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Abstract: Atmospheric carbon dioxide reached a record concentration of 419 parts per million in May
2021, 50% higher than preindustrial levels at 280 parts per million. The rise of CO2 as a heat-trapping
gas is the principal barometer tracking global warming attributed to a global average increase of
1.2 ◦C over the last 250 years. Ongoing global warming is expected to perturb extreme weather events
such as tropical cyclones (hurricanes/typhoons), strengthened by elevated sea-surface temperatures.
The melting of polar ice caps in Antarctica and Greenland also is expected to result in rising sea levels
through the rest of this century. Various proxies for the estimate of long-term change in sea-surface
temperatures (SSTs) are available through geological oceanography, which relies on the recovery of
deep-sea cores for the study of sediments enriched in temperature-sensitive planktonic foraminifera
and other algal residues. The Pliocene Warm Period occurred between ~4.5 and 3.0 million years ago,
when sea level and average global temperatures were higher than today, and it is widely regarded as
a predictive analog to the future impact of climate change. This work reviews some of the extensive
literature on the geological oceanography of the Pliocene Warm Period together with a summary of
land-based studies in paleotempestology focused on coastal boulder deposits (CBDs) and coastal
outwash deposits (CODs) from the margin of the Pacific basin and parts of the North Atlantic basin.
Ranging in age from the Pliocene through the Holocene, the values of such deposits serve as fixed
geophysical markers, against which the micro-fossil record for the Pliocene Warm Period may be
compared, as a registry of storm events from Pliocene and post-Pliocene times.

Keywords: El Niño-Southern Oscillation; coastal erosion; storm surge; paleotempestology

1. Introduction

The Iron Bridge across the Severn River in the West Midlands of England was the first
of its kind, in 1779, to be erected anywhere in the world, and it is recognized as a World
Heritage Site by the United Nations Educational, Scientific and Cultural Organization
(UNESCO) [1]. Due to the local availability of iron ore, in addition to coal and limestone
deposits necessary for the manufacture of iron, all the ingredients were present to launch
the start of the industrial revolution in the British Isles. Other regions in other countries
with those same natural resources were soon to follow. The atmospheric concentration of
carbon dioxide fluctuated but did not rise above 280 parts per million prior to that era,
based on the method of dry analysis of air inclusions preserved in ice cores recovered
from deep within the glacial ice at the Vostok site in Antarctica [2]. Samples of ancient air,
trapped in bubbles frozen in glacial ice at different levels within ice cores, track variations
in CO2 concentrations over a span of 800,000 years, all at or below the level characterized by
the pre-industrial age. In contrast, the Keeling Curve is based on analysis of air samples for
resident CO2 measured at the Mauna Loa Observatory on the big island of Hawaii, initiated
in 1958 and maintained to the present day by the National Oceanographic and Atmospheric
Administration (NOAA). The upward slope of the plot deviates in a micro-rippled fashion
based on the monthly mean of daily averages, but it reflects a steady rise overall in the
concentration of atmospheric CO2 on a yearly basis. As such, the curve devised by the
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climate scientist Charles Keeling from the Scripps Institution of Oceanography has become
the principal barometer tracking global climate change linked to a specific heat-trapping
gas during the expanding industrial age [3]. In May 2021, the level of atmospheric CO2
measured on Mauna Loa peaked at 419 parts per million [4], the highest yet recorded, and
with a value 50% higher than preindustrial levels. At this record level, it is calculated that
humans are now adding roughly 40 billion metric tons of CO2 to the atmosphere each
year [4].

Additional CO2 not only acts to increase the global average air temperate, but affects
an increase in sea-surface temperatures (SSTs) registered around the globe, as the world’s
oceans absorb much of the excess heat. Measurement of ocean heat content is regarded as
another way to quantify the rate of ongoing global warming. The years 2019, 2018, 2017,
2015, and 2016 rank as the five warmest years (in that order) for ocean heat values within
the upper 2000 m [5]. Moreover, the ten years between 2010 and 2019 also rank as the
top ten years on record [5]. Although variable on a seasonal basis in any given region,
high SSTs provide the fuel to power tropical cyclones that originate in low latitudes but
are capable of migrating as sea storms to much higher latitudes including boreal regions.
Analysis of global data suggests that pools of warm surface water have formed more often
and lasted longer during seasonal variations tracked since 1925 [6]. In turn, these data
have led to the discovery that the exceedance probability of major tropical cyclones has
increased over the last four decades [7]. Most big storms expire harmlessly in the open
ocean, but a statistical review also indicates that ever stronger storms also have approached
closer to land since 1982 [8].

Between ~4.5 and 3.0 million years ago during the Pliocene Warm Period, the average
global temperature is interpreted as >2 ◦C higher than at present, and sea level stood no less
than 16 m above today’s datum [9,10]. During that interval, the pole-to-equator gradient
in temperature was so flat that deposits near the Pliocene ice wedge in Canada’s high
Arctic on Ellesmere Island feature fossil camel bones and fossil tree remains dominated by
a larch-forest habitat with mean annual temperature as much as 3.0 ◦C above present [11].
Hence, the Pliocene Warm Period is regarded as a predictive analog to the future impact of
ongoing global warming with the connotation raised as early as 1982 by M.I. Budyko in
The Earth’s Climate: Past and Future [12] and more explicitly in a seminal paper by Zubakov
and Borzenkova in 1988 [13]. Much of the discussion regarding the Pliocene Warm Period
revolves around the pattern of the El Niño Southern Oscillation (ENSO) in the equatorial
zone of the Pacific Ocean, where semi-cyclical events that peak for a year or more result
from the slowdown and stagnation of currents that move surface water from east to west
and elevate warmer SSTs. These conditions not only spawn hurricanes off the southwest
coast of Mexico and increase rainfall affecting the Pacific shores of North America, but
also generate comparable storms and flooding farther afield called typhoons that reach
landfall in countries across the western and northwest Pacific Ocean, including the shores
of mainland China [14,15].

This work offers a review of literature on the geological oceanography of the Pliocene
Warm Period, including techniques by which Pliocene sea temperatures are estimated from
micro-fossils preserved in deep-sea cores. Opinions differ whether continual (permanent)
El Niño conditions prevailed during the Pliocene Warm Period [16–18] or were more
intermittent (dampened) during the same time interval [19,20]. A parallel approach to
treatment of the Pliocene Warm Period, as well as the ensuing Pleistocene and Holocene
time frames, relies on analysis of coastal storm deposits based on methods in paleo-
tempestology. Such methods include evidence from storm-driven over-wash deposits in
former marshes and beaches, oxygen-isotope anomalies recorded in speleothems, and
tree-ring variations [21,22]. The evidence summarized in this review is focused foremost
on coastal boulder deposits (CBDs) and coastal outwash deposits (CODs) from the margins
of the Pacific basin and parts of the North Atlantic basin associated with heightened
shore erosion and rainfall [23–30]. It is problematic to distinguish between genuine storm
deposits and those caused by tsunami events [31,32]. Such difficulties are avoidable where
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paleo-deposits may be compared directly with deposits described in the aftermath of actual
hurricanes, a research format pioneered by Ball et al. (1967) [33] with respect to Hurricane
Donna that struck southern Florida in 1960 and by Paris et al. (2010) [34] with respect to
the tsunami that struck the Indonesian island of Sumatra in 2004.

2. Background Geological and Geographical Oceanography

An authoritative summary by Miller et al. (2020) [10] covers long-term climate change
in the Pacific basin during the Cenozoic, showing a marked shift from a warmer greenhouse
world 65 million years ago to the fluctuating icehouse worlds of the Pleistocene during the
last 2 million years. Smoothed curves for sea-surface temperature and sea level variations
are adapted from this work (Figure 1) with alignments for the Early Eocene, Middle
Miocene, and Pliocene climatic optima.
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Figure 1. Geological history of sea-surface temperature and sea-level changes for the Pacific Ocean
basin through the last 65 million years (modified from Miller et al., 2020) [9].

Compared to earlier intervals, the Pliocene Warm Period represents a diminishment in
overall global temperature, from as much as 15 ◦C warmer and with a sea level 75 m higher
than today, during the ice-free Early Eocene climatic optimum (Figure 1). The suitability of
the Pliocene Warm Period, as the closest analog to the effects of today’s rapid change in
global warming, is predicated on the similarity in global geography between the Pliocene
world and today’s world, as well as parallel external factors such as the intensity of sunlight
falling on the Earth’s surface [18]. The farther back in geologic time that climatic change is
gauged, the more difficult it becomes to account for major differences in paleogeography
and other possible external factors related, for example, to increased volcanic activity, extent
of vegetative land cover, and other variations in topography compared to the present.

The basic mechanics of oceanic circulation and cyclonic storm development are sum-
marized in the cartoon model for a generalized ocean with broad latitudinal extent, as
found today in the Pacific and Atlantic oceans (Figure 2). The Inter Tropical Convergence
Zone (ITCZ) is the irregular boundary along the Earth’s equator where trade winds ema-
nating from the northeast and the southeast converge, and where warm, moist air rises
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upwards into the atmosphere by convection. A pair of Hadley Cells are strongly formed
astride the equator, where atmospheric low pressure dominates and moisture-laden air
ascends between 10 to 15 km into the troposphere. Moisture is released as rain, after which
upper-air currents convey dry air to latitudes centered around 30◦ north and south of the
equator. There, atmospheric high pressure brings the dry air back to the Earth’s surface,
some of which returns to the equator carried by the trade winds, and some is conveyed
to higher latitudes to join westerly-directed winds located around 45◦ north and south of
the equator.
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Trade winds with icons representing tropical cyclones (hurricanes/typhoons) that rotate counter-
clockwise in the northern hemisphere and clockwise in the southern hemisphere (ITCZ = Inter
Tropical Convergence Zone). Marginal seas are figurative, but shown as coastal embayments charac-
teristic of Mexico’s Gulf of California and China’s Yellow Sea.

Under localized climatic anomalies, where super-heated tropical air warms SSTs to
or above 26.6 ◦C through water depths reaching the upper 50 m, the stage is set for the
creation of a tropical depression leading to a tropical cyclone. As warm air rises above
the sea surface, cooler air from surrounding areas swirls in to take its place, and the entire
rotating mass undergoes further cooling with altitude leading to condensation and cloud
formation. When wind speed within such a system reaches a minimum speed of 119 km/h,
it is classified as a Category 1 hurricane. By definition on the Saffir-Simson scale, a Cate-
gory 5 hurricane is initiated with wind speeds of 252 km/h. In the North Atlantic Ocean
today, hurricanes tend to form at a latitude around 15◦ north of the equator off the coast
of Africa just south of the Cape Verde Islands. In the Northeast Pacific Ocean, hurricanes
regularly form off the west coast of Mexico at the same latitude south of Acapulco. These
disturbances may reach heights of 15,000 m, but trade winds push the storms westward as
discrete entities. Tropical cyclones rotate in a counter-clockwise direction in the northern
hemisphere, whereas they rotate in the opposite clockwise direction in the southern hemi-
sphere (Figure 2). It is strictly a matter of regional terminology, but these tropical storms are
called hurricanes in the Atlantic and northeastern Pacific oceans. They are called typhoons
in the central and northwestern Pacific Ocean. Due to the expanse of the Pacific Ocean
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along the equatorial zone, there exist other peculiarities ascribed to Walker circulation that
affect cycles in the El Niño Southern Oscillation.

3. Operational Definitions and Study Methods

The unique environmental attributes of the Equatorial Pacific zone during normal
years entail multiple temperature gradients both in zonal (latitudinal) and meridional
(longitudinal) scale, as well as below the water surface and within the overlying atmosphere
(Figure 3). Along the ITCZ where the trade winds converge, there typically exists a 5 ◦C
temperature difference between the sea surface in the warmer Western Equatorial Pool
(WEP) and the cooler Eastern Equatorial Pool (EEP). The temperature gradient with depth
below the WEP and EEP, or thermocline, is as much as four times as great in the west as it
is in the east [17]. In addition, Walker circulation acts as a kind of zonal variation on the
meridional Hadley Cell circulation, whereby warmer air in the west rises aloft and streams
eastward above the equator where it descends to the EEP.
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Figure 3. Sketch diagram showing the three-dimensional arrangement through the Equatorial Pacific Ocean zone under
normal climatic conditions (non-El Niño years).

During El Niño years, this pattern breaks down where the cooler waters of the EEP
are less insolated and more easily elevated in temperature due to the shallowness of the
thermocline. Weakening of the south-flowing coastal California current and north-flowing
Humboldt current that converge in the eastern Pacific deprive the EEP of a relatively
cooler-water influx dependent on Ekman upwelling. As a result, the east-west asymmetry
in temperature between the pools along the entire zone is ameliorated to the extent that
it disappears [17]. Under these conditions, Walker circulation also dissipates. Hurricanes
are more readily spawned off the coast of western Mexico, as well as typhoons in the
mid-Pacific Ocean. Based on satellite surveillance over the past several decades, most of
these storms are tracked to higher latitudes of the open ocean where they expire harm-
lessly. However, where landfall over ocean islands or against continental mainland occurs,
the effects of coastal erosion due to storm waves and flooding due to attendant rainfall
is devastating.

Direct observations of ENSO climate cycles underscore these variables along the
Equatorial Pacific zone. For example, recurrent El Niño events were especially severe in
1972–1973, 1982–1983, and 1997–1998 [19], as well as more recently in 2014–2016. The tech-
nology involved in testing for ENSO conditions during past eras is complex and entails the
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sampling of temperature-sensitive foraminifera with a planktonic habit that accumulates
after death as micro-fossils on the ocean floor. Retrieval of these samples is drawn from
deep-ocean cores drilled into the ocean floor at hundreds of sites around the world. One of
the more common methods is the application of a temperature proxy based on variations in
δ18O derived from fossil foraminifera of various species [10]. Other proxy methods exam-
ine variations in Mg/Ca, also from fossil foraminifera such as Globigerinoides sacculifer [16].
Another proxy method targets alkenones produced by certain species of haptophyte algae
equilibrated to a temperature proxy based on a Uk′/37 index [35,36]. Yet another index in
use is the TetraEther index (TEX86) found in integrated studies applying a combination of
paleotemperature proxies [35]. The complexity in all this is exacerbated by the fact that
different studies typically rely on a choice of different ocean cores drawn from a wide range
in east-west spread but also a variable distance north or south of the equator. Moreover,
expansion of studies into the Atlantic Ocean basin adds yet more complexity based on
data derived from widespread ocean cores at higher latitudes in that region [37]. Finally,
modeling studies expand on predictions based on some or all of the techniques cited
above [19,38].

The effectiveness of warmer pools of ocean water in triggering major storms of hurri-
cane/typhoon intensity during the Pliocene Warm Period in a positive feed-back loop [38]
may be checked by examination of coastal boulder deposits (CBDs) that result from the
impact major storms generating extreme wave energy. Likewise, coastal outwash deposits
(CODs) signify the impact of rainfall and erosion during landfall of major storms. Regard-
ing CBDs, various mathematical equations have evolved in complexity that allow for the
measurement of eroded shore boulders to yield estimates of wave heights necessary for
dislodgement from sea cliffs [39–41]. These may be applied to geological deposits of any
age, but also to deposits in the direct aftermath of a modern storm as well as a modern
tsunami in their shoreward impacts. For geological examples from the past, the challenge
is to differentiate between the style of deposits due to sea storms and tsunamis [30,31].

4. Results
4.1. Literature Review on the Pliocene Warm Period Based on Deep-Sea Cores

Since the earliest suggestions on the potential of the Pliocene Warm Period as an analog
to the future impact of climate change [12,13], a sizable amount of literature has followed,
which remains both current and controversial [19]. Table 1 summarizes details from a
sample of a dozen research reports published between 2005 and 2020. This review includes
notations on the kind of study techniques applied, the number of locations around the
world where primary research materials were collected, and a tally on opinions expressed
as to the severity of the Pliocene Warm Period as an ENSO precursor. Studies are listed in
Table 1 in order of appearance in the published literature [16–20,35,36,38,42–46]. Among
the earliest such reports [16], the phrase “permanent El Niño” was introduced as a Pliocene
phenomenon. The latest study consulted [20] argues against the “permanent El Niño”
as rather a “dampened El Niño.” To an outside reviewer, such terminology is needlessly
extreme, and the substitution offered by Fedorov et al. (2010) [38] for a “continual El Niño”
is adapted here, as is the counter appraisal for an “intermittent El Niño” (Table 1).

Several trends are evident in the growing sophistication of this research topic over a
period of 15 years. The earliest study to advocate for a “permanent” Pliocene El Niño is
based on data from only two ODP sites, separated by 90◦ of longitude between the EEP and
WEP [16]. A subsequent study increased the number of ODP sites to 85 [46] with inclusion
of the Atlantic Ocean basin and an expansion in latitudinal range. Overall, the number of
studies surveyed favors an interpretation of a continual El Niño state during the Pliocene
against a slightly smaller number of skeptics. However, a significant number remained
neutral, urging for additional studies. As debate among key participants intensified with
time, later studies began to criticize the validity of techniques applied by earlier workers.
The study by Tierney et al. (2019) [47] relies entirely on evidence derived from alkernones
while rejecting, as flawed evidence, the Ma/Ca ratios in planktonic foraminifera. Even so,
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that study concludes by admitting that a Pliocene atmospheric level of CO2 concentration
higher than 400 ppm is likely to weaken Walker circulation in tandem with a meridional
weakening of Hadley Cell circulation. The hard fact remains from land-based evidence,
irrespective of data from deep-sea cores, that Pliocene temperatures in the high Arctic of
Canada reached well above present-day conditions [11]. This kind of input suggests that
other kinds of land-based evidence are relevant.

Table 1. Opinions on the Pliocene Warm Period and its severity as a precursor to future El Niño conditions. The abbreviation
“alk” is for alkernones based on the Uk′/37 index. ODP refers to Ocean Drilling Program sites. A neutral opinion registered
in this summary signifies a call for additional research.

Reference
List Authors Techniques Applied Number

ODP Sites
Continual

El Niño
Neutral
Opinion

Intermittent
El Niño

[16] Wara et al. (2005) δ18O, Mg/Ca 2 x
[17] Ravelo et al. (2006) δ18O, Mg/Ca 4 x
[42] Dekens et al. (2007) δ18O, alk. 8 x
[36] Haywood et al. (2007) δ18O, Mg/Ca 2 x
[19] Molnar & Cane (2007) modeling other x
[18] Brierley et al. (2009) Mg/Ca, alk. 2 x
[35] Dowsett & Robinson (2009) Mg/Ca, alk. 13 x
[38] Fedorov et al. (2010) modeling other x
[43] von der Heydt et al. (2011) modling other x
[44] O’Brien et al. (2014) Mg/Ca, alk., TEX86 3 x
[45] Haywood et al. (2016) δ18O, Mg/Ca, alk. 85 x
[46] Tierney et al. (2019) alk. 28 x
[20] White & Ravelo (2020) δ18O, Mg/Ca 1 x

Total 13 5 5 4 4

4.2. Review of Pliocene to Holocene Coastal Deposits in the Gulf of California

In a summary of coastal boulder deposits from the Miocene and Pliocene, Ruban
(2019) [48] examined 21 studies almost evenly divided between the two epochs and well
distributed between the northern and southern hemispheres. All of these studies feature a
mixture of boulder-size clasts exceeding 25.6 cm in diameter, although the original author’s
intent was not always explicit with identification of a CBD. Indeed, some are CODs
attributed to a delta setting and some are tsunami deposits. Due to less time for erosion
after deposition, the geological record for CBDs and CODs is potentially better when the
search is widened to the last 2 million years of the Pleistocene and succeeding ten thousand
years of the Holocene [49]. Deep geographic embayments (Figure 2), such as Mexico’s
Gulf of California, provide a fruitful place to search for and document storm-related CBDs
and CODs. That the incidence rate of hurricanes reaching the Gulf of California decreased
from an average return rate of 3.8 years between 1950 and 2000 to 1.3 years afterwards [50],
confirms this region has become more vulnerable to hurricanes during the last decade.
Table 2 summarizes storm deposits from the Pliocene [51–53], Pleistocene [27,54–56], and
Holocene [23–26,57–59] preserved within the Gulf of California region.

The distance between the most northwesterly and southeasterly study localities, with
documented storm deposits along the Gulf of California coastline, amounts to a spread
of 900 km (Figure 3). All are well north of the Tropic of Cancer, far beyond the source of
tropical cyclones that normally originate off the west coast of Mexico at a latitude of about
15◦ north of the equator.

A complicating factor in the formation of CBDs is due to the density of the source
rocks in sea cliffs subject to erosion by storms and tsunamis. The coastal geology within the
Gulf of California is highly varied with examples of igneous rocks such as granite, andesite,
and rhyolite, metamorphic rocks such as gneiss, and sedimentary rocks like limestone.
Among these, the local granite was found to have a density of 2.52 g/cm3 [27], which is
denser than andesite, with levels measured between 2.26 and 2.34 g/cm3 [26], which in
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turn is denser than rhyolite, with a sample density measured at 2.16 g/cm3 [24]. In turn,
all these igneous rocks are denser than the local limestone on Isla del Carmen, sampled
with a density of 1.86 cm/cm3 [23]. Essentially, a surface wave that shoals against the coast
must work harder to extract a boulder of granite from its source than a slab of limestone of
exactly the same size with lesser weight. Even so, some of the largest and heaviest rocks
observed anywhere in CBDs from the Gulf of California are represented by enormous
blocks of limestone with an estimated weight of nearly 6 metric tons [23].

Table 2. Pliocene to Holocene coastal boulder deposits (CBDs) and coastal outwash deposits (CODs) among islands and
shores of Mexico’s Gulf of California on the Baja California peninsula. Listing is north to south in each age category.

Reference
List Authors Age Location Class Lithology

Maximum
Boulder

Diam. (cm)

[51] Johnson et al. (2017) Pliocene Ballena Bay COD sandstone -
[52] Johnson et al. (2016) Pliocene Isla del Carmen COD andesite 64
[53] Emhoff et al. (2012) Pliocene Isla Cerrolvo COD granite, gneiss ~35
[54] Johnson & Ledesma- Vázquez (1999) Pleistocene Punta Antonio CBD granite, andes. 32
[55] Ledesma-Vázquez et al. (2007) Pleistocene Isla Coronado overwash sandstone -
[27] Callahan et al. (2021) Pleistocene Isla San Diego CBD granite 120
[56] Tierney et al. (2012) Pleistocene Isla Cerrolvo COD granite, gneiss ~35
[26] Guardado-France et al. (2020) Holocene Isla San Luis CBD andesite 80
[57] Kozlowski et al. (2018) Holocene Volcán Prieto CBD basalt ~35
[58] Johnson et al. (2012) Holocene Angel Guarda CBD andesite ~35
[24] Johnson et al. (2019) Holocene Almeja Bay CBD rhyolite 268
[23] Johnson et al. (2018) Holocene Isla del Carmen CBD limestone 182
[25] Johnson et al. (2020) Holocene Escondido Port CBD andesite 131
[59] Backus et al. (2012) Holocene Isla Cerrolvo COD granite, gneiss ~35

Total 14 studies 0 to 4.5 my 900-km spread mixed

Storm deposits of Pliocene age within the Gulf of California are represented by CODs
of unusual thickness [51–53]. Crude layering within CODs provides some insight regarding
the repetition and overall span of time during which such deposits continued to be formed
at the same locality. Among the examples from Table 2, the most intriguing is the 60-m
thick Tiombó conglomerate, representing a mega-delta complex on the east coast of Isla del
Carmen [52]. Boulders within the conglomerate are exclusively andesite in composition
(Figure 4), the largest of which has a maximum diameter of 64 cm. For the most part, these
clasts are well rounded as a consequence of travel to the coast under flood conditions from
a source high in the peninsular mountains as much as 35 km to the west.

The actual thickness of the complex is unknown, because contact between the base
of the conglomerate and underlying andesite in the Miocene Comondú Group is below
present sea level and most likely buried in the subsurface. However, scarce fossil pecten
shells from the lowest part of the exposed deposit confirm a Pliocene age. Raised marine
terraces, on the margins of the complex correlated with the middle and youngest parts of the
Pleistocene, suggest that the uplifted complex spans the Pliocene and may include material
from the oldest part of the Pleistocene [23]. In cross-section, the Tiombó conglomerate
traces an arch that extends for 2 km (Figure 5), with thick layers that form an arch (Figure 6)
tilt seaward 5◦ and thin to a wedge shape in the landward direction. This configuration
conforms to a massive delta complex that remained active through much of the Pliocene
with distinct pulses of conglomerate fed to the delta front from highlands before Isla del
Carmen was tectonically severed from the peninsular mainland.
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Another Pliocene deposit, also linked with outwash dynamics dependent on storm-
related rainfall, occurs far to the north of Isla del Carmen (Figure 4), where the 50-m
thick Ballena fan delta covers a map area of 4 km2 with sandstone layers dipping nearly
3◦ seaward in an arcuate pattern [51]. Equally far to the south of Isla del Carmen, yet
another Pliocene deposit, with carbonate sands framed above and below by thick boulder
deposits, occurs at Paredones Blancos on Isla Cerravo (Figure 4) [52]. In this case, coarse
outwash deposits stripped from the interior of a large island are interrupted by an interval
of subsidence and relative rise in sea level that filled a 0.5-km wide embayment.

Upper Pleistocene deposits, correlated with Marine Isotope Substage 5e during the
last interglacial episode roughly 125,000 years ago, also are well represented in the Gulf of
California (Table 2), although not nearly at the same scale as older Pliocene storm deposits.
Rhodolith sand deposited in a paleolagoon on Isla Coronados (Figure 7) are interpreted
as repetitive overwash events during major storms arriving from the south that topped a
barrier formed by solid andesite basement rocks [55].

North South

Key

 Andesite
 

 Coral reef
 

  Bioclastic
 limestone
 

 Overwash
   deposit
 

 Limestone with
whole rhodoliths
 

20o dip

lagoon rock barrier open shelf
calm water

Figure 7. Cross-section through a Late Pleistocene lagoon uplifted on the south shore of Isla Coronados, showing an
overwash deposit with multiple layers representing individual storm events that arrived from the south and left a succession
of tilted beds off-lapped to the north [55].

The tilted beds within the lagoon amount to 6.5 m of vertical fill, but they are organized
as individual beds from 40 to 60 cm in thickness dipping 20◦ to the north off the top of
the barrier [53]. Each bed is interpreted as a separate storm event that required sufficient
energy to carry carbonate sand up and over a rigid barrier from the sea floor to the south.
Three other Upper Pleistocene deposits are noteworthy, located north of Isla Coronados
at Punta San Antonio and farther south on Isla San Diego and Isla Cerralvo in the lower
Gulf of California (Table 2). The Punta San Antonio locality features a meter-thick CBD
formed by a mix of eroded granite and andesite boulders that became colonized by a
distinctive intertidal biota of bivalves and encrusting red algae [54]. The deposit on Isla San
Diego features a stack of crudely imbricated granite boulders that incorporate eroded coral
colonies dislodged by storm waves striking the island’s east shore [27]. On Isla Cerralvo,
thin cobble/boulder beds buried a succession of five coral colonies that grew in place
through a vertical thickness of 3 m, with each cycle initiated by a storm event that washed
conglomeratic debris from the island’s interior to the shore [56].

Several examples of Holocene storm beds are described from the Gulf of California,
most of which are modified CBDs that form distinctive bars connected to and eroded
from rocky shores under episodic storm attack. The composition and size of boulders
incorporated within these deposits vary considerably (Table 2). The boulder deposit at
Almeja Bay (Figure 8) is noteworthy for various reasons [24], among which is that it
includes some of the largest eroded boulders on record in the gulf region. Coastal erosion
contributing to bar development is implied to be ongoing at this site. Table 2 lists an
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individual rhyolite boulder with a diameter of 268 cm at this locality, estimated to weigh
4.3 metric tons and requiring wave shock from a 16-m high wave to dislocate it from nearby
cliffs [24]. Such a huge boulder is an outlier, but an eye-witness account with storm waves
filmed from the last major hurricane to strike the area in 2014 offers evidence of wave
heights easily reaching 8 m [24]. This level of storm activity would be sufficient to shift
most of the lesser boulders in the unconsolidated deposit.
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an adjacent sea cliff (out of view to the right) stacked to a height of 2 m [24].

On Isla Cerralvo in the lower Gulf of California (Figure 4), Backus et al. (2012) [59]
documented 39 fan deltas around the island’s circumference that represent CODs formed
by granite and gneiss debris washed through a network of radial drainage channels from
the interior. What is most intriguing about this mid-size island, 136,000 km2 in area, is its
vulnerability to hurricanes, several of which made direct hits in recent years, including
Lorena in 2019, John in 2006, Ignacio in 2003, and Marty also in 2003. Although maximum
boulder size is small, around 35 cm in diameter (Table 2), the island provides a good model
for the dynamic development of storm-related CODs in the past.

4.3. Review of Pliocene to Holocene Coastal Deposits in the North Atlantic Basin

Storm deposits attributed specifically to the Pliocene Warm Period are rare, but an
unusual example from Lower Pliocene strata at Mallbusca on Santa Maria Island in the
Azores is well documented [60]. Santa Maria is the only island among the archipelago’s
nine islands with a stratigraphic record spanning the Pliocene and parts of the Pleistocene,
complete with abundant fossils. The storm sequence (Figure 9) consists of a continuous 5-m
thick package distinguished by laminae composed of heavier, dark minerals dominated by
pyroxene, olivine and plagioclase, alternating with lighter carbonate grains draped over a
disconformity surface represented by a low rocky shore, distinguished by an intertidal to
shallow-water biota including encrusting bivalves and coralline red algae. The top part of
the storm bed is penetrated by a variety of trace fossils that burrowed from above as much
as a meter into the sands from sometime after the storm ended. The interval in between is
entirely barren of fossils.
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Figure 9. Storm deposit from the Lower Pliocene represented by a singular 5-m thick sandstone body that washed over a
low-relief rocky shore at Malbusca on the south coast of Santa Maria Island in the Azores [60].

The Pliocene sand body may be traced laterally over a distance of 750 m before
termination against the flanks of a lava delta. The deposit is largely two-dimensional, but
the size of the open bench on which it sits allows for a conservative estimate of volume at
14,500 m3 interpreted to have been transported onshore from an adjacent sandbar during
passage of a major hurricane [60].

Upper Pleistocene (Marine Isotope Substage 5e) and contemporary CBDs from Santa
Maria Island also have been studied for CBDs [28] compatible with the methodology un-
dertaken with regard to Mexico’s Gulf of California [23–27]. In particular, the southeastern
corner of the island at Punta do Castelo exhibits a matching set of Pleistocene and Holocene
conglomerates with individual boulders that register a maximum half-meter in diameter.
According to the mathematical models of Nott (2003) [39], these are estimated to have
formed under wave heights between 5.3 and 5.5 m. The mathematical equation applied
by Pepe et al. (2018) [41] yields a more exaggerated result for the same units. Passage of
modern-day tropical cyclones in this area is not unusual, and full-fledged hurricanes have
struck the Azores most recently in 1998, 2006, and 2012, when wave heights of 5.5 m or
more would be expected against island shores.

A similar study was performed on boulder slumps from the Upper Pleistocene (Marine
Isotope Substage 5e) at El Confital beach on Gran Canaria in the Canary Islands [29], which
like the CBDs in the Azores are derived from basalt. Basalt has a higher rock density than
granite, and the rock density of basalt from El Confital beach was determined to yield
an average value of 2.84 g/cm3. Six trials based on samples between 24 and 30 basalt
boulders each yielded average estimates of wave heights between 3.9 and 4.8 m based
on the equations of Nott (2003) [39]. Here, the mathematics from Pepe et al. (2018) [41]
makes a reasonable match. Moreover, the study from El Confital also lists 26 major storms
impacting Gran Canaria since 1713. Few such records provide eye-witness details on
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observed wave heights, but a major storm in 1966 involved wave heights between 10 and
12 m at the coast, and another storm in 1968 was reported to entail wave heights of 8 m [28].
Wave heights within that range during the late Pleistocene would have been adequate to
dislodge the largest boulders at El Confital.

Elsewhere in the North Atlantic basin, huge limestone boulders stranded above the
island shores of Bermuda and the Bahamas [61,62] have attracted much the same interest
in storm waves during the Late Pleistocene as a possible warning about future superstorms
related to global warming. Likewise, tropical cyclones that form hurricanes are not expected
to migrate to high latitudes in boreal settings, but during the last decade at least four storms
of hurricane intensity struck Norway’s Arctic coast [30], and Holocene CBDs along that
coast are of interest. The boulder beach at Støypet on Leka Island formed after glacial
retreat around 10,000 years ago and is composed of unconsolidated cobbles and boulders
eroded from sea cliffs exposing low-grade chromite ore with a rock density of 3.32 g/cm3.
This is the highest-density rock type yet studied for its hydrological properties in a coastal
setting, and the results based on the predictive equations of Nott (2003) and Pepe et al.
(2018) [39,41] are compatible in suggesting that shore erosion from wave heights between
5 and 7.5 m was possible.

5. Discussion

Studies predicting future superstorms based on CBDs from the geologic past elicit
controversy related to: (1) challenges to the efficacy of mathematical equations to estimate
wave heights and flow regimes based on boulder size and rock density, (2) alternate sources
other than sea storms and attendant rainfall that explain similar deposits, and (3) past
geographic configurations different from today’s world as an influence on climate unrelated
to global warming.

5.1. On the Efficacy of Mathematical Equations

Hydrodynamic equations following the approach pioneered by Nott (2003) [39] with
subsequent iterations [40,41] are criticized on the basis of clifftop boulders along the At-
lantic coasts of Ireland and Scotland [63], which have a storied record of study by different
investigative teams [64–66]. The claim is made that such equations are flawed and should
be abandoned because they yield unrealistic estimates. These concerns appear to be valid
due the enormous size of limestone blocks quarried from clifftops during extreme wave
events [63]. Clifftop and other boulder deposits from the Reykjanes Peninsula of Ice-
land [67] partly demonstrate the over performance of computational estimates in contrast
to known wave heights during that region’s Atlantic storms that regularly reach 15 m or
more. Among 46 study sites from 10 different areas on the Reykjanes Peninsula, more than
half the formulaic wave heights calculated for basalt boulders fall above the bench mark of
15 m. Twenty percent of the formulaic calculations predict wave heights of 25 m or more.
The Selatangar site from this study [67] was the additional single palaeo-deposit to yield a
wave-height estimate of 14 m in agreement with observations on contemporary storms.

In the Pacific Ocean basin, Super Typhoon Haiyan passed over the Philippine is-
lands in November of 2013 as a Category 5 storm packing top wind speeds of 315 km/h
with devastating consequences as one of the most powerful storms to make landfall yet
recorded [68]. Studies on the volume and density of blocks dislodged from low-lying
limestone cliffs on the Calicoan island in the path of the typhoon [69,70] reached the same
conclusion that formulaic predictions [39–41] on wave height for large blocks far exceed the
maximum wave height of 18.7 m that occurred offshore the study area [71]. The dynamics
of clifftop erosion may be peculiar in this regard, involving differences between compres-
sive hydraulic pressure due to head-on wave impact against seams and joints in a layered
rock face and tensile stress on the underside of lip overhangs [72]. It is not clear that caution
against use of the equations inspired by Nott (2003) [38–40] is justified when dealing with
rocky shores other than limestone, whether layered or not. In any case, those formulae
remain the only predictive tool available for application to CBDs from the geologic past,
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including those much older than the Pliocene. An approach certain to be useful in future
studies of modern CBDs of all types is one that tags boulders with identification markers so
they may be tracked for movement following the next major storm event having verifiable
wave heights. With data on hand regarding a range in boulder size and density from
different rock types susceptible to movement, it should be possible to make comparisons
with boulder conglomerates that formed in the distant past.

5.2. On Mistaken or Inconclusive Classifications

Earthquakes that rupture the seabed and/or trigger the collapse of volcanic island
flanks are the source of tsunamis that impact coastal zones and may result in CBDs similar
to those caused by sea storms. Regarding studies in the Philippines conducted soon after
Super Typhoon Haiyan [69,70], the CBD consisting of limestone blocks peeled off coastal
cliffs is shown, by the timing of the study, to be clearly storm induced. Likewise, the study
of coastal deposits at Banda Aceh on Sumatra in Indonesia [34] is indisputable as to its
source due to a major tsunami in 2004. In some regions, such as the Canary Islands in the
North Atlantic, CBDs may originate from sea storms, as argued for the Pleistocene boulder
slumps at El Confital beach on Gran Canaria [29], or from a Pleistocene tsunami related
to volcanic flank collapse on the same island [73]. The sedimentology of the two deposits
is entirely different, although involving a wide range of boulder sizes. At El Confital,
the deposit is formed by well-rounded boulders limited in vertical thickness and located
adjacent to the present shore, whereas the inland deposit from the Agaete valley on the
same island occurs between 41 and 188 m above sea level, and is dominated by angular
volcanic clasts that decrease in size with altitude intermixed with soil and colluvium as
well as broken marine shells.

Deposits on volcanic islands elsewhere in the northeast Atlantic fit the same profile of
poorly sorted materials, including huge basalt blocks and mixed soil found at elevations
high above present sea level, among them the megatsunami deposit on Santiago Island
in the Cape Verde archipelago studied by Ramalho et al. (2015) [74]. The deposits feature
enormous boulders up to 8 m in diameter and point to wave run-up heights exceeding
270 m above sea level. In this example, the tsunami appears to have been triggered by
a volcanic flank collapse on the adjacent island of Fogo about 73,000 years ago. Authors
studying the clifftop boulders in western Ireland [63,65] are adamant that the possibility
for an origin due to offshore tsunami events at that latitude is mistaken. At the same time,
others studying CBDs in the Mediterranean region, such as the Pleistocene and Holocene
boulders on Malta [75] favor extreme storm events but are unable to rule out rare tsunami
events also known to have occurred in that region.

Controversy likewise surrounds the 10-m thick Pliocene deposit at Caleta Hornitos in
northern Chile, which includes boulders, large rock slabs, and breccia laterally traceable
for nearly 2 km, first linked to a possible tsunami event [76] but reclassified as a massive
debris flow triggered by an earthquake in the Andean subduction zone of coastal Chile [77].
The example is intriguing, because the tsunami connection is tied to the Eltanin impact
site in the Drake Passage off the southwestern tip of South America, which represents a
different non-climate related source of disruption capable of producing a significant CBD.
However, the two events are correlated with different time horizons, although both within
the Pliocene [77].

5.3. On the Bearing of Subtle Geographic Differences

As early proponents for a permanent Pliocene El Niño, Wara et al. (2005) [16] argued
that the similar configuration of Pliocene continents and oceans placed few constraints
on comparisons with today’s world and the forecast of future global warming. Although
subtle in scale, the open passage between North America and South America, prior to final
closure by the Isthmus of Panama 3.5 million years ago [78], overlaps with the Pliocene
Warm Period. A global paleogeographic reconstruction for the Pliocene Period (Figure 10)
marks the location several Pliocene study sites covered in this review, and illustrates the
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ramifications with respect to atmospheric and oceanic circulation attendant on such and
open passageway.
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line. Map abbreviations: SM = Santa Marina Island (Azores archipelago), T = Tiombó conglomerate (Gulf of California),
ODP = Ocean Drilling Project sites, H = Caletas Hornitos (northern Chile), and E = Eltanin impact site (off the southern tip
of South America).

A small but significant difference is that a through-going ocean current was able to
flow westward between the continents from the Atlantic Ocean into the Pacific Ocean. As
consequence, the Gulf Current in the North Atlantic was almost certainly weaker compared
to today [43]. Among studies probing evidence on the status of El Niño cycles during the
Pliocene Warm Period (Table 2), the modeling study by von der Heydt et al. (2011) [44]
is one of the few to consider the effect of an open seaway. The mathematical modeling
undertaken in that study is sophisticated and difficult to evaluate. However, it concludes
that weak trade winds during the Pliocene Warm Period were unlikely, and hence a perma-
nent El Niño would have been unrealistic. A more recent study by Lam et al. (2021) [79]
that relies on microfossils posits a multi-stage history in the development of the Kuroshio
Current off present-day Japan. During the Pliocene Warm Period, an early stage reflects
warmer SSTs and sluggish movement that evolved though a strong temperature/salinity
gradient. Only after the Pliocene Warm Period at ~2.9 Ma, the Kuroshio Current is said to
approximate its modern-day configuration as a major western boundary current bringing
moisture to high latitudes [79]. By implication, a slow-down in the western moving Pacific
equatorial currents may have influenced a weaker Kuroshio Current at the same time.

With regard to paleoecology, the local effect of a throughgoing current passing across
the Caribbean into the eastern Pacific is evident due to immigration by Atlantic and
Caribbean based coral and bryozoan faunas into the Gulf of California on Mexico’s western
coast [80,81]. This outcome implies the Pliocene presence of a north-drifting counter current
along the shores of Central America and probably a similar south-drifting current off the
northwest coast of South America due to a pooled bulge in surface waters that formed as a
spill-over effect. The mechanics of such a bulge were pointed out by Weaver (1990) [82] as a
distinct likelihood during the early Pliocene, by analogy with the present day through-flow
of equatorial currents from the Pacific to Indian oceans between Indonesia and New Guinea,
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that stimulates the north to south poleward drift of the warm Leeuwin Current along the
west coast of Australia. That anomalous current supports the 260-km long Ningaloo reef
track off Western Australia in a position otherwise unsuited for coral growth.

The question is whether or not the Eastern Pacific Pool (EPP) of surface water may
have been affected during the Pliocene due to reduced upwelling from the south moving
California and north moving Humboldt currents, which in turn may have altered Walker
Cell circulation in the atmosphere above the Pacific equator. The modeling by von der
Heydt et al. (2011) [44] projects a western shift in the position of the cold tongue due to
equatorial upwelling by up to 2000 km, but does not consider the possible influence of
counter flow against the California and Humboldt currents or the altered strength of the
Kuroshio Current.

6. Conclusions

Pertinent to the Pliocene Warm Period, as generally defined between ~4.5 and 3.0 mil-
lion years ago [16,17], this review combines and attempts to balance research results not
usually treated in the same discussion. Namely, the two fields of study consulted are those
based on temperature-sensitive planktonic foraminifera and other organics retrieved as
fossil remains from deep-sea cores, contrasted against land-based studies of non-biological
accumulations preserved as coastal boulder deposits (CBDs) and coastal outwash deposits
(CODs). Where alternate sources of energy such as tsunamis or extra-terrestrial impacts
of bolides can be eliminated, the CBDs reflect events of hurricane intensity more often
responsible for erosion on rocky shorelines resulting in coarse conglomerate. The same
storms bring heavy rain with landfall, which can lead to the development of extensive
CODs. A secondary goal of this review is to examine similar CBDs from the end of the
Pleistocene Epoch roughly 125,000 years ago (correlative with Substage Marine Isotope 5e)
and the Holocene during the last 10,000 years. The following conclusions are drawn from
this process.

• The latest findings from the extensive literature on the Pliocene Warm Period argue
against permanent El Niño conditions not only in the Pliocene Pacific Ocean, but more
broadly worldwide. However, even the strongest proponents of a normal Pliocene El
Niño suggest that elevations of CO2 concentrations much higher than 400 ppm should
induce a more persistent El Niño effect.

• Opposing studies tend to ignore the notion of a feed-back loop, whereby the steady
increase in tropical disturbances of hurricane strength induce greater surface-water
mixing and higher SSTs spreading beyond the equatorial zone and thereby more
continuous El Niño conditions. In the opposite camp, studies that favor persistent
El Niño conditions during the Pliocene Warm Period tend to ignore the notion that
warming of SSTs in the equatorial Pacific may have been influenced by the open
passageway between the North and South American continents irrespective of rising
CO2 levels.

• Repetitive Pliocene CODs found throughout Mexico’s Gulf of California required
higher rainfall in that region than today in order to achieve thicknesses of several
meters between natural breaks. In turn, their presence suggests more persistent El
Niño conditions as a source of local rainfall. Evidence for intense Pliocene activity is
less known in the Atlantic realm but does exist as for example in the Azores, although
limited overall by the availability of Pliocene island deposits.

• The end of the Pleistocene Epoch and succeeding 10,000 years of the Holocene rep-
resent a much smaller time frame than the Pliocene Warm Period, but evidence for
CBDs during those intervals is even more extensive. With regard to climate-change
studies, however, care must be exercised to eliminate examples due to non-climate
related influences such as earthquake-induced tsunamis.

Future research on the Pliocene Warm Period is certain to provide greater insight on
an interval of time during which average global temperatures and sea level exceeded what
we experience today.
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