Wave Energy Resource Harnessing Assessment in a Subtropical Coastal Region of the Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Wave Model Setup
2.3. Wave Energy Resource Assessment
2.4. Extractable Wave Power
2.5. Wave Power Extracted by WEC Farms to Satisfy a DES
3. Results
3.1. Wave Model Validation
3.2. Wave Power Available
3.3. Harvestable Wave Power
3.4. Wave Power Extracted by WEC Farms Based on a Decentralized Energy Scheme
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Yu, R., Zhou, B., Eds.; Cambridge University Press: Cambridge, UK, 2021; In Press. [Google Scholar]
- Vega de la Mora, L.A.; Angeles-Camacho, C.; Melchor Quinto, A.Y. Introduction. In Redes Eléctricas: Mercado Mayorista de Electricidad en México. Estado del Arte; Silva Casarín, R., Posada Vanegas, G., Gutiérrez Lara, J., Felix Delgado, A., Eds.; CEMIE-Océano: Universidad Autónoma de Campeche: Campeche, Mexico, 2019; p. 105. ISBN 9786078444281. [Google Scholar]
- International Energy Agency (IEA). Global Energy & CO2 Status Report (2018); IEA: Paris, France, 2019. [Google Scholar]
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050, 2019th ed.; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Poullikkas, A. Technology Prospects of Wave Power Systems. Electron. J. Energy Environ. 2014, 2, 47–69. [Google Scholar] [CrossRef]
- Hernández-Fontes, J.V.; Felix, A.; Mendoza, E.; Cueto, Y.R.; Silva, R. On the marine energy resources of Mexico. J. Mar. Sci. Eng. 2019, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Dicorato, M.; Forte, G.; Pisani, M.; Trovato, M. Guidelines for assessment of investment cost for offshore wind generation. Renew. Energy 2011, 36, 2043–2051. [Google Scholar] [CrossRef]
- Quitoras, M.R.D.; Abundo, M.L.S.; Danao, L.A.M. A techno-economic assessment of wave energy resources in the Philippines. Renew. Sustain. Energy Rev. 2018, 88, 68–81. [Google Scholar] [CrossRef]
- Ilyas, A.; Kashif, S.A.; Saqib, M.A.; Asad, M.M. Wave electrical energy systems: Implementation, challenges and environmental issues. Renew. Sustain. Energy Rev. 2014, 40, 260–268. [Google Scholar] [CrossRef]
- Kempener, R.; Neumann, F. Wave Energy: Technology Brief; IRENA: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Sannasiraj, S.A.; Sundar, V. Assessment of wave energy potential and its harvesting approach along the Indian coast. Renew. Energy 2016, 99, 398–409. [Google Scholar] [CrossRef]
- Gleizon, P.; Campuzano, F.; Carracedo, P.; Martinez, A.; Goggins, J.; Atan, R.; Nash, S. Wave Energy Resources Along the European Atlantic Coast. In Marine Renewable Energy; Yang, Z., Copping, A., Eds.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-53534-0. [Google Scholar]
- Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- Aggidis, G.A.; Taylor, C.J. Overview of wave energy converter devices and the development of a new multi-axis laboratory prototype. IFAC-PapersOnLine 2017, 50, 15651–15656. [Google Scholar] [CrossRef]
- Cruz, J. Ocean Wave Energy: Current Status and Future Perspectives; Cruz, J., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 9783540748946. [Google Scholar]
- AbuBakr, B. Wave and Tidal Energy-State of the Art and What Lies Ahead. In Proceedings of the 13th European Wave and Tidal Energy Conference, Napoli, Italy, 1–6 September 2019. [Google Scholar]
- Palha, A.; Mendes, L.; Fortes, C.J.; Brito-Melo, A.; Sarmento, A. The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices. Renew. Energy 2010, 35, 62–77. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Garcia, G.P.; Estanqueiro, A.; Justino, P.A. The Levelized Cost of Energy (LCOE) of wave energy using GIS based analysis: The case study of Portugal. Int. J. Electr. Power Energy Syst. 2015, 65, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45, 397–408. [Google Scholar] [CrossRef]
- Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 2020, 204, 107248. [Google Scholar] [CrossRef]
- Antonio, F.D.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Fadaeenejad, M.; Shamsipour, R.; Rokni, S.D.; Gomes, C. New approaches in harnessing wave energy: With special attention to small islands. Renew. Sustain. Energy Rev. 2014, 29, 345–354. [Google Scholar] [CrossRef]
- Martínez, M.L.; Vázquez, G.; Pérez-Maqueo, O.; Silva, R.; Moreno-Casasola, P.; Mendoza-González, G.; López-Portillo, J.; MacGregor-Fors, I.; Heckel, G.; Hernández-Santana, J.R.; et al. A systemic view of potential environmental impacts of ocean energy production. Renew. Sustain. Energy Rev. 2021, 149, 111332. [Google Scholar] [CrossRef]
- O’Dea, A.; Haller, M.C.; Özkan-Haller, H.T. The impact of wave energy converter arrays on wave-induced forcing in the surf zone. Ocean Eng. 2018, 161, 322–336. [Google Scholar] [CrossRef]
- Atan, R.; Finnegan, W.; Nash, S.; Goggins, J. The effect of arrays of wave energy converters on the nearshore wave climate. Ocean Eng. 2019, 172, 373–384. [Google Scholar] [CrossRef]
- El Assri, N.; Chabaa, S.; Lmesri, K.; Ali Jallal, M.; Zeroual, A. Modeling Techniques for Decentralized Energy Systems Applied in Smart Grids. In Proceedings of the E3S Web of Conferences, EDP Sciences, Agadir, Morocco, 22–24 July 2021. [Google Scholar]
- Mehigan, L.; Deane, J.P.; Gallachóir, B.P.Ó.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity systems. Energy 2018, 163, 822–836. [Google Scholar] [CrossRef]
- Weinand, J.M.; Scheller, F.; McKenna, R. Reviewing energy system modelling of decentralized energy autonomy. Energy 2020, 203, 117817. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Innovation Landscape Brief: Market Integration of Distributed Energy Resources; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Rae, C.; Bradley, F. Energy autonomy in sustainable communities—A review of key issues. Renew. Sustain. Energy Rev. 2012, 16, 6497–6506. [Google Scholar] [CrossRef]
- Secretaría de Energía, SENER. Manual de Interconexión de Centrales de Generación con Capacidad Menor a 0.5 MW, 2nd ed.; Diario Oficial de la Federación (DOF): Ciudad de México, Mexico, 2016. [Google Scholar]
- Grigsby, L.L. The Electric Power Engineering Handbook, 3rd ed.; Grigsby, L.L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-4398-56345. [Google Scholar]
- Bansal, R. Handbook of Distributed Generation; Bansal, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Hecke, J.; Salgado, A.; Gruet, R. Oceans Powering the Energy Transition: Progress through Innovative Business Models and Revenue Supports. In Proceedings of the IRENA Insights Webinar Series, Abu Dhabi, United Arab Emirates, 12 May 2020. [Google Scholar]
- Ruiz de Alegría-Arzaburu, A.; Vidal-Ruiz, J.A.; García-Nava, H.; Romero-Arteaga, A. Seasonal morphodynamics of the subaerial and subtidal sections of an intermediate and mesotidal beach. Geomorphology 2017, 295, 383–392. [Google Scholar] [CrossRef]
- SWAN Team. SWAN Cycle III Version 41.20AB User Manual; Delft University of Technology, Faculty of Civil Engineering and Geosciences, Environmental Fluid Mechanics Section: Delft, The Netherlands; Delft Academic Press: Delft, The Netherlands, 2006. [Google Scholar]
- Rascle, N.; Ardhuin, F. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model. 2013, 70, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Cornett, A. A Global Wave Energy Resource Assessment. In Proceedings of the 18th International Offshore and Polar Engineering Conference, OnePetro, Vancouver, BC, Canada, 6–11 July 2008. [Google Scholar]
- Silva, D.; Rusu, E.; Soares, C.G. Evaluation of various technologies for wave energy conversion in the Portuguese nearshore. Energies 2013, 6, 1344–1364. [Google Scholar] [CrossRef]
- Weinstein, A.; Fredrikson, G.; Parks, M.J.; Nielsen, K. AquaBuOY—The offshore wave energy converter numerical modeling and optimization. In Proceedings of the Oceans’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Kobe, Japan, 9–12 November 2004; Volume 4, pp. 1854–1859. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea. Renew. Energy 2017, 103, 401–417. [Google Scholar] [CrossRef] [Green Version]
- O’Boyle, L.; Doherty, K.; van’t Hoff, J.; Skelton, J. The value of full scale prototype data-testing oyster 800 at emec, orkney. In Proceedings of the 11th European wave and tidal energy conference (EWTEC), Nantes, France, 6–11 September 2015. [Google Scholar]
- Babarit, A.L.; Hals, J.; Kurniawan, A.; Moan, T.; Krokstad, J. Power Absorption Measures and Comparisons of Selected Wave Energy Converters. In Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; pp. 437–446. [Google Scholar]
- Babarit, A. A database of capture width ratio of wave energy converters. Renew. Energy 2015, 80, 610–628. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Toft, J.E.; Papenfus, M.; Verutes, G.; Guerry, A.D.; Ruckelshaus, M.H.; Arkema, K.K.; Guannel, G.; Wood, S.A.; Bernhardt, J.R.; et al. Catching the right wave: Evaluating wave energy resources and potential compatibility with existing marine and coastal uses. PLoS ONE 2012, 7, e47598. [Google Scholar] [CrossRef] [Green Version]
- Guillou, N.; Chapalain, G. Annual and seasonal variabilities in the performances of wave energy converters. Energy 2018, 165, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Chang, G.; Ruehl, K.; Jones, C.A.; Roberts, J.; Chartrand, C. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions. Renew. Energy 2016, 89, 636–648. [Google Scholar] [CrossRef] [Green Version]
- Spaulding, M.L.; Grilli, A.; Damon, C.; Fugate, G. Application of technology development index and principal component analysis and cluster methods to ocean renewable energy facility siting. Mar. Technol. Soc. J. 2010, 44, 8–23. [Google Scholar] [CrossRef]
- Krogstad, H.E.; Wolf, J.; Thompson, S.P.; Wyatt, L.R. Methods for intercomparison of wave measurements. Coast. Eng. 1999, 37, 235–257. [Google Scholar] [CrossRef]
- Ahn, S.; Haas, K.A.; Neary, V.S. Wave energy resource characterization and assessment for coastal waters of the United States. Appl. Energy 2020, 267, 114922. [Google Scholar] [CrossRef]
- Calliari, L.J.; Speranski, N.; Boukareva, I. Stable focus of wave rays as a reason of local erosion at the southern Brazilian coast. J. Coast. Res. 1998, 26, 19–23. [Google Scholar]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0521860284. [Google Scholar]
- Guillou, N.; Lavidas, G.; Chapalain, G. Wave Energy Resource Assessment for Exploitation—A Review. J. Mar. Sci. Eng. 2020, 8, 705. [Google Scholar] [CrossRef]
- Ahn, S.; Neary, V.S. Wave energy resource characterization employing joint distributions in frequency-direction-time domain. Appl. Energy 2021, 285, 116407. [Google Scholar] [CrossRef]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mendoza, E. Climate drivers of directional wave power on the Mexican coast. Ocean Dyn. 2020, 70, 1253–1265. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; White, A.; Mösso, C.; Mestres, M. Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France). Energy 2017, 141, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Martín, C.; Mösso, C.; Mestres, M.; Jebbad, R. Wave energy potential along the Atlantic coast of Morocco. Renew. Energy 2016, 96, 20–32. [Google Scholar] [CrossRef]
- Lavidas, G.; Blok, K. Shifting wave energy perceptions: The case for wave energy converter (WEC) feasibility at milder resources. Renew. Energy 2021, 170, 1143–1155. [Google Scholar] [CrossRef]
- Dunnett, D.; Wallace, J.S. Electricity generation from wave power in Canada. Renew. Energy 2009, 34, 179–195. [Google Scholar] [CrossRef]
- Chozas, J. International Levelised Cost of Energy for Ocean ENERGY technologies; Ocean Energy Syst: Copenhagen, Denmark, 2015. [Google Scholar]
- Babarit, A.; Bull, D.; Dykes, K.; Malins, R.; Nielsen, K.; Costello, R.; Roberts, J.; Ferreira, C.B.; Kennedy, B.; Weberc, J. Stakeholder requirements for commercially successful wave energy converter farms. Renew. Energy 2017, 113, 742–755. [Google Scholar] [CrossRef]
- Diezmartínez, C.V. Clean energy transition in Mexico: Policy recommendations for the deployment of energy storage technologies. Renew. Sustain. Energy Rev. 2021, 135, 110407. [Google Scholar] [CrossRef]
- Kabalci, E.; Boyar, A.; Kabalci, Y. Centralized power generation. Hybrid Renew. Energy Syst. Microgrids 2021, 47–72. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación (DOF). Acuerdo por el que la Secretaría de Energía emite las Bases del Mercado Eléctrico. (Continúa en la Quinta Sección); Ciudad de México, Mexico, 2015. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5407715&fecha=08/09/2015 (accessed on 19 June 2020).
- Chozas, J.F.; Kofoed, J.P.; Jensen, N.E.H. User Guide—COE Calculation Tool for Wave Energy Converters: Ver. 1.6; Department of Civil Engineering, Aalborg University: Aalborg, Denmark, 2014. [Google Scholar]
- Secretaría de Energía, SENER. Regiones sin Electricidad. Available online: http://datos.gob.mx/busca/dataset/regiones-sin-electricidad/resource/f580dd2d-d28e-4c86-a850-acad3f01d4d8 (accessed on 19 June 2020).
- INEGI. Anuario Estadístico y Geográfico de Baja California 2017; Instituto Nacional de Estadística y Geografía (INEGI): Aguascalientes, Mexico, 2017. [Google Scholar]
- The Happy Neuron. Wave Power Might Be Feasible after All. Available online: http://thehappyneuron.com/2020/05/wave-power-might-be-feasible-after-all/ (accessed on 21 November 2020).
- Trikalitis, S.; Lavidas, G.; Kaldellis, J.K. Energy Analysis of a Hybrid Wind-Wave Solution For Remote Islands. Renew. Energy Environ. Sustain. 2021, 6, 34. [Google Scholar] [CrossRef]
- Wilson, D.G.; Weaver, W.W.; Bacelli, G.; Robinett, R.D. WEC array electro-mechanical drivetrain networked microgrid control design and energy storage system analysis. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2018), Amalfi, Italy, 20–22 June 2018; pp. 1278–1285. [Google Scholar] [CrossRef]
- Roy, A.; Auger, F.; Dupriez-Robin, F.; Bourguet, S.; Tran, Q.T. Electrical power supply of remote maritime areas: A review of hybrid systems based on marine renewable energies. Energies 2018, 11, 1904. [Google Scholar] [CrossRef] [Green Version]
- Guneya, M.S.; Tepe, Y. Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Friedrich, D.; Lavidas, G. Evaluation of the effect of flexible demand and wave energy converters on the design of hybrid energy systems. IET Renew. Power Gener. 2017, 11, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Franzitta, V.; Curto, D.; Milone, D.; Viola, A. The desalination process driven by wave energy: A challenge for the future. Energies 2016, 9, 1032. [Google Scholar] [CrossRef] [Green Version]
- Stuiver, M.; Soma, K.; Koundouri, P.; Van ben Burg, S.; Gerritsen, A.; Harkamp, T.; Dalsgaard, N.; Zagonari, F.; Guanche, R.; Schouten, J.-J.; et al. The Governance of multi-use platforms at sea for energy production and aquaculture: Challenges for policy makers in European Seas. Sustainability 2016, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renew. Sustain. Energy Rev. 2021, 135, 110162. [Google Scholar] [CrossRef]
- García-Ochoa, R.; Graizbord, B. Caracterización espacial de la pobreza energética en México. Un análisis a escala subnacional. Econ. Soc. Territ. 2016, 16, 289–337. [Google Scholar] [CrossRef]
- Nelson, P.A.; Behrens, D.; Castle, J.; Crawford, G.; Gaddam, R.N.; Hackett, S.C.; Largier, J.; Lohse, D.P.; Mills, K.L.; Raimondi, P.T.; et al. Developing Wave Energy in Coastal California: Potential Socio-Economic and Environmental Effects; California Energy Commission, PIER Energy-Related Environmental Research Program & California Ocean Protection Council: Sacramento, CA, USA, 2008; CEC-500-2008-083.
ADCPs | No. Observations | Wave Parameters | Bias | RMSE | SI | r |
---|---|---|---|---|---|---|
ADCP 1 | 7985 | 0.05 m | 0.23 m | 0.18 | 0.92 | |
0.25 s | 2.74 s | 0.22 | 0.63 | |||
ADCP 2 | 4557 | 0.11 m | 0.22 m | 0.25 | 0.95 | |
0.80 s | 3.18 s | 0.30 | 0.55 | |||
ADCP 3 | 26719 | −0.11 m | 0.23 m | 0.23 | 0.93 | |
0.11 s | 2.42 s | 0.23 | 0.72 |
PST | SMR | |||
---|---|---|---|---|
Shallow | Deep | Shallow | Deep | |
13 | 15 | 11 | 9 | |
1.2 | 1.17 | 1.48 | 1.22 | |
0.6 | 0.58 | 0.66 | 0.59 | |
2.2 | 2.08 | 2.9 | 2.16 | |
3.74 | 3.55 | 5.01 | 3.61 |
WECs | Sites | ||||||
---|---|---|---|---|---|---|---|
Baja California Study Site | Other Places in the World | ||||||
PST | SMR | ||||||
Pelamis | 15 | 28.9 | 9 | 20.7 | 10.1 12.3 24.6 10.1 12.3 17.9 | 11.3 16.3 14.1 13.2 23.9 25.2 | GR [41] CAN [60] FR [46] GR [41] CAN [60] FR [46] |
WaveDragon | 13 | 5.4 | 11 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorr-Pozzi, E.; García-Nava, H.; Larrañaga, M.; Jaramillo-Torres, M.G.; Verduzco-Zapata, M.G. Wave Energy Resource Harnessing Assessment in a Subtropical Coastal Region of the Pacific. J. Mar. Sci. Eng. 2021, 9, 1264. https://doi.org/10.3390/jmse9111264
Gorr-Pozzi E, García-Nava H, Larrañaga M, Jaramillo-Torres MG, Verduzco-Zapata MG. Wave Energy Resource Harnessing Assessment in a Subtropical Coastal Region of the Pacific. Journal of Marine Science and Engineering. 2021; 9(11):1264. https://doi.org/10.3390/jmse9111264
Chicago/Turabian StyleGorr-Pozzi, Emiliano, Héctor García-Nava, Marco Larrañaga, Melissa G. Jaramillo-Torres, and Manuel G. Verduzco-Zapata. 2021. "Wave Energy Resource Harnessing Assessment in a Subtropical Coastal Region of the Pacific" Journal of Marine Science and Engineering 9, no. 11: 1264. https://doi.org/10.3390/jmse9111264
APA StyleGorr-Pozzi, E., García-Nava, H., Larrañaga, M., Jaramillo-Torres, M. G., & Verduzco-Zapata, M. G. (2021). Wave Energy Resource Harnessing Assessment in a Subtropical Coastal Region of the Pacific. Journal of Marine Science and Engineering, 9(11), 1264. https://doi.org/10.3390/jmse9111264