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Abstract: The work presents the identification and validation of the hydrodynamic coefficients for the
surge, sway, and yaw motion. This is performed in two ways: using simulated data and free-running
test data. The identification and validation with the simulation data are carried out using a 25◦

turning test and a 20◦−20◦ zigzag manoeuvring test. For the free-running test data, two zigzag ma-
noeuvres are used: 30◦−30◦ zigzag for identification and 20◦−20◦ zigzag for validation. A nonlinear
manoeuvring model is proposed based on the standard Euler equations, and the hydrodynamic
coefficients are computed using empirical equations. To obtain robust results, the truncated singular
value decomposition is employed to diminish the multicollinearity and the parameter uncertainties
due to noise. The validation is carried out by comparing the result of the measured values with the
predictions obtained using the manoeuvring models. Finally, a sensitivity analysis for the simulation
data is performed to understand the influence of the parameters in the manoeuvres.

Keywords: manoeuvring model; parameter estimation; singular values; free-running model tests;
truncated singular value decomposition

1. Introduction

Ship manoeuvrability is an important topic in the shipbuilding and shipping indus-
tries, and it was traditionally evaluated by carrying out massive captive ship model tests.
Mathematical manoeuvring models are essential to the study of manoeuvrability [1]. Sys-
tem identification (SI) is a mature technology to fit the mathematical models of dynamical
systems to measured data. It was only introduced for ship motion modelling in the 1960s,
and it became more developed recently [2–8]. It is also possible to develop methods based
on artificial intelligence techniques [9,10], but they do not include explicit information on
the physics of the process and thus the methods that identify the parameters of mathe-
matical models are often preferred as these models can easily be used to simulate the ship
trajectories [11,12].

When studying ship manoeuvrability, physical tests are fundamental. These can be
full-scale tests [13,14], which are the most accurate, but they are expensive. Ship model
tests, such as captive tests [15,16] or free-running tests [17], are another, cheaper option.
Captive tests can be more expensive [18–22] than free-running tests. Model tests face
scale effect problems which can be avoided with system identification methods [1,22].
The most plausible and direct manner to confirm ship manoeuvring properties is often
free-running tests.

The focus of this paper is the computation of the hydrodynamic coefficients for a non-
linear manoeuvring mathematical model. When computing several coefficients at the same
time, the model’s accuracy can be compromised due to the multicollinearity [19–21,23],
dynamic cancellation effects [18,24], parameter drift [18], and noise contained in the data.
They are the main issues faced when trying to obtain robust parameters. They are all linked
together and consequently compromise the robustness of the estimation and therefore the
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obtained parameters are sensitive to noise. To achieve robust results, extensive experimen-
tal data should be used, tests should be combined with system identification methods not
computing too many coefficients at the same time [1,24,25], and the parameter uncertainty
due to noise should be carried out.

The number of mathematical manoeuvring models is very extensive [1,20]. The
Abkowitz model, the Nomoto model, and the MMG model are the most used in manoeu-
vrability studies [26]. Manoeuvring models are often complex, gathering a set of motion
equations, mainly surge, sway, and yaw. The hydrodynamic forces and moments are ex-
panded to their Taylor expansion, where the hydrodynamic coefficients can be found [25].

Several SI methods, such as the extended Kalman filter [27], global optimization
algorithm, truncated least squares support vector machine [19–21,28,29], genetic algo-
rithm [22–30], particle swarm optimization [31], and artificial neural network [32] can be
used to estimate hydrodynamic coefficients.

Sutulo and Guedes Soares [30] identified the hydrodynamic coefficients using the
data from a 20◦−20◦ zigzag manoeuvre with an algorithm based on the classical genetic
algorithm. It was concluded that the noise influenced the validation severely, contrasting
with the good results for the simulation with normal responses without noise.

Lee and Kose [27] combined free-running tests, the least squares method (LSM), and
the extended Kalman filter to simulate the motions of a ship in harbour with strong winds.
Only the coefficients that contributed to those specific tests were considered, reducing the
error of final values. Viviani et al. [18] also chose to compute only a few hydrodynamic
coefficients, resorting to sensitivity analysis.

The association of the LSM with free-running tests provides satisfactory results for the
identification of hydrodynamic coefficients [27]. However, the LSM is not a good method to
diminish multicollinearity and noise [19–21,23,29]. Xu and Guedes Soares [19–21] studied
the effect of the addition of the truncated singular value decomposition (TSVD), along with
the least squares support vector machine. These works were all based on planar motion
mechanism tests performed in a scaled ship in a towing tank. All these studies used the
coefficient of determination (R2) to show the accuracy of their results, using untouched
data to validate the coefficients. Throughout the studies, the use of TSVD gave better
results with smaller uncertainties. Xu et al. [28] implemented the classical LSM, and then
introduced the TSVD and Tikhonov regularization and used data from a planar motion
mechanism. The results proved that there were more stable results and less uncertainty
and parameter drift with the introduction of the TSVD and Tikhonov regularization.

The main objective of this work is to identify and validate the hydrodynamic coef-
ficients, which are essential to study the manoeuvrability of ships. This is done using
the least squares method combined with the truncated singular value decomposition for
different manoeuvres both for identification and validation of the coefficients. Simulated
data from the obtained manoeuvring models and data from free-running ship model tests
will be tested and the results compared. Additionally, a sensitivity analysis is performed.
The contribution of each coefficient to the manoeuvres is discussed alongside the help that
the sensitivity analysis can provide to the analysis of the singular value in the identification
and validation of coefficients.

2. Nonlinear Empirical Manoeuvring Model

The mathematical model implemented only concerns three of the six degrees of
freedom (DOF), as the most relevant motions are in the horizontal plane. A model based
on the standard Euler equations for a ship was implemented:

(m + µ11)
.
u−mvr−mxGr2 = Xq + Xp

(m + µ22)
.
v + (mxG + µ26)

.
r + mur = Yq

(mxG + µ26)
.
v + (Izz + µ66)

.
r + mxGur = Nq

(1)

where m is the mass of the ship; xG is the centre of mass; Izz is the moment of inertia in yaw;
µ11, µ22, µ26, and µ66 are the added mass coefficients; Xq, and Yq are the surge and sway
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(respectively) forces on the rudder and hull; Nq is the yaw moment on the rudder and hull;
and Xp is the surge force caused by the propeller. The surge, sway, and yaw velocities (u, v,
and r, respectively) are also present in the model as well as the corresponding accelerations u′,
v′, and r′. All the forces on the rudder and hull can be expressed in their adimensional form:

Xq =
X′qV2ρ

2
LT; Yq =

Y′qV2ρ

2
LT; Nq =

N′qV2ρ

2
L2T (2)

where ρ is the density of the water, L is the length of the ship, T is the draught at midship,
and V2 is the instantaneous speed and is computed as V2 = u2 + v2. The non-dimensional
forces on the rudder and hull of surge and sway are X′q and Y′q, respectively. The non-
dimensional yaw moment on the rudder and hull is represented by N′q.

The hydrodynamic coefficients are part of the non-dimensional forces and moments:


X′q = X′uuu′

2
+ X′vrv′r′ + X′δδδ2

r

Y′q = Y′0 + Y′vv′ + Y′rr′ + Y′vvvv′
3
+ Y′vvrv′

2
r′ + Y′δδr + Y′vvδv′2δr + Y′δδvδ2

r v′ + Y′δδδδ3
r

N′q = N′0 + N′vv′ + N′rr′ + N′vvvv′
3
+ N′vvrv′

2
r′ ++N′δδr + N′vvδv′2δr + N′δδvδ2

r v′ + N′δδδδ3
r

(3)

The nondimensional velocities are u′ = u/V, v′ = v/V, and r′ = rL/V. The hydro-
dynamic coefficients for surge, sway, and yaw motion are given by the Equations (4)–(6),
respectively:

X′uu = −kxuu
2mCTL

ρL2T
; X′vr = −kxvr

1.3µ22

ρL2T
; X′vr = −kxvr

1.3µ22

ρL2T
; X′δδ = kRkxδδX′δδ0 (4)

Y′0 = ky0Y′00; Y′v = kyv(1 + b1τ′)Y′v0;
Y′r = kyr(1 + b2τ′)Y′r0;

Y′δ = kRkyδY′δ0; Y′vvv = kyvvvY′vvv0;
Y′vvr = kyvvrY′vvr0; Y′δvv = kRkyδvvY′δvv0;

Y′δδv = kRkyδδvY′δδv0; Y′δδδ = kRkyδδδY′δδδ0

(5)

N′0 = kn0N′00; N′v = knv(1 + b3τ′)N′v0;
N′r = knr(1 + b4τ′)

(
N′r0 + m′x′Gu′

)
;

N′δ = kRknδN′δ0; N′vvv = knvvvN′vvv0;
N′vvr = knvvr N′vvr0; N′δvv = kRknδvvN′δvv0;

N′δδv = kRknδδvN′δδv0; N′δδδ = kRknδδδN′δδδ0

(6)

where kxuu, . . . , knδδδ are the adjustment coefficients needed to compute the final hydrody-
namic coefficients; CTL is the ship drag coefficient non-dimensionalised by TV2

B ; kR is the
rudder area coefficients; b1 = 0.6667; b2 = 0.8; kH = 2T/L, τ′ = (TSTERN − TBOW)/T is the
relative trim; m′ = 2m/

(
ρL2T

)
is the non-dimensional ship mass coefficient; x′G = xG/L is

the non-dimensional abscissa of the centre of mass; b3 = 0.27N′v0/Y′v0; and b4 = 0.3.
The added mass and moments are defined using

µ11 = k11m; µ22 = k22m; (7)

µ66 = k66 Izz; µ26 = µ22xG (8)

where ku = 0.25; k22 = 2T
B

(
1− 0.5 B

L

)
; k66 = 2T

B

(
1− 1.6 B

L

)
; Izz = 0.0625mL2 is the moment

of inertia; and CTL = 0.07 is the ship drag coefficient, as stated previously.
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The constant base parameters in Equations (3)–(6) are defined as

X′δδ0 = −0.02 Y′00 = −0.0008 N′00 = 0.00059
Y′v0 = −0.244 N′v0 = −0.0555
Y′r0 = 0.067 N′r0 = −0.0349

Y′δ0 = −0.0586 N′δ0 = 0.0293
Y′vvv0 = −1.702 N′vvv0 = 0.345

Y′vvr0 = 3.23 N′vvr0 = −0.1032
Y′δvv0 = −0.25 N′δvv0 = −0.1032

Y′δδv0 = −0.0008 N′δδv0 = 0.00264

(9)

The surge force caused by the propeller depends only on values related to the propeller
and rudder. This force is the same as the effective thrust TE.

The steering gear model is more complex, defined by an ordinary differential equation:

.
δR =

{
min

[
1

TR
(|δ∗∗ − δR| − δ0, εm)

]
·sign(δ∗∗ − δR), L = f alse

0, L = true
(10)

where
L = (|δ∗∗ − δR| < δ0)

∨
[(|δR| ≥ δm)

∧
[sign(δ∗∗ − δR) = sign(δR)] (11)

δ∗∗ =

{
δ∗, i f |δ∗| ≤ δm

(δm + δ0)sign(δ∗), i f |δ∗| > δm

depends on the actual rudder angle δR, the rudder order δ∗, the rudder angle saturation

|δR| ≤ δm, the rudder rate
∣∣∣ .
δR

∣∣∣ < εm, the non-sensitivity dead band of width δ0, and the
time lag of the gear TR. The L is the Boolean variable and the δ∗∗ is an auxiliary variable.

When the adjustment coefficients are known, the estimated surge force, sway force,
and yaw moment can be compared with the respective measured values. The measured
forces and moments (Md) are given by the left side of Equation (1) and the estimated forces
and moments (Ed) by the right side of Equation (1) combined with Equations (2) and (3).

After the forces and moments are computed, their coefficient of determination (R2) is
obtained. The R2 must be between zero and one. The correlation is better as R2 gets closer
to one.

R2 = 1− ∑n
n=1(Md − Ed)

2

∑n
n=1

(
Md −

∑n
n=1 Md

n

)2 (12)

3. Results of the Manoeuvring Tests

The vessel model used in the free-running test was a scaled container (Figure 1) with its
main dimensions given in Table 1. The ship model had one propeller and one rudder in the aft.
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Table 1. Main dimensions of the container model.

Length (m) 3.24
Breadth (m) 0.43

Draught (estimated at the tests) (m) 0.14
Model mass (kg) 108.58
Water depth (m) 0.185

Propeller diameter (m) 0.10

The hardware system of the free-running ship model consisted of all the sensors and
actuators, as illustrated in Figure 2. The hardware system was further divided into two
groups: on-board and onshore control centre. The on-board system was composed of a
propeller, a rudder and set of sensors, an internal measurement unit, a yaw rate sensor,
electrical motors, and an industrial Wi-Fi unit, where all the signals were synchronised
using a Compact-RIO and stored in a laptop. This was used to control the self-running
model remotely [33,34].
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Figure 2. Sensors and actuators installed on the ship model.

The software architecture was mainly programmed by LABVIEW software. The
software architecture consisted of several program loops: an FPGA loop, real-time loop,
and TCP/IP loop. It was used to collect data from the sensors (e.g., GPS, IMU) and to
control the actuation of the propeller and rudder sub-systems that were programmed
under a reconfigurable FPGA platform in LABVIEW. The sensor data were incorporated
into network shared variables that were predicted along the entire network.

The zigzag manoeuvring test was carried out successfully through several repetitions.
The ones that were analysed were a 20◦−20◦ zigzag manoeuvre and the first and second
repetition of a 30◦−30◦ zigzag manoeuvre.

4. Optimal Parameter Estimation Method

To compute the hydrodynamic coefficients, the least squares method was firstly to
diminish the error of the squared residual value, r, minimizing the sum, S, of the squared
difference between the data value, yi, and the estimation (ŷi):

S =
n

∑
i=1

r2
i =

n

∑
i=1

(yi − ŷi)
2 (13)

In the case of the hydrodynamic coefficients, Equation (2), can be written as follows:

Y = Xθ (14)
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where the vector Y represents the outputs, the matrix X represents the inputs, and the
vector θ represents the values of the wanted parameters.

Considering the variance of the coefficients, a weighted sum of squared residual error,
known as the chi-squared, was calculated:

χ2(θ) = (Xθ− y)TV−1
y (Xθ− y)T (15)

To find the minimum error, the derivative of χ2 needs to be zero (Equations (16) and (17))
when the parameter θ is equal to the estimated one.

∂χ2

∂θ |θ=θ̂
= 0⇔ XTV−1

y Xθ̂−XTV−1
y y = 0 (16)

θ̂ =
[
XTV−1

y X
]−1

XTV−1
y y (17)

Secondly, the singular value decomposition method was applied to help the LSM deal
with the multicollinearity and parameter drift problems. SVD uses the singular values of
the input matrix to diagonalise it with the singular values:

X = UΣVT (18)

In Equation (18), the general formulation of the SVD of the matrix X is expressed as being
dependent on the orthonormal bases for the column space, the orthonormal base for the rows,
and the descending sorted diagonal matrix of the singular values (U, V, and Σ respectively).

Finally, to deal with a large number of adjustment coefficients, the truncated singular
value decomposition, eliminating the smallest singular values of the input matrix, was
applied. It reduces the initial rank, n, of the input matrix X and constructs a new input
matrix Xk with k rows, corresponding to the k singular values that were kept:

Xk = UkΣkVT
k (19)

where Σk is a diagonal matrix where the smaller n-k singular values are replaced by
zeros [35]. Thus, it can diminish the uncertainty due to the multicollinearity and parameter
drift problems, providing better results. When n is equal to k the result will be the same as
that of LSM with only SVD.

The uncertainty of the coefficients can be given by the error propagation matrix Vθ̂ [28].
This matrix defines how the optimal parameter varies with the output measured data.

Vθ̂ =

[
∂θ̂

∂y

]
Vy

[
∂θ̂

∂y

]T

(20)

The square-root of Vθ̂ gives the standard error of the parameters.

5. Parameter Estimation of the Manoeuvring Model and Sensitivity Analysis

The identification and validation of the estimation of hydrodynamic coefficients were
carried out by using manoeuvres either simulated or from free-running tests. The chosen
manoeuvres were a turning test and zig-zag manoeuvre tests, both for simulation purposes
and only the zig-zag manoeuvres for the free-running tests.

It is essential to know how the rudder behaves in both manoeuvres. The rudder
order is given by Equation (21) to the turning manoeuvre and Equation (22) to the
zig-zag manoeuvre:

δ∗(radians) =
δ∗(degrees)× π

180
(21)

δ∗ = δzsign(ψzsignr− ψ) (22)
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where δ∗ is the rudder order, δz is the fixed rudder angle in radians (equivalent to 20◦ or 30◦

depending on the zigzag analysed), and ψz is a fixed heading angle in radians (equivalent
to 20◦ or 30◦ depending on the zigzag analysed).

For the simulation of the 25◦ turning manoeuvre and the 20◦−20◦ zigzag manoeuvre,
the adjustment coefficients were initially taken as unitary to perform the manoeuvres. They
were both run for 1000 s, with a time step of 0.01 s. The initial conditions were the same as
in the free-running tests:

initial conditions = [u v r η ξ ψ δR] = [0.96 0 0 0 0 0 0] (23)

where the velocities are all in meters per second. The rudder angle is as in Equation (9). The
horizontal and vertical position of the centre of mass of the ship are η and ξ, respectively,
depending on the heading angle ψ:

.
η = ucos(ψ)− vsin(ψ)
.
ξ = ucos(ψ) + vsin(ψ)

.
ψ = r

(24)

5.1. Identification and Validation Using Simulation Data

With the surge motion having just three coefficients, meaning at maximum three
singular values, the results are very easy to read. Even with a coefficient of determination
slightly smaller than 0.5, the results regarding this and the uncertainties were better
when two singular values were considered (Table 2 and Figure 3). In Figures 3–14, the
singular values are designated as “sigma”, the blue curves represent the measured forces
and moments, and the red curves represent the estimated forces and moments. For
both sway and yaw motions, the identified results agreed very well with the training
set, where the coefficient of determination was almost equal to 1 (Figures 4 and 5). The
obtained adjustment coefficients (Tables 3 and 4) were very close with the true values
in the simulation when we kept more than six singular values (k ≥ 6). The parameter
uncertainties increased with the numbers of singular values, which indicated that the noise
effect was amplified when keeping more singular values. Therefore, the truncated value,
k, plays a trade-off role between the accuracy of the identified parameter and uncertainty
due to the noise. This is obvious as the uncertainties of the results for one singular value
(k = 1) were very small, but the results were the farthest from unitary, showing signals of
parameter drift. The least squares method combined with the truncated singular value
decomposition was valuable considering the parameter uncertainties. It is important to
note that noise was not added to the data generated by the simulation. The validation for
surge, sway and yaw motion was carried out using 20◦–20◦ zigzag manoeuvre simulation
test, and the results are presented in Figures 6–8.

Table 2. Surge adjustment coefficients and uncertainties for simulation of 25◦ turning manoeuvres.

Surge

k = 1 k = 2 k = 3
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kxuu 7.276 × 10−3 0.041% 9.543 × 10−1 0.561% 1.255 0.797%
kxvr −7.187 × 10−2 0.041% 3.084 × 10−2 1.885% 3.497 × 10−3 27.543%
kxδδ 2.688 × 10−3 0.041% 1.850 × 10−1 0.557% −1.359 3.203%

R2 −108.4741 R2 0.41133 R2 −8.0234
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Figure 5. Measured (blue curves) vs. estimated yaw moment (red curves) for 25◦ turning manoeuvre.



J. Mar. Sci. Eng. 2021, 9, 1302 9 of 19J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Results from the validation for surge motion with a 20°–20° zigzag manoeuvre. 

Figure 7. Results from the validation for sway motion with a 20°–20° zigzag manoeuvre. 

 
Figure 8. Results from the validation for yaw motion with a 20°–20° zigzag manoeuvre. 

  

Figure 6. Results from the validation for surge motion with a 20◦−20◦ zigzag manoeuvre.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Results from the validation for surge motion with a 20°–20° zigzag manoeuvre. 

Figure 7. Results from the validation for sway motion with a 20°–20° zigzag manoeuvre. 

 
Figure 8. Results from the validation for yaw motion with a 20°–20° zigzag manoeuvre. 

  

Figure 7. Results from the validation for sway motion with a 20◦−20◦ zigzag manoeuvre.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Results from the validation for surge motion with a 20°–20° zigzag manoeuvre. 

Figure 7. Results from the validation for sway motion with a 20°–20° zigzag manoeuvre. 

 
Figure 8. Results from the validation for yaw motion with a 20°–20° zigzag manoeuvre. 

  

Figure 8. Results from the validation for yaw motion with a 20◦−20◦ zigzag manoeuvre.



J. Mar. Sci. Eng. 2021, 9, 1302 10 of 19

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 20 
 

 

5.2. Identification and Validation Using Free-Running Tests 
The identification was performed using the first and second repetition data from tests 

of a 30°–30° zigzag manoeuvre and the validation with data from a 20°–20° zigzag ma-
noeuvre test. 

Concerning the surge motion, once again the adjustment coefficients were better for 
the two singular value results when considering the correlation between the uncertainties 
and the coefficient of determination between the measured and estimated forces (Table 5 
and Figure 9). 

For the sway motion, the best results were for the six and seven singular values re-
garding the uncertainties (Table 6). The measured and estimated forces were also well 
fitted for the six and seven singular values and the five and eight singular values (Figure 
10). However, for these last two, some uncertainties had values that were higher than 50% 
and therefore not acceptable. Finally, the yaw motion was more constrained in good re-
sults. The only favourable ones were the results with six singular values, which had good 
uncertainties (Table 7) and a good coefficient of determination between the measured and 
estimated yaw moments (Figure 11). 

 
Figure 9. Measured (blue curves) vs. estimated surge force (red curves) for the tests’ data from the 
30°–30° zigzag manoeuvre. 

 
Figure 10. Measured (blue curves) vs. estimated sway force (red curves) for the tests’ data from the 
30°−30° zigzag manoeuvre. 

Figure 9. Measured (blue curves) vs. estimated surge force (red curves) for the tests’ data from the
30◦−30◦ zigzag manoeuvre.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 20 
 

 

5.2. Identification and Validation Using Free-Running Tests 
The identification was performed using the first and second repetition data from tests 

of a 30°–30° zigzag manoeuvre and the validation with data from a 20°–20° zigzag ma-
noeuvre test. 

Concerning the surge motion, once again the adjustment coefficients were better for 
the two singular value results when considering the correlation between the uncertainties 
and the coefficient of determination between the measured and estimated forces (Table 5 
and Figure 9). 

For the sway motion, the best results were for the six and seven singular values re-
garding the uncertainties (Table 6). The measured and estimated forces were also well 
fitted for the six and seven singular values and the five and eight singular values (Figure 
10). However, for these last two, some uncertainties had values that were higher than 50% 
and therefore not acceptable. Finally, the yaw motion was more constrained in good re-
sults. The only favourable ones were the results with six singular values, which had good 
uncertainties (Table 7) and a good coefficient of determination between the measured and 
estimated yaw moments (Figure 11). 

 
Figure 9. Measured (blue curves) vs. estimated surge force (red curves) for the tests’ data from the 
30°–30° zigzag manoeuvre. 

 
Figure 10. Measured (blue curves) vs. estimated sway force (red curves) for the tests’ data from the 
30°−30° zigzag manoeuvre. 
Figure 10. Measured (blue curves) vs. estimated sway force (red curves) for the tests’ data from the
30◦−30◦ zigzag manoeuvre.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 11. Measured yaw moment (blue curves) vs. estimated yaw moment (red curves) for the 
test’s data from the 30°-30° zigzag manoeuvre. 

Table 5. Surge adjustment coefficients and uncertainties for tests’ data from the 30°−30° zigzag manoeuvre. 

 Surge 
 k = 1 k = 2 k = 3 
 Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties 𝑘௫௨௨ 3.214×10-03 4.022% 2.730×10+01 1.224% 3.724×10+01 2.405% 𝑘௫௩ −2.853×10-01 4.022% 2.220×10-02 29.853% −1.237×10-02 56.814% 𝑘௫ఋఋ 6.360×10-07 4.022% 4.128×10-03 1.224% −6.575×10+04 8.405% 
 𝑅ଶ −27.3591 𝑅ଶ 0.31418 𝑅ଶ 0.15318 

Table 6. Sway adjustment coefficients and uncertainties for tests’ data from the 30°−30° zigzag manoeuvre. 

 Sway 
 k = 1 k = 2 k = 3 
 Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties 𝑘௬ 4.651×10-08 5.152% −6.071×10-06 10.531% 2.957×10-04 5.719% 𝑘௬௩ 1.352×10-05 5.152% 6.461×10-04 10.233% 6.952×10-02 5.550% 𝑘௬ 4.205×10-04 5.152% 4.097×10-02 10.344% 4.039×10-02 9.601% 𝑘௬௩௩௩ 3.165×10-05 5.152% −7.410×10-05 15.068% 2.212×10-01 5.603% 𝑘௬௩௩ 6.379×10-03 5.152% 3.705×10-03 11.465% 2.499×10-03 15.786% 𝑘௬ఋ −9.676×10-08 5.152% −1.203×10-05 10.367% 1.280×10-04 6.192% 𝑘௬௩௩ఋ −1.401×10-07 5.152% −3.922×10-07 6.952% 3.102×10-04 5.608% 𝑘௬௩ఋఋ 3.402×10-12 5.152% 1.631×10-10 10.234% 1.710×10-08 5.548% 𝑘௬ఋఋఋ 1.344×10-12 5.152% 1.672×10-10 10.367% −1.778×10-09 6.195% 
 𝑅ଶ 0.27838 𝑅ଶ 0.38087 𝑅ଶ  
 k = 4 k = 5 k = 6 
 Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties 𝑘௬ 4.969×10-03 12.545% −7.890×10+01 8.337% −4.502×10+01 13.674% 𝑘௬௩ 7.417×10-01 12.095% 1.260 7.640% 9.223×10-01 9.563% 𝑘௬ 2.939×10-02 13.906% 1.293×10-02 31.106% 6.747×10-02 6.879% 𝑘௬௩௩௩ 1.189×10-02 256.085% −5.801×10-02 51.329% −2.942×10-01 9.962% 𝑘௬௩௩ 2.838×10-03 13.761% 4.063×10-03 9.553% 7.510×10-03 5.194% 𝑘௬ఋ 9.138×10-04 11.499% 1.223×10+01 8.336% 1.605×10+02 4.710% 𝑘௬௩௩ఋ −3.636×10-04 25.156% 5.996 8.337% 1.495×10+02 4.867% 

Figure 11. Measured yaw moment (blue curves) vs. estimated yaw moment (red curves) for the test’s
data from the 30◦−30◦ zigzag manoeuvre.
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Table 3. Sway adjustment coefficients and uncertainties for simulation of 25◦ turning manoeuvre.

Sway

k = 1 k = 2 k = 3
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

ky0 −1.809 × 10−5 0.007% 2.046 × 10−5 0.229% 4.983 × 10−2 0.151%
kyv 6.22 × 10−4 0.007% 1.657 × 10−3 0.076% −1.040 × 10−1 0.153%
kyr 2.835 × 10−2 0.007% 6.762 × 10−3 0.389% 2.954 × 10−2 0.123%

kyvvv 4.218 × 10−5 0.007% 2.405 × 10−4 0.100% −2.274 × 10−2 0.153%
kyvvr 1.304 × 10−2 0.007% 5.998 × 10−2 0.095% 5.447 × 10−2 0.048%
kyδ −5.757 × 10−4 0.007% 4.056 × 10−4 0.295% 8.794 × 10−1 0.151%

kyvvδ −2.610 × 10−5 0.007% −1.181 × 10−4 0.095% 5.331 × 10−3 0.154%
kyvδδ 3.520 × 10−7 0.007% 9.907 × 10−7 0.079% 1.504 × 10−6 0.056%
kyδδδ 1.809 × 10−5 0.007% −2.912 × 10−6 0.878% −9.548 × 10−3 0.151%

R2 0.81884 R2 0.97661 R2 0.99565

k = 4 k = 5 k = 6
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

ky0 9.806 × 10−2 0.029% 1.445 0.212% 1.224 0.273%
kyv 1.189 0.057% 1.133 0.037% 1.119 0.036%
kyr 2.075 × 10−2 0.036% 2072 × 10−2 0.021% 2.156 × 10−2 0.036%

kyvvv 2.748 × 10−3 0.527% 4.178 × 10−1 0.226% 1.064 0.489%
kyvvr 1.848 × 10−2 0.104% 1.830 × 10−2 0.062% 1.570 × 10−2 0.148%
kyδ 1.033 0.022% 9.636 × 10−1 0.022% 9.933 × 10−1 0.031%

kyvvδ −3.965 × 10−2 0.059% −8.395 × 10−2 0.121% −1.849 × 10−1 0.437%
kyvδδ 8.340 × 10−4 0.052% 5.111 × 10−4 0.152% 6.189 × 10−4 0.181%
kyδδδ 1.856 × 10−2 0.080% 2.239 × 10−1 0.208% 3.505 × 10−1 0.312%

R2 0.99988 R2 0.99996 R2 0.99997

k = 7 k = 8 k = 9
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

ky0 1.140 0.341% 1.138 0.343% 1.154 0.546%
kyv 1.110 0.041% 1.195 1.207% 1.130 2.149%
kyr 2.103 × 10−2 0.071% 2.073 × 10−2 0.256% 2.068 × 10−2 0.267%

kyvvv 8.698 × 10−1 0.803% 1.330 5.872% 1.244 6.618%
kyvvr 1.715 × 10−2 0.245% 1.788 × 10−2 0.723% 1.799 × 10−2 0.744%
kyδ 1.001 0.036% 1.005 0.064% 9.970 × 10−1 0.241%

kyvvδ −1.206 × 10−2 35.311% 2.488 16.997% 2.107 20.811%
kyvδδ 1.478 × 10−4 7.748% 1.309 × 10−2 16.723% 7.959 × 101 30.335%
kyδδδ 1.331 1.784% 9.824 × 10−1 6.476% 1.072 6.452%

R2 0.99997 R2 0.99997 R2 0.99997

5.2. Identification and Validation Using Free-Running Tests

The identification was performed using the first and second repetition data from
tests of a 30◦–30◦ zigzag manoeuvre and the validation with data from a 20◦–20◦ zigzag
manoeuvre test.

Concerning the surge motion, once again the adjustment coefficients were better for
the two singular value results when considering the correlation between the uncertainties
and the coefficient of determination between the measured and estimated forces (Table 5
and Figure 9).

For the sway motion, the best results were for the six and seven singular values
regarding the uncertainties (Table 6). The measured and estimated forces were also well
fitted for the six and seven singular values and the five and eight singular values (Figure 10).
However, for these last two, some uncertainties had values that were higher than 50%
and therefore not acceptable. Finally, the yaw motion was more constrained in good
results. The only favourable ones were the results with six singular values, which had good
uncertainties (Table 7) and a good coefficient of determination between the measured and
estimated yaw moments (Figure 11).
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Table 4. Yaw adjustment coefficients and uncertainties for simulation of 25◦ turning manoeuvre.

Yaw

k = 1 k = 2 k = 3
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kn0 1.223 × 10−6 0.335% 1.236 × 10−4 0.304% 2.882 × 10−1 0.024%
knv 9.849 × 10−6 0.335% −1.036 × 10−3 0.310% 1.277 × 10−1 0.024%
knr −1.234 × 10−3 0.335% −3.271 × 10−2 0.295% 5.712 × 10−2 0.039%

knvvv −7.841 × 10−7 0.335% 2.122 × 10−4 0.308% −3.572 × 10−2 0.024%
knvvr −4.287 × 10−4 0.335% 9.031 × 10−2 0.308% 4.621 × 10−2 0.050%
knδ 2.640 × 10−5 0.335% 2.055 × 10−3 0.303% 3.422 0.024%

knvvδ −9.882 × 10−7 0.335% 2.042 × 10−4 0.308% −1.623 × 10−2 0.024%
knvδδ −1.065 × 10−7 0.335% 1.210 × 10−5 0.310% 1.839 × 10−4 0.022%
knδδδ −8.202 × 10−7 0.335% −3.959 × 10−5 0.300% −3.584 × 10−2 0.024%

R2 −0.055445 R2 0.48834 R2 0.99717

k = 4 k = 5 k = 6
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kn0 1.635 × 10−1 0.705% 3.248 0.291% 2.788 0.367%
knv 8.500 × 10−1 0.784% 1.397 0.352% 1.700 0.333%
knr 5.910 × 10−2 0.047% 5.773 × 10−2 0.034% 5.958 × 10−2 0.045%

knvvv −5.669 × 10−2 0.342% 1.185 × 10−1 0.466% 3.980 1.008%
knvvr 5.596 × 10−2 0.165% 6.351 × 10−2 0.108% 5.549 × 10−2 0.191%
knδ 3.405 0.023% 3.129 0.032% 3.228 0.044%

knvvδ −7.717 × 10−2 0.729% −8.685 × 10−2 0.451% 1.043 1.126%
knvδδ −8.566 × 10−3 0.942% −1.843 × 10−2 0.345% −1.690 × 10−2 0.372%
knδδδ −8.549 × 10−2 0.536% 1.602 × 10−1 0.509% 2.669 0.977%

R2 0.99747 R2 0.99875 R2 0.99886

k = 7 k = 8 k = 9
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kn0 2.780 0.411% 2.781 0.413% 2.461 0.752%
knv 1.702 0.346% 1.759 10.234% −3.663 8.333%
knr 5.948 × 10−2 0.118% 5.956 × 10−2 0.409% 6.107 × 10−2 0.413%

knvvv 3.901 1.770% 3.639 22.940% 9.876 8.910%
knvvr 5.583 × 10−2 0.465% 5.559 × 10−2 1.411% 5.106 × 10−2 1.584%
knδ 3.229 0.048% 3.228 0.085% 3.449 0.302%

knvvδ 9.969 × 10−1 3.501% 1.696 130.957% −1.197 × 101 19.230%
knvδδ −1.760 × 10−2 2.846% −5.124 × 10−2 208.506% −3.483 × 102 4.553%
knδδδ 2.810 3.683% 2.892 9.614% 2.462 × 10−1 123.107

R2 0.99886 R2 0.99886 R2 0.99887

Table 5. Surge adjustment coefficients and uncertainties for tests’ data from the 30◦−30◦ zigzag manoeuvre.

Surge

k = 1 k = 2 k = 3
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kxuu 3.214 × 10−3 4.022% 2.730 × 101 1.224% 3.724 × 101 2.405%
kxvr −2.853 × 10−1 4.022% 2.220 × 10−2 29.853% −1.237 × 10−2 56.814%
kxδδ 6.360 × 10−7 4.022% 4.128 × 10−3 1.224% −6.575 × 104 8.405%

R2 −27.3591 R2 0.31418 R2 0.15318
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Table 6. Sway adjustment coefficients and uncertainties for tests’ data from the 30◦−30◦ zigzag manoeuvre.

Sway

k = 1 k = 2 k = 3
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

ky0 4.651 × 10−8 5.152% −6.071 × 10−6 10.531% 2.957 × 10−4 5.719%
kyv 1.352 × 10−5 5.152% 6.461 × 10−4 10.233% 6.952 × 10−2 5.550%
kyr 4.205 × 10−4 5.152% 4.097 × 10−2 10.344% 4.039 × 10−2 9.601%

kyvvv 3.165 × 10−5 5.152% −7.410 × 10−5 15.068% 2.212 × 10−1 5.603%
kyvvr 6.379 × 10−3 5.152% 3.705 × 10−3 11.465% 2.499 × 10−3 15.786%
kyδ −9.676 × 10−8 5.152% −1.203 × 10−5 10.367% 1.280 × 10−4 6.192%

kyvvδ −1.401 × 10−7 5.152% −3.922 × 10−7 6.952% 3.102 × 10−4 5.608%
kyvδδ 3.402 × 10−12 5.152% 1.631 × 10−10 10.234% 1.710 × 10−8 5.548%
kyδδδ 1.344 × 10−12 5.152% 1.672 × 10−10 10.367% −1.778 × 10−9 6.195%

R2 0.27838 R2 0.38087 R2

k = 4 k = 5 k = 6
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

ky0 4.969 × 10−3 12.545% −7.890 × 101 8.337% −4.502 × 101 13.674%
kyv 7.417 × 10−1 12.095% 1.260 7.640% 9.223 × 10−1 9.563%
kyr 2.939 × 10−2 13.906% 1.293 × 10−2 31.106% 6.747 × 10−2 6.879%

kyvvv 1.189 × 10−2 256.085% −5.801 × 10−2 51.329% −2.942 × 10−1 9.962%
kyvvr 2.838 × 10−3 13.761% 4.063 × 10−3 9.553% 7.510 × 10−3 5.194%
kyδ 9.138 × 10−4 11.499% 1.223 × 101 8.336% 1.605 × 102 4.710%

kyvvδ −3.636 × 10−4 25.156% 5.996 8.337% 1.495 × 102 4.867%
kyvδδ 1.572 × 10−7 11.899% 4.996 × 10−5 8.310% 3.830 × 10−4 4.507%
kyδδδ −1.270 × 10−8 11.499% −1.699 × 10−4 8.336% −2.230 × 10−3 4.710%

R2 0.59526 R2 0.72494 R2 0.86986

k = 7 k = 8 k = 9
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

ky0 −4.215 × 101 14.899% −4.177 × 101 15.022% −4.177 × 101 71.599%
kyv 8.347 × 10−1 11.544% 5.306 × 10−1 34.203% 2.845 × 101 58.440%
kyr 8.035 × 10−2 9.199% 7.837 × 10−2 9.506% 3.193 × 10−1 46.229%

kyvvv −2.386 × 10−1 16.097% −2.531 × 10−1 15.430% 1.227 73.321%
kyvvr 6.246 × 10−3 10.986% 6.271 × 10−3 10.932% 4.750 × 10−3 71.380%
kyδ 1.988 × 102 9.409% 1.952 × 102 9.614% 2.769 × 1017 59.470%

kyvvδ 1.092 × 102 17.760% 1.095 × 102 17.701% 8.826 × 101 105.620%
kyvδδ 4.829 × 10−4 9.917% 1.446 × 106 50.576% −1.360 × 108 60.157%
kyδδδ −2.762 × 10−3 9.409% −2.713 × 10−3 9.614% 1.993 × 1022 59.470%

R2 0.87515 R2 0.87362 R2 −1.6578

The results for the identification using test data were worse than those from the simu-
lation because the noise was more significant in the real test data. The best results were
for two singular values in surge motion and six singular values in sway and yaw motion.
The major difference is that there were environmental surroundings when performing the
free-running tests, such as waves and wind. There were no data for environmental distur-
bances and the manoeuvring model did not account for them. Hence, larger uncertainties
and smaller coefficients of determination were the achieved results. Nonetheless, it was
proved that the addition of the TSVD was helpful to obtain better coefficients, fighting
multicollinearity regarding the large number of coefficients to be computed.

Then, the validation was performed by applying the adjustment coefficient results
from the identification to the performed 20◦–20◦ zigzag manoeuvre in the free-running
tests. The measured forces and moments were plotted together and compared.

As in the simulation results, the validation for the surge motion confirmed the identi-
fication results, as two singular values gave better validation results (Figure 12) with the
best coefficient of determination.
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Table 7. Yaw adjustment coefficients and uncertainties for tests’ data from the 30◦−30◦ zigzag manoeuvre.

Yaw

k = 1 k = 2 k = 3
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kn0 1.448 × 10−9 94.512% 1.038 × 10−6 20.883% 3.118 × 10−4 10.815%
knv −9.929 × 10−8 94.512% 2.453 × 10−5 21.000% −1.661 × 10−2 10.867%
knr 8.566 × 10−6 94.512% −4.373 × 10−3 20.954% −4.402 × 10−3 20.301%

knvvv 2.725 × 10−7 94.512% 5.969 × 10−6 20.412% 6.315 × 10−2 10.850%
knvvr 9.719 × 10−5 94.512% 4.834 × 10−4 25.204% 2.918 × 10−4 41.326%
knδ −2.068 × 10−9 94.512% 1.359 × 10−6 20.944% 9.947 × 10−5 10.707%

knvvδ 2.459 × 10−9 94.512% −1.800 × 10−8 27.007% −1.806 × 10−4 10.850%
knvδδ 4.780 × 10−13 94.512% −1.185 × 10−10 21.000% 7.821 × 10−8 10.868%
knδδδ 2.841 × 10−14 94.512% −1.867 × 10−11 20.944% −1.367 × 10−9 10.707%

R2 −0.00028577 R2 0.049378 R2 0.15467

k = 4 k = 5 k = 6
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kn0 8.782 × 10−3 19.280% −1.340 × 101 7.391% −6.927 10.994%
knv −3.034 × 10−1 18.901% −6.862 × 10−1 8.934% −3.383 × 10−1 13.839%
knr −6.103 × 10−3 15.562% −1.108 × 10−2 8.783% 1.112 × 10−2 8.572%

knvvv −1.246 × 10−2 132.995% −5.025 × 10−2 31.763% −2.082 × 10−1 6.103%
knvvr 3.607 × 10−4 33.402% 7.484 × 10−4 15.741% 1.872 × 10−3 4.990%
knδ 1.084 × 10−3 18.178% 1.166 7.379% 6.109 × 101 2.725%

knvvδ 4.145 × 10−4 29.079% −3.907 × 10−1 7.394% −4.398 × 101 2.751%
knvδδ 1.227 × 10−6 18.725% 3.682 × 10−5 7.164% 9.452 × 10−4 2.676%
knδδδ −1.489 × 10−8 18.178% −1.602 × 10−5 7.379% −8.393 × 10−4 2.725%

R2 0.2046 R2 0.37128 R2 0.77205

k = 7 k = 8 k = 9
Coefficients Uncertainties Coefficients Uncertainties Coefficients Uncertainties

kn0 −5.419 13.748% −5.279 13.953% −5.279 20.705%
knv −1.227 × 10−1 39.828% 3.602 × 10−1 25.288% 3.736 22.084%
knr 2.259 × 10−2 6.033% 2.145 × 10−2 6.336% 4.927 × 10−3 90.642%

knvvv −8.092 × 10−2 20.485% −1.006 × 10−1 16.585% −1.561 × 10−1 18.028%
knvvr 2.568 × 10−4 65.391% 2.761 × 10−4 60.120% 2.399 × 10−4 102.746%
knδ 9.358 × 101 3.498% 9.163 × 101 3.547% −4.912 × 1016 24.111%

knvvδ 9.187 × 10−1 447.621% 7.646 × 10−1 531.527% −3.305 × 10−1 1826.520%
knvδδ 1.528 × 10−3 3.710% 1.200 × 105 15.989% 9.296 × 105 21.222%
knδδδ −1.286 × 10−3 3.498% −1.259 × 10−3 3.547% −3.575 × 1021 24.111%

R2 0.76245 R2 0.77162 R2 0.70139

For both for sway and yaw manoeuvres, the validation had good values (Figures 13 and 14).
For sway, there were more good fits with the validation when compared with the iden-
tification. The results for k = 3, 4, 6, 7, 8 validated well. However, the uncertainties for
four and eight singular values were very large in the identification and the coefficient of
determination was quite low for three singular values in the identification as well. Thus,
the validations for six and seven singular values were the ones in concordance with the
identification of coefficients for the free-running tests’ data. The same occurred with the
yaw motion, with good validation for six and seven singular values. The latter had large
uncertainties in the identification, making it not acceptable for the results of coefficients.

The fact that there were some validations that were good for a number of singular
values that provides bad results in identification prove that some parameter drift can
happen, and that even if the manoeuvres are well predicted (good validation) the values
are far from good (bad identification). Parameter drift can also be linked to multicollinearity
and environmental surroundings, as the validation from nine singular values had huge
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coefficients of determination in both sway and yaw motion, with no fitting between the
measured and estimated forces and moments.

5.3. Sensitivity Analysis

To study the sensitivity analysis, the 20◦–20◦ zigzag manoeuvre from the simulation
was chosen, having no interference from environmental elements. The analysis was
performed for all the adjustment coefficients (21 in total), varying them individually with
the following percentages: +20%, +15%, +10%, +5%, −5%, −10%, −15%, and −20% (eight
variations per each coefficient). The analysed parameter for the sensitivity analysis was
the overshoot angle. This is the most common parameter to analyse when using zigzag
manoeuvres [36]. In this fashion, all the overshoot angles from all the variations of all
the coefficients were compared with the original ones (unitary coefficients). The relative
deviation (Equation (25)), concerning the overshoot angle, was then computed and plotted
(Figures 15–17).

∆Ei =
Ei

∑ Ei
(25)

where ∆Ei is the relative deviation, Ei is the deviation from the original overshoot angle
regarding the variation of the coefficient being analysed, and ΣEi is the sum of all the
deviations from the original overshoot angle for the analysed coefficient.
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For surge motion coefficients, all three coefficients are important (Figure 15). However,
there are two which stood out: kxuu and kxvr. The first one had a bigger relative deviation
when the variations were positive, and the second one when the variations were negative.
The results match with the ones from the identification and validation of the adjustment
coefficients, which for surge had better results with two singular values.

The sway coefficients were the most expressive ones (Figure 16), as some were influ-
ential (such as kyv and kyr) and others, such as kyvδδ, had in influence at all. There were five
coefficients (kyv, kyr, kyd, kyvvr, and kyδδδ) which had a larger relative deviation, meaning a
large influence on the manoeuvring model and the results. The other remaining three were
also important. However, they were not as relevant for all the deviations. Therefore, they
are not as crucial for all ranges of variations that can occur when computing the adjustment
coefficients and the final mathematical manoeuvring model.

Finally, regarding the yaw coefficients, the linear and the rudder coefficients knv,
knr, and knd were the most important ones. The relative deviations were much larger
considering the yaw coefficients than in the previous two motions. In the previous motions,
the maximum sensitivity was below 15% for surge and 50% for sway. However, in the yaw
motion, there was one variation that went beyond 100%, and others that were between
50% and 100%. Additionally, it had more coefficients with less influence when compared
with sway. The coefficients kn0, knvvv, knvvd, knvdd, and knddd had smaller relative deviations
regarding the yaw coefficients, even if they were in the range of the higher ones in the
surge and sway motions.

Interestingly, regarding the motion, almost no coefficient behaved in the same way
regarding the variation from unitary values. Only kyδδδ had a consistent positive relative
deviation with all eight variations. Additionally, the sensitivity analysis also corroborated
the identification and validation of the coefficients. This once again proves that not all the
coefficients are necessary to predict a manoeuvre and that can be used as an aid to the
least squares method combined with the truncated singular value decomposition to have a
better final response to the best estimate of the adjustment coefficients.

6. Conclusions

In this study, an estimation of the adjustment coefficients was performed using a
least squares method combined with the truncated singular value decomposition. The
addition of the truncated singular value decomposition allowed for a better estimation of
the coefficients as the parameter uncertainty was handled better. This was verified both for
data from simulation and data from free-running tests. As expected, due to the existence of
environmental disturbances, the results from the tests’ data were not as good as those from
the simulation. Nonetheless, they were consistent with the fact that fewer coefficients were
better to predict a manoeuvre, having less problems with uncertainties and fit between
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measured and estimated forces and moments. Thus, the problems of multicollinearity and
parameter drift (present in the validation of coefficients from the tests’ data) were managed
and satisfactory results were achieved.

The addition of sensitivity analysis allowed for a greater look at the influence of
each coefficient in the manoeuvres. Once again, as anticipated in the literature, not all
the coefficients had the same importance for the manoeuvres. This was corroborated
with the sensitivity analysis, which helped predict the most crucial coefficients for each
motion. Moreover, the least squares method combined with the truncated singular value
decomposition can be improved by introducing the relative weight factors in the future if
the results are linked with sensitivity analysis.
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