N.; Pimentel, L.C.G. The impact of sst on the wind and air temperature simulations: A case study for the coastal region of the rio de janeiro state. Meteorol. Atmos. Phys. 2019, 131, 1083–1097. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V.; Bauer, P. A review of satellite meteorology and climatology at the start of the twenty-first century. Progress Phys. Geogr. 2009, 33, 474–489. [Google Scholar] [CrossRef]
- Thornes, J.; Dyras, I.; Wilhelmi, O. Special issue on the use of gis in climatology and meteorology. Meteorol. Appl. 2005, 12, 1–3. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D. Exploring possible influence of dust episodes on surface marine chlorophyll concentrations. J. Mar. Sci. Eng. 2019, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Kotta, D.; Kitsiou, D. Medicanes triggering chlorophyll increase. J. Mar. Sci. Eng. 2019, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Karagulian, F.; Temimi, M.; Ghebreyesus, D.; Weston, M.; Kondapalli, N.K.; Valappil, V.K.; Aldababesh, A.; Lyapustin, A.; Chaouch, N.; Al Hammadi, F.; et al. Analysis of a severe dust storm and its impact on air quality conditions using wrf-chem modeling, satellite imagery, and ground observations. Air Qual. Atmos. Health 2019, 12, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Gohain, K.J.; Mohammad, P.; Goswami, A. Assessing the impact of land use land cover changes on land surface temperature over pune city, India. Quat. Int. 2021, 575–576, 259–269. [Google Scholar] [CrossRef]
- Ehlers, M. Geoinformatics and digital earth initiatives: A german perspective. Int. J. Digit. Earth 2008, 1, 17–30. [Google Scholar] [CrossRef]
- Habermann, T. What is gis (for unidata)? Bull. Am. Meteorol. Soc. 2005, 86, 174–175. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L. Mapping and Modeling Weather and Climate with Gis; Esri Press: Redlands, CA, USA, 2014; pp. 1–370. [Google Scholar]
- Nitis, T. An Atmospheric Environment Management System Incorporating the Impact of Urban Areas and Using Geoinformatics; Aristotle University Thessaloniki: Thessaloniki, Greece, 2016; p. 191. [Google Scholar]
- Dyras, I.; Dobesch, H.; Grueter, E.; Perdigao, A.; Tveito, O.E.; Thornes, J.E.; Wel, F.; Bottai, L. The use of geographic information systems in climatology and meteorology: Cost 719. Meteorol. Appl. 2005, 12, 1–5. [Google Scholar] [CrossRef]
- Coutu, S.; Wyrsch, V.; Rossi, L.; Emery, P.; Golay, F.; Carneiro, C. Modelling wind-driven rain on buildings in urbanized area using 3-d gis and lidar datasets. Build. Environ. 2013, 59, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Nitis, T.; Klaic, Z.B.; Kitsiou, D.; Moussiopoulos, N. Meteorological simulations with use of satellite data for assessing urban heat island under summertime anticyclonic conditions. Int. J. Environ. Pollut. 2010, 40, 123–135. [Google Scholar] [CrossRef]
- Fonseca, R.; Zorzano-Mier, M.-P.; Azua-Bustos, A.; González-Silva, C.; Martín-Torres, J. A surface temperature and moisture intercomparison study of the weather research and forecasting model, in-situ measurements and satellite observations over the atacama desert. Q. J. R. Meteorol. Soc. 2019, 145, 2202–2220. [Google Scholar] [CrossRef]
- Thies, B.; Bendix, J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives. Meteorol. Appl. 2011, 18, 262–295. [Google Scholar] [CrossRef]
- Hasager, C.B.; Jensen, N.O. Surface-flux aggregation in heterogeneous terrain. Q. J. R. Meteorol. Soc. 1999, 125, 2075–2102. [Google Scholar] [CrossRef]
- Schadlich, S.; Gottsche, F.M.; Olesen, F.S. Influence of land surface parameters and atmosphere on meteosat brightness temperatures and generation of land surface temperature maps by temporally and spatially interpolating atmospheric correction. Remote Sens. Environ. 2001, 75, 39–46. [Google Scholar] [CrossRef]
- De Foy, B.; Molina, L.T.; Molina, M.J. Satellite-derived land surface parameters for mesoscale modelling of the mexico city basin. Atmos. Chem. Phys. 2006, 6, 1315–1330. [Google Scholar] [CrossRef] [Green Version]
- De Meij, A.; Vinuesa, J.F. Impact of srtm and corine land cover data on meteorological parameters using wrf. Atmos. Res. 2014, 143, 351–370. [Google Scholar] [CrossRef]
- Temimi, M.; Fonseca, R.; Nelli, N.; Weston, M.; Thota, M.; Valappil, V.; Branch, O.; Wizemann, H.; Kondapalli, N.K.; Wehbe, Y.; et al. Assessing the impact of changes in land surface conditions on wrf predictions in arid regions. J. Hydrometeorol. 2020, 21, 2829–2853. [Google Scholar] [CrossRef]
- Shipley, S.T. Gis applications in meteorology, or adventures in a parallel universe. Bull. Am. Meteorol. Soc. 2005, 86, 171–173. [Google Scholar] [CrossRef]
- Steeneveld, G.J.; Vilà-Guerau de Arellano, J. Teaching atmospheric modeling at the graduate level: 15 years of using mesoscale models as educational tools in an active learning environment. Bull. Am. Meteorol. Soc. 2019, 100, 2157–2174. [Google Scholar] [CrossRef]
- Umphlett, N.A.; Pettee, W.; Sorensen, W.; Stiles, C.J. Enhancing acis maps: Increasing usability through a gis portal. Bull. Am. Meteorol. Soc. 2019, 100, 2417–2421. [Google Scholar] [CrossRef] [Green Version]
- Hembree, G.D. Effect of the state of the ground on the local heat balance. Mon. Weather Rev. 1958, 86, 171–176. [Google Scholar] [CrossRef]
- Ran, L.; Pleim, J.; Gilliam, R.; Binkowski, F.S.; Hogrefe, C.; Band, L. Improved meteorology from an updated wrf/cmaq modeling system with modis vegetation and albedo. J. Geophys. Res. Atmos. 2016, 121, 2393–2415. [Google Scholar] [CrossRef] [Green Version]
- Martilli, A. Current research and future challenges in urban mesoscale modelling. Int. J. Climatol. 2007, 27, 1909–1918. [Google Scholar] [CrossRef]
- Holt, T.; Pullen, J. Urban canopy modeling of the new york city metropolitan area: A comparison and validation of single- and multilayer parameterizations. Mon. Weather Rev. 2007, 135, 1906–1930. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Bou-Zeid, E.; Au, S.K.; Smith, J.A. Analyzing the sensitivity of wrf's single-layer urban canopy model to parameter uncertainty using advanced monte carlo simulation. J. Appl. Meteorol. Climatol. 2011, 50, 1795–1814. [Google Scholar] [CrossRef]
- Mölders, N. On the uncertainty in mesoscale modeling caused by surface parameters. Meteorol. Atmos. Phys. 2001, 76, 119–141. [Google Scholar] [CrossRef]
- Atkinson, B.W. Numerical modelling of urban heat-island intensity. Bound. Layer Meteorol. 2003, 109, 285–310. [Google Scholar] [CrossRef]
- Nitis, T.; Tsegas, G.; Korres, G.; Douros, I.; Moussiopoulos, N. Influence of sea surface temperature variation on basic mesoscale flows over coastal areas. In Proceedings of the 10th International Conference on Environmental Science and Technology, Cos Island, Greece, 5–7 September 2007. [Google Scholar]
- Shimada, S.; Ohsawa, T.; Kogaki, T.; Steinfeld, G.; Heinemann, D. Effects of sea surface temperature accuracy on offshore wind resource assessment using a mesoscale model. Wind Energy 2015, 18, 1839–1854. [Google Scholar] [CrossRef]
- Hu, D.Y.; Yang, L.M.; Zhou, J.; Deng, L. Estimation of urban energy heat flux and anthropogenic heat discharge using aster image and meteorological data: Case study in beijing metropolitan area. J. Appl. Remote Sens. 2012, 6, 063559. [Google Scholar] [CrossRef]
- Fan, H.L.; Sailor, D.J. Modeling the impacts of anthropogenic heating on the urban climate of philadelphia: A comparison of implementations in two pbl schemes. Atmos. Environ. 2005, 39, 73–84. [Google Scholar] [CrossRef]
- Population Division, Department of Economic and Social Affairs, United Nations. World Urbanization Prospects the 2011 Revision; Population Division, Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2012. [Google Scholar]
- Nitis, T.; Tsegas, G.; Moussiopoulos, N.; Gounaridis, D. Assimilating anthropogenic heat flux estimated from satellite data in a mesoscale flow model. In International Technical Meeting on Air Pollution Modelling and Its Application; Clemens, M., George, K., Eds.; Springer: Crete, Greece, 2016; pp. 219–224. [Google Scholar]
- Kunz, R.; Moussiopoulos, N. Simulation of the wind-field in athens using refined boundary-conditions. Atmos. Environ. 1995, 29, 3575–3591. [Google Scholar] [CrossRef]
- Moussiopoulos, N.; Douros, I.; Tsegas, G.; Kleanthous, S.; Chourdakis, E. An air quality management system for policy support in cyprus. Adv. Meteorol. 2012, 2012, 959280. [Google Scholar] [CrossRef]
- Büttner, G.; Feranec, J.; Jaffrain, G.; Mari, L.; Maucha, G.; Soukup, T. The corine land cover 2000 project. EARSeL eProceedings 2004, 3, 331–346. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Wu, B.; Yan, N.; Xing, Q.; Zhu, W. A method for estimating the aerodynamic roughness length with ndvi and brdf signatures using multi-temporal proba-v data. Remote Sens. 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Jia, L.; Hutjes, R.; Menenti, M. Estimation of aerodynamic roughness length over oasis in the heihe river basin by utilizing remote sensing and ground data. Remote Sens. 2015, 7, 3690–3709. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Prasad, T.S.; Vijayan, D. Estimation of roughness length and sensible heat flux from wifs and noaa avhrr data. Adv. Space Res. 2002, 29, 33–38. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Davidson, A.; Wang, S. The effects of sampling resolution on the surface albedos of dominant land cover types in the north american boreal region. Remote Sens. Environ. 2004, 93, 211–224. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X.; Barlage, M.; Dickinson, R.E.; Gao, F.; Schaaf, C.B. Using modis brdf and albedo data to evaluate global model land surface albedo. J. Hydrometeorol. 2004, 5, 3–14. [Google Scholar] [CrossRef]
- Falasca, S.; Catalano, F.; Moroni, M. Numerical study of the daytime planetary boundary layer over an idealized urban area: Influence of surface properties, anthropogenic heat flux, and geostrophic wind intensity. J. Appl. Meteorol. Climatol. 2016, 55, 1021–1039. [Google Scholar] [CrossRef]
- Nitis, T.; Tsegas, G.; Moussiopoulos, N.; Gounaridis, D.; Bliziotis, D. Satellite Data Based Approach for the Estimation of Anthropogenic Heat Flux over Urban Areas; SPIE: Bellingham, WA, USA, 2017; Volume 10444. [Google Scholar]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Nitis, T.; Kitsiou, D.; Klaic, Z.B.; Prtenjak, M.T.; Moussiopoulos, N. The effects of basic flow and topography on the development of the sea breeze over a complex coastal environment. Q. J. R. Meteorol. Soc. 2005, 131, 305–327. [Google Scholar] [CrossRef]
- Mills, G.A.; Hayden, C.M. The use of high horizontal resolution satellite temperature and moisture profiles to initialize a mesoscale numerical weather prediction model—A severe weather event case study. J. Appl. Meteorol. Climatol. 1983, 22, 649–663. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R. The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over washington, d.C. Weather Forecast 2006, 21, 383–394. [Google Scholar] [CrossRef]
- Schlünzen, K.H.; Sokhi, S.R. Joint Report of Cost Action 728 and Gurme: Overview of Tools and Methods for Meteorological and Air Pollution Mesoscale Model Evaluation and User Training; World Meteorological Organization (WMO): Geneva, Switzerland, 2008; Volume 181, p. 124. [Google Scholar]
Iver | SPMSver | |||||||
---|---|---|---|---|---|---|---|---|
MBE | MAE | RMSE | d | MBE | MAE | RMSE | d | |
Period 1 | −0.380 | 1.749 | 2.225 | 0.534 | −0.646 | 1.347 | 1.666 | 0.592 |
Period 2 | 0.670 | 1.215 | 1.457 | 0.690 | 0.483 | 1.051 | 1.370 | 0.718 |
Period 3 | 0.839 | 1.111 | 1.415 | 0.577 | 0.874 | 1.075 | 1.297 | 0.617 |
Iver | SPMSver | |||||||
---|---|---|---|---|---|---|---|---|
MBE | MAE | RMSE | d | MBE | MAE | RMSE | d | |
Period 1 | 22.6 | 73.1 | 91.7 | 0.809 | 8.1 | 58.8 | 79.1 | 0.838 |
Period 2 | −30.1 | 58.3 | 75.6 | 0.763 | −31.6 | 59.5 | 78.0 | 0.779 |
Period 3 | −7.2 | 63.2 | 77.6 | 0.753 | −15.3 | 65.2 | 85.7 | 0.765 |
Iver | SPMSver | |||||||
---|---|---|---|---|---|---|---|---|
MBE | MAE | RMSE | d | MBE | MAE | RMSE | d | |
Period 1 | −0.311 | 2.285 | 2.827 | 0.737 | 0.378 | 2.033 | 2.512 | 0.835 |
Period 2 | −0.040 | 1.655 | 2.006 | 0.903 | 0.379 | 1.553 | 1.837 | 0.925 |
Period 3 | 0.908 | 1.548 | 1.819 | 0.899 | 0.097 | 1.790 | 2.111 | 0.903 |
Wind Speed | Wind Direction | Temperature | |||||||
---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | d | MAE | RMSE | d | MAE | RMSE | d | |
Period 1 | −0.402 | −0.560 | 0.057 | −14.27 | −12.57 | 0.028 | −0.252 | −0.315 | 0.098 |
Period 2 | −0.164 | −0.087 | 0.028 | 1.19 | 2.31 | 0.016 | −0.102 | −0.170 | 0.022 |
Period 3 | −0.036 | −0.118 | 0.040 | 1.99 | 8.13 | 0.012 | 0.242 | 0.292 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitis, T.; Moussiopoulos, N. The Use of Geoinformatics in Coastal Atmospheric Transport Phenomena: The Athens Experiment. J. Mar. Sci. Eng. 2021, 9, 1197. https://doi.org/10.3390/jmse9111197
Nitis T, Moussiopoulos N. The Use of Geoinformatics in Coastal Atmospheric Transport Phenomena: The Athens Experiment. Journal of Marine Science and Engineering. 2021; 9(11):1197. https://doi.org/10.3390/jmse9111197
Chicago/Turabian StyleNitis, Theodoros, and Nicolas Moussiopoulos. 2021. "The Use of Geoinformatics in Coastal Atmospheric Transport Phenomena: The Athens Experiment" Journal of Marine Science and Engineering 9, no. 11: 1197. https://doi.org/10.3390/jmse9111197
APA StyleNitis, T., & Moussiopoulos, N. (2021). The Use of Geoinformatics in Coastal Atmospheric Transport Phenomena: The Athens Experiment. Journal of Marine Science and Engineering, 9(11), 1197. https://doi.org/10.3390/jmse9111197