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Abstract: Unmanned surface vehicles (USVs) are receiving increasing attention in recent years
from both academia and industry. To make a high-level autonomy for USVs, the environment
situational awareness is a key capability. However, due to the richness of the features in marine
environments, as well as the complexity of the environment influenced by sun glare and sea fog, the
development of a reliable situational awareness system remains a challenging problem that requires
further studies. This paper, therefore, proposes a new deep semantic segmentation model together
with a Simple Linear Iterative Clustering (SLIC) algorithm, for an accurate perception for various
maritime environments. More specifically, powered by the SLIC algorithm, the new segmentation
model can achieve refined results around obstacle edges and improved accuracy for water surface
obstacle segmentation. The overall structure of the new model employs an encoder–decoder layout,
and a superpixel refinement is embedded before final outputs. Three publicly available maritime
image datasets are used in this paper to train and validate the segmentation model. The final output
demonstrates that the proposed model can provide accurate results for obstacle segmentation.

Keywords: unmanned surface vehicles; image segmentation; deep convolutional neural network;
superpixel algorithm; maritime image data

1. Introduction
1.1. Background and Motivation

Unmanned vehicles, especially drones and autonomous cars, have been widely ap-
plied in our daily lives due to the recent advances in robotics and artificial intelligence.
Such a trend has attracted increasing attention from the maritime industry with unmanned
surface vehicles (USVs) being rapidly developed. USVs can perform various tasks, such
as scientific exploration, environmental information collection, search and rescue, and
communication, in various scenarios [1]. More importantly, USVs have an inherent advan-
tage in exploring hazardous areas because of their miniaturised design, which can greatly
reduce the reliance on human operators and allows autonomous long-duration operations
in harsh environments.

In general, a marine environment in which a USV operates is typically dynamic and
unpredictable influenced by sudden high-speed incursions on the route, weakness in
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environmental awareness due to waves and sea fog, and signal disruptions, etc. Various
sensors such as radar, LiDAR and inertial measurement units can be used for environment
perception and localisation. However, these sensors may have several disadvantages,
such as limited detection accuracy, impaired capability in detecting submerged obstacles,
and high prices, especially for LiDAR sensing. Recently, due to the benefits of being able
to provide rich texture information and relatively low price, visual cameras have been
intensively used for object detection in maritime environments. Among several vision
processing algorithms, the classical background subtraction method presents a high false
negative rate under the harsh marine environment, which makes it unsuitable to navigate
USVs [2]. Target tracking and object detection techniques based on stereo-vision [3] can
be generally implemented to cope with dynamic environment perception. However, the
accuracy of 3D point cloud map-based algorithms is sensitive to the texture features in the
environment. In particular, when the water surface environment has very few features,
low-cost cameras can be compromised in providing a reliable detection and consequently
generate challenges for environment sensing [4]. For example, a fast semantic segmentation
method was proposed in 2006 based on model adaptation using low-cost cameras. The
method can achieve an outstanding fast target detection, but it shows a limited accuracy in
detecting sunlight reflections and floating objects [5].

1.2. Contributions

Deep learning has raised a lot of attention in recent years due to its powerful feature
extraction ability. Semantic segmentation, as one of the key areas using deep learning,
is a computer vision task that entails taking raw data (such as images) as input and
turning them into masks with highlighted regions of interest. Semantic segmentation-
based obstacle detection can assist USVs with identifying potential collision risks when
they are conducting tasks. However, existing studies on obstacle detection are typically
associated with high false-positive rates and some semantic segmentation algorithms
cannot obtain a good obstacle contour from a complex backgrounds. Therefore, to improve
the obstacle detection accuracy, especially in environments with complex background,
this paper aims to develop a deep learning-based marine environments segmentation
algorithm integrated with a superpixel segmentation for a refined object detection result.
The contributions of this paper are summarised as follows:

• A superpixel segmentation model called Simple Linear Iterative Clustering (SLIC), has
been innovatively integrated with a deep neural network in this paper to improve the
segmentation accuracy, especially for obstacle edge detection in maritime environments.

• Enriched cross validations based on three different maritime datasets are conducted
with the results proving that the proposed SLIC enabled model has a strong capability
in understanding the semantics of the environment.

• Obstacle detection performances are validated using a series of practical maritime
datasets with the results showing that a high obstacle detection accuracy can be
achieved when using the segmentation generated by the proposed network.

The rest of paper is organised as follows: Section 2 presents a list of related works
based on deep learning networks. Section 3 is a description of the Simple Linear Iterative
Clustering (SLIC) segmentation algorithm and the construction of the SLIC module is also
presented. Section 4 presents all the datasets used in this paper, as well as the results.
Section 5 concludes the paper, acknowledges the shortcomings and highlights possible
future research directions.

2. Related Work

This section provides a literature review of using computer visions together with ma-
chine learning techniques to support autonomous navigation missions of USVs. Given that
most USVs are still remotely or semi-autonomously controlled, sensors such as LiDAR [6],
radar [7], and visual systems [3], have been intensively used for scene perception. As stated
previously, visual systems, as a relatively cheap solution that can provide enriched sensing
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information, have been recently adopted. Conventional machine learning approaches, such
as Non-parametric Bayesian methods [8] have been applied to process visual signals for
semantic labelling. In this work, we limit the review scope to deep convolutional neural
network-based methods which are typically implemented to process visual information to
assist with USV navigation, for their strong learning capabilities of rich features.

2.1. Image Semantic Segmentation Networks

As a common computer vision issue, semantic segmentation or full pixel semantic
segmentation [9] includes image classification, object recognition detection and semantic
segmentation. Image semantic segmentation network can provide a pixel-level image
interpretation while deferring to human perception, and hence has a broad range of
applications. In this section, typical deep networks proposed for semantic segmentation
are reviewed with their features highlighted.

Convolutional Neural Networks (CNN) [10] have several fully connected layers after
the convolutional layers, which project the feature map generated by the convolutional
layers into a fixed-length feature vector. The classical CNN structure represented by
AlexNet [11] is suitable for image-level classification and regression tasks since they export
a probabilistic description of the whole input image as an output.

Different to CNNs, fully convolutional networks (FCN) can accept input images of
any sizes, and use a deconvolutional layer to upsample the feature map. The semantic
segmentation network based on FCN using a U-Net structure was proposed for segmenta-
tion of medical images in 2015 [12]. U-Net, similar to FCN, has a downsampling and an
up-sampling phase and can solve: (1) a pixel localisation problem with shallow informa-
tion and (2) a pixel classification problem with deep information to accomplish a semantic
segmentation. In contrast to the FCN network, the downsampling and up-sampling phases
within the U-Net structure employ the same number of convolutional layers. Furthermore,
U-Net uses a skip connection structure to send the results of distinct downsampling layers
to the appropriate up-sampling layers, allowing the network to obtain more precise pixel
space information and increase segmentation accuracy.

SegNet [13] was proposed to improve the scene perception capability within au-
tonomous navigation. The methods within the SegNet and the FCN are rather similar,
with the exception that the encoder and decoder within the SegNet (downsampling and
up-sampling) use different technologies. As shown in the SegNet architecture in Figure 1,
the left side shows a convolutional extraction of features by pooling the perceptual field
and shrinking the image (a process known as encoding). Convolution is used here to
extract features from the encoder. The deconvolution and up-sampling layers are located
on the architecture’s right side. After image classification, the features are repeated by
deconvolution, then the up-sampling process restores the feature map to the original size
of the image (referred to as decoding).

Figure 1. SegNet received inspiration from U-Net and improved using a symmetrical en-
coder–decoder structure as a pixel-wise end-to-end network where the input image would go
through two stages of downsampling and up-sampling.
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The DeepLab family [14–17] is a series of semantic segmentation networks proposed by
Google. DeepLab v1 was launched in 2014 and achieved the second place in the segmentation
task on the PASCAL VOC2012 dataset, followed by DeepLab v2, DeepLab v3 and DeepLab
v3+ from 2017 to 2018. Two innovations of DeepLab v1 are the Atrous Convolution and the
Fully Connected conditional random field (CRF). DeepLab v2 was thereafter improved by
proposing an Atrous Spatial Pyramid Pooling (ASPP). DeepLab v3 further optimises the
ASPP by adding a 1× 1 convolution, batch normalization operation, etc.

DeepLab v3+ adds an up-sampling decoder module to optimise the accuracy of edges.
Considering that the network features of DeepLab v3 do not encompass excessive high-
level features, DeepLab v3+ [17] adapts the encoder–decoder structure of Feature Pyramid
Networks (FPN) to achieve the fusion of feature maps across blocks. Another contribution
of DeepLab V3+ is the adaptation of Aligned Xception network as backbone. As shown in
Figure 2, the DCNN part is considered to be encoder, and the part of DCNN output that is
upsampled is considered to be decoder, forming an encoder–decoder structure. DeepLab
v3+ concatenates the result of the up-sampling of the DeepLab v3 model output with the
result of the downsampling of the DCNN output by a factor of 0.25. More refined results
are then obtained using a 3× 3 convolutional layers and bilinear interpolation of 4-fold
up-sampling layers.

Figure 2. DeepLab v3+ uses an encoder–decoder architecture with two bilinear interpolation up-
sampling in the decoder stage to recover the edge information of the image.

2.2. Superpixel Algorithms

Current image processing is largely pixel-based, using a two-dimensional matrix
to describe an image without taking into account the spatial organisation relationship
between pixels, making the algorithm less efficient. Ren et al. [18] initially presented the
notion of superpixels in 2003, which are image blocks made up of surrounding pixels with
identical texture, colour, brightness, and other characteristics. It groups pixels based on
their similarity in features, allowing it to gather redundant information from the image
and greatly minimise the complexity of subsequent image processing operations.

Graph theory-based approaches and gradient descent-based methods are the two most
common types of superpixel creation algorithms. The graph-based approach proposed by
Felzenswalb et al. [19], the N cut method proposed by Shi et al. [20], and the superpixel
lattice method proposed by Moore et al. [21] are the main graph theory-based superpixel
segmentation methods. The N cut method uses contour and texture properties to globally
minimise the cost function, resulting in regular superpixels, while picture convenience is
not fully preserved and is computationally expensive. The graph-based approach, which
uses the concept of the least spanning tree to segment the image, can better keep the image
border and is faster. However, the size and collision of the created superpixels are uneven.
The superpixel lattice technique preserves the image’s topological information, but its
performance is heavily reliant on the image’s pre-extracted bounds.

For gradient descent-based algorithms, important methods include the watershed
method [22], the meanshift method [23], the quick-shift method [24] and the Simple Linear
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Iterative Clustering (SLIC) method [25]. They are all based on the core concept of clustering.
In particular, the SLIC approach is based on colour and distance similarity, and it can
produce superpixels of uniform size and shape. More specifically, Achanta et al. [25]
proposed a single-minded and easy-to-implement algorithm to convert a colour image
into a 5-dimensional feature vector in CIELAB colour space and XY coordinates, and
then construct a metric for this feature vector to perform the process of local clustering
of image pixels. By initialising the seed points and using a similarity measure, compact,
approximately uniform superpixels can be generated relatively quickly. Ren et al. [26]
implemented the SLIC algorithm using a GPU and the NVIDIA CUDA framework was
able to increase the speed by a factor of 10. Lucchi et al. [27] used the SLIC segmentation
algorithm for preprocessing and then built a graph model with superpixels as nodes and
spatially adjacent nodes as edges, gave random field definitions for the corresponding
conditions and proposed a structural image segmentation using coregulated features.

2.3. Deep Learning-Based Segmentation for USVs

In the past, processing for the detection task of marine semantics data was usually
implemented through hardware methods such as LIDAR [28,29]. However, due to the
application of machine learning to the navigation of USVs, CNN [30–33], Haar [34], and
HOG [35] classifiers are gradually implemented for detection-based tasks. The WaSR [36]
network proposed by Borja Bovcon and Matej Kristan achieves target recognition by
building fusion blocks in the decoder structure using ASPP modules and FFM modules.
Chen et al. [37] achieve accurate target recognition by embedding attention mechanism
module to achieve accurate marine semantic segmentation results. In general, most of the
existing semantic segmentation networks have been developed and redeveloped based on
encoder–decoder structures.

When dealing with datasets containing a large number of samples with diverse
features, current deep convolutional neural network approaches are still ineffective, and
they typically require additional algorithmic modules, such as an attention mechanism
module. In general, larger datasets and more training are required to allow the network
model to learn the features of various environments. Nonetheless, realistic circumstances
in which the network model has not learned will always exist, and the inference results are
often not ideal at this level.

Although superpixel segmentation [38–41] techniques are frequently used in image
preprocessing to discover edge characteristics in images, they are rarely used in marine
semantic segmentation tasks due to their inability to segment semantically. However,
the capability of storing target edge information of superpixel techniques can be used
to help with addressing the problem of object edge information loss that occurs in deep
convolutional neural networks.

In summary, most of the existing semantic segmentation networks have been developed
based on encoder–decoder structures, but the following research gaps can be generated:

• When dealing with datasets containing a large number of samples with diverse
features, current deep convolutional neural network approaches are still ineffective.

• Although superpixel segmentation techniques are frequently used in image prepro-
cessing to discover edge characteristics in images, they are rarely used in marine
semantic segmentation tasks due to their inability to segment semantically.

• Despite the fact that many studies have used deep learning approaches to solve the
segmentation problem of marine semantic datasets, there has been little discussion of
the differences between deep convolutional neural networks with different depths in
learning marine semantic features.

Therefore, in contrast to literature that investigates new effective deep convolutional
network structures for marine semantic segmentation, this paper has proposed a new SLIC
enabled segmentation model for refined obstacle detection in maritime environments. It
can be demonstrated that by integrating the superpixel algorithm with existing deep neural
convolutional networks, the detection accuracy especially for obstacle edges can be well
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improved. This can potentially benefit USVs’ navigation in a confined area with complex
obstacle structures.

3. Method

The proposed semantic segmentation architecture (Figure 3) is assisted by a Simple
Linear Iterative Clustering (SLIC) [25] module that refines the segmentation outputs from
the deep neural network, with the goal of improving the inference accuracy. Two different
types of backbones in DeepLab v3+ the network are used to assess the impacts on semantic
segmentation performance.

Figure 3. The proposed semantic segmentation architecture: the SLIC algorithm module is mounted
on the outside of the deep neural network and refines its results.

3.1. Simple Linear Iterative Clustering Algorithm

The SLIC algorithm [25] performs an iterative categorisation operation on each pixel
by converting the colour image into a LAB colour space [42] and combining it with X-Y co-
ordinates to construct a distance function on a five-dimensional vector Ci = [li, ai, bi, xi, yi]

T .
For pixel i, li is the luminance of the pixel; ai is the colour vector for green to red; bi is the
colour vector for blue to yellow; xi and yi indicate the coordinates of the pixel. Please note
that differing from RGB colour space, LAB colour space is implemented here as it contains
spatial information. Because of the simplicity of the constructed 5D vector Ci, the SLIC
algorithm is faster and more efficient than other superpixel algorithms, and can produce a
set of superpixels that are compact and have uniform shapes, which facilitate the handling
of colour images.

The SLIC algorithm starts from initialising the starting positions of superpixels. When
there are N pixels in an image and K superpixels to be assigned, the size of each superpixel
is N/K and the distance between each superpixel is S =

√
N/K. For each pixel in an image,

the degree of similarity between the pixel and its nearest superpixel is calculated in an
iterative way and pixels are grouped to have the same label of the most similar superpixel.
To calculate the similarity between each pixel and the superpixel, the distance measure
variable D is introduced and calculated as shown in Equation (1).

D =

√
dc

2 + (
ds

S
)2m2 (1)
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where S is the distance between each pair of superpixels, m indicates the relative importance
of space and pixel colour, dc is the distance of colour information between pixels, ds is
the distance of spatial information between pixels. Figure 4 shows that as the value of
m increases, the weight of spatial relations decreases and the weight of colour relations
increases, resulting in that the generated superpixels are more irregular in shape but
fit closely to the edges in the original image, while at the same time there are more
unclassified pixels.

Figure 4. Different values of m lead to different segmentation results for the SLIC algorithm.
m = 5, 10, 40 were presented.

To improve the algorithm’s computational speed, when clustering each pixel, rather
than in a whole image, similar pixels are searched only in a 2S× 2S region (as shown in
Figure 5) and all pixels within this area will be grouped belonging to the same superpixel.

Figure 5. By performing clustering iterations in a 2S× 2S area, the computational burden caused by
the increased number of superpixels can be greatly alleviated.

3.2. Structure of the SLIC Enabled Segmentation Model

As explained in the previous section, DeepLab v3+ adds a decoding module to recover
some of the detailed information. More specifically, the DeepLab v3+ network employs
two bilinear interpolation upsamplings to increase the feature resolution but without the
capability of fully restoring the lost information during the up-sampling process. The
lost image information is especially centred around edges areas, which is not ideal for an
accurate object edge segmentation.

Hence, to address this issue, a new segmentation model with superpixel optimisation
is proposed in this paper with the network structure shown in Figure 5. The model adopts
a DeepLab v3+ network for an initial segmentation with the encoder module of DeepLab
v3+ shown in the blue bounding box and the decoder module shown in the red bounding
box. Using such an encoding-decoding structure, semantic segmentation features of images
can be extracted to generate a relatively coarse segmentation result. In the meantime, the
superpixel optimisation module is used as a subsequent processing part to optimise the
semantic segmentation results, especially around edge areas. In this paper, we assume that
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a maritime environment only contains three semantic categories including sky, ocean and
obstacles, the SLIC algorithm sets various criteria for each category to preserve the sky and
ocean while trimming the edges of the obstacle. Last, by fusing the high-level semantic
feature information from DeepLab v3+ and the refined object edges information from the
SLIC, the final output can be generated. Please note that DeepLab v3+ network is adopted
because it is reliable and relatively accurate. Other semantic segmentation networks, such
as SegNet [13], BiSeNet [43] and DFANet [44], can also be selected according to specific
requirements, which will be discussed in this paper.

The details of the fusion process within the proposed model (Figure 2) is explained
here. The superpixel segmentation information from the SLIC algorithm will be projected
onto a new image first. Although the SLIC superpixel segmentation information is being
mapped, the superpixels are reclassified based on the semantic segmentation results from
the DeepLab v3+. Such a process is equivalent to "recolouring" the superpixel segmentation
results, i.e., reassigning semantic information to each superpixel. By following such a
process, the whole image can be rescanned pixel by pixel until no empty pixels exist.

3.3. Network Implementation

The network implementation includes the selection of backbone and the configuration
of the loss function to achieve optimised learning results. To investigate the impact of the
SLIC algorithm on the inference time and accuracy, this paper will discuss the adaptability
of the proposed model using different types of backbones in the DeepLab v3+ network.

More specifically, Xception [45] and ResNet101 [46] are selected as they are the most
commonly used ones in image segmentation. Between them, Xception, as a network
structure using a depthwise separable convolution operation, has the feature of reduced
network parameters making it computationally efficient. On the contrary, ResNet101 is
constructed by combining a forward neural network with shortcut links, to address the
problem of degradation caused by deep layers of networks and subsequently increase the
learning capacity.

With regards to the loss function construction, as stated in [37], we consider a maritime
environment consists of three categories including sky, ocean and obstacles. Training of the
model is undertaken using public available datasets such as the MaSTr1325 dataset [47],
where there is an issue of label unbalance between obstacles and the other two categories.
To accommodate such an issue, L f inal , a mixture of cross-entropy (Equation (3)) and focal-
entropy (Equation (2)) loss functions is adopted in this paper as shown in Equation (4):

L f l = −(1− pti )
γlog(pti ) (2)

Lce = L(yti , ŷti ) = −ylog( p̂)− (1− y)log(1− p̂) (3)

L f inal = (1− λ) ∗ L f l + λ ∗ Lce λ ∈ (0, 1) (4)

where L f l is the focal-entropy loss function; pti is the estimated probability of all three
types of targets; γ is the hyperparameter; Lce is the cross-entropy loss function; yti is the
label of the three different categories of targets in the image; ŷti is the estimated output of
the three categories of targets after passing through the network. Cross-entropy loss is a
widely implemented classical loss function for machine learning, and focal-entropy loss can
solve unbalanced classes issue by assigning weights. Such a loss function is appropriate
for our semantic segmentation task with large-size networks as backbones. It is not useful
in practice to find the global optimum for large-size networks when many local optimums
exist with good performance; excessive training may lead to overfitting [48].

3.4. Trade-Off: Compactness and Accuracy of Superpixel Segmentation

It should be noted that there is a trade-off in optimising the output of the DeepLab
v3+ network using the SLIC algorithm, where a good superpixel segmentation result is



J. Mar. Sci. Eng. 2021, 9, 1329 9 of 17

usually deemed to have good compactness and connectivity. In practice, however, when
the value of m becomes small, some "holes" might be generated in places that are not
classified as any cluster. To eliminate these "holes", the output of DeepLab v3+ must be
marked and coloured in the end, which may affect the effectiveness and efficiency of the
SLIC optimisation. As the value of m becomes larger, the problem of generating “holes”
pixels can be significantly improved, but under-segmentation issue might occur and the
superpixels do not adhere well to the edges, especially in those irregularly shaped targets
such as masts, mountains, birds etc., resulting in a reduced optimisation.

To resolve the conflicting relationship between the compactness of superpixels and the
segmentation accuracy generated by the SLIC algorithm, the number of superpixels usually
must be increased when performing a segmentation task. This means that densely clustered
regions are generated on the image using a larger number of small-sized superpixels in
order to increase the sensitivity of the segmentation algorithm, i.e., using a high value of m
to generate high compactness, while still having a good sensitivity of the superpixels to
the target edges. Such a procedure will be specifically discussed in the Experiments and
Results section, but it is without a doubt that as the number of superpixels increases, the
computational time of the SLIC algorithm will increase accordingly, which may limit the
on-line computing performance of the SLIC algorithm.

4. Experiments and Results

This section discusses the implementation results of the proposed model. Evaluation
metrics will be first discussed followed by data augmentation methods and training
setups. The performances of the SLIC algorithm on the maritime datasets will be presented
together with the comparative analysis of the proposed model with the original DeepLab
v3+ network.

4.1. Dataset and Evaluation Metrics

In this paper, the proposed model is trained using the Marine Semantic Segmentation
Training Dataset (MaSTr1325) [47], a large scale marine semantic segmentation training
dataset designed for small USVs for target detection. The MaSTr1325 dataset contains
1325 fully annotated high-resolution images of the real marine environments. Ground-
truth masks are labelled with different values depending on the categories, for example,
obstacles are labelled with 0, sea or water with 1, sky with 2 and unknown areas with
4. A total number of 1221 images in the MaSTr1325 dataset were used for the training,
and the remaining images were included in the validation set. Another used dataset is
the Multi-modal Marine Obstacle Detection Dataset 2 (MODD2) [49], which is the most
comprehensive and voluminous marine obstacle detection dataset available. It contains
images of targets at different scales in different weather and extreme conditions, such as
sunny days, hazy weather, reflections on the sea surface, and varying sea states. Marine
Image Dataset (MID) [50] was also selected to be included in the validation set to test the
performance of the model because the MID dataset contains enriched open sea area images.
Sample images from different datasets are shown in Figure 6.

Accuracy, recall, F1-measure, and mIoU, are used to quantitatively evaluate the
performance of the proposed deep neural network model [51]. Precision is calculated by
dividing the number of genuine positive samples by the total number of samples. Recall is
calculated by dividing the number of true positive samples by the total number of positive
samples that should be identified. The F1 score is a mixture of the two indications, where a
model with a higher F1 score is more resilient. mIoU is used to compute the ratio of the
true and predicted sets’ intersection. For semantic segmentation tasks, the mIoU value
provides an intuitive representation of how closely the inference results match the ground
truth. The greater the value of mIoU (the closer it is to 1), the better the model performs in
theory. The definition of these four categories of metrics is shown in Equations (5)–(8).

Precision =
TP

TP + FP
(5)



J. Mar. Sci. Eng. 2021, 9, 1329 10 of 17

Recall =
TP

TP + FN
(6)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

mIoU =
1
k

k

∑
i=1

P ∩ G
P ∪ G

(8)

where TP indicates the number of samples that are true positive. FP indicates the number
of samples that are false positive. FN represents false negative. Thus, TP + FP represents
the number of samples that are predicted to be positive and TP + FN is the number of
samples that are actually positive. As shown in Equation (8), k is the number of semantic
types in the dataset, P is the predicted value for each semantic type, and G is the ground-
truth value for each semantic type. Again, in this paper, the value of k is 3, representing the
three semantic types, i.e., obstacle, ocean and sky.

Figure 6. Some sample images from MaSTr1325, MODD2 and MID datasets.

4.2. Data Augmentation and Training Setups

Data augmentation is a useful technique for boosting data variety by systematically
creating extra training samples. The 1221 high resolution (512× 384) images used for
training in MaSTr1325 are exposed to random data augmentation such as vertical sym-
metry, brightness change, contrast change, saturation change, etc. The proposed network
model was trained using Adam optimiser and the learning rate was initialised to be
10−4. The Resnet101 network used in DeepLab v3+ was pre-trained on a subset of COCO
train2017 [52], and the Xception network used was pre-trained on the ImageNet dataset [11].
Each type of network was trained for 50 epochs with a batch size of 2. All training and
validation work was done on a node equipped with a Nvidia Tesla V100 at UCL’s High
Performance Computing platform. All inference work was done on an Intel Core i7-10875H
2.3 GHz workstation with 16 GB of RAM. All parameters are shown in Table 1.
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Table 1. Model parameter settings and hardware information.

Drives Parameters

CPU-inference i7-10875H 2.3 GHz
GPU Nvidia Tesla V100

Deep Learning Network API Pytorch 1.9
Compile Language Python

Image size 512× 384
Training epochs 50

Optimiser Adam
Learning rate 10× 10−4

Batch size 2
Training images 1221

Validation images 324

4.3. SLIC Algorithm Results

Figure 7 shows the output images of the SLIC algorithm under different iterations.
The black dots in the figure are the clustering centres of each superpixel and the output is
Gaussian blurred for each superpixel for better visual discrimination. When configuring
the number of superpixels to be 500 and m = 10, the image is segmented in an iterative
way. It can be observed in Figure 7 that when the number of iterations reaches 10, the
segmentation result is close to the original image showing that the superpixels can provide
edges detection. However, it can also be seen that some of the superpixels in the marine
area are irregularly shaped and jagged, suggesting that the superpixels are more sensitive
to colours than spatial relationships, which can lead to “holes” in the segmentation results.

Figure 7. Output image at different iterations for K = 500, m = 10.

Figure 8 shows the results of segmenting the same image using 10 iterations using
2000 superpixels and 4000 superpixels with m = 10. Combining this with the output image
shown in Figure 7, it can be seen that as the number of superpixels increases, the size
becomes smaller, and the output segmented image is more detailed. For example, in the
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left in Figure 4, the white stripe on the hull of the ship can be well preserved, which is
not the case when K = 2000. In addition, as the number of superpixels increases, each
superpixel is more compact with fewer "holes" in the image.

Figure 8. For m = 10, iteration=10, the output of the SLIC algorithm module for K = 2000 and
K = 4000.

As can be seen from the above results, the application of the SLIC algorithm achieves
a good accuracy when processing images with marine semantic types. Most of the super-
pixels can detect the edges of objects. One of the foreseeable drawbacks is that the iterative
segmentation results using small m-values are too sensitive to some features leading to
“holes” due to unworked superpixel edges. Overall, however, the SLIC algorithm achieves
fast segmentation of images through a simple logical structure, which has potential and
feasibility for refining inferred images from the DeepLab V3+ network. The results from
the output of the SLIC optimisation module and the impact of carrying the SLIC module
on the overall convolutional neural network model will be shown and discussed in the
next section.

4.4. Comparisons with Original DeepLab v3+ Network

Figure 9 shows the output of the DeepLab v3+ network model using Xception as the
backbone (labelled as initial results) and the output optimised using the SLIC algorithm
(labelled as refined results). It can be seen that the SLIC algorithm can finely trim features
with detailed textures. For example, features such as masts and streetlights in the first
and third rows of figures have sharper edges after being processed by the SLIC module.
The SLIC algorithm module can also rectify several portions in the sky that are mistakenly
recognised as barriers in the third row of figures. Furthermore, the railings of the boats on
the water in the second row are trimmed finer to get closer to the ground truth, and the
trimming is better than the other two sample figures, implying that the SLIC algorithm
module has a more robust trimming strategy for complex obstacles such as hole-filled or
thinly shaped targets. However, the improvement of the SLIC algorithm is relatively small
due to the limited learning capability of Xception.

Figure 10 depicts the DeepLab v3+ network model output using ResNet101 as the
backbone (labelled as initial results), as well as the output optimised using the SLIC method
(labelled as refined results). The SLIC algorithm module also has a stronger refining impact
on the ResNet output mask’s edges, such as the railings of the ship in the second row in
Figure 10, while the other two rows also show results that are closer to the ground truth.
Compared with Xception, ResNet101 has a more powerful learning capability, so the results
obtained are more refined. In addition, with the SLIC algorithm, the edges of objects are
clearer. For example, some errors (islands on the left of the horizon) in the second row of
figures that could affect USVs navigation can be well corrected.
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Figure 9. Sample image of the SLIC algorithm module’s optimisation of a DeepLab v3+ network
with Xception as the backbone. Initial result is the output of the DeepLab network, refined result is
the result after processing by SLIC module.

Figure 10. Sample image of the SLIC algorithm module’s optimisation of a DeepLab v3+ network
with ResNet101 as the backbone. Initial result is the output of the DeepLab network, refined result is
the result after processing by SLIC module.

4.5. Quantitative Results

The quantitative results of the SLIC algorithm module’s effect on the DeepLab v3+
network model is shown in Table 2. The mIoU metric is used to visualise the output of the
proposed model. The evaluation metrics used to segment the images using the DeepLab
v3+ network model with different backbones, are all derived based on the 324 images in
the validation dataset.

In Table 2, according to the inference time of four network models, the DeepLab
v3+ network model with ResNet as the backbone outperformed the one with Xception,
regardless of whether the SLIC algorithm module was employed. When the SLIC algorithm
is adopted, the mIoU of the DeepLab v3+_ResNet101 model increased from 89.1% to
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90.1% and the mIoU of the DeepLab v3+_Xception model increased from 85.5% to 85.9%.
Although such an increase is relatively small, it is mainly generated around edge areas to
further improve the high accuracy produced by DeepLab v3+. Additionally, all currently
available datasets are taken from open sea areas with limited edge features, to better reveal
the superiority of the proposed model, new dataset, especially containing complex features,
need to be recorded.

Table 3 compares the mIoU of our DeepLabv3+_ResNet101+SLIC with that of the
WODIS [37] on the Singapore Maritime dataset (SMD) [53], MID and MODD2 valida-
tion datasets. The WODIS network is a state-of-the-art deep network that has been
specifically designed for the maritime environment, which has better performances than
other standard networks such as SegNet [13]. Table 3 demonstrates that our proposed
DeepLabv3+_ResNet101+SLIC framework is on par with the WODIS, i.e., achieving 89.2%
mIoU on the MID dataset (88.1% for WODIS). On the SMD and MODD2 datasets, sim-
ilar mIoU values (0.2% and 0.1% differences on SMD and MODD2 respectively) can be
observed for the two models. Please note that high mIoU values for WODIS are mainly
the results of the inclusion of attention modules that are focusing on the objects on water;
whereas our proposed network achieves the high mIoU values by having refined results of
obstacle edges, which can be better used to ensure navigational safety.

In terms of inference time, the DeepLab v3+_ResNet101 model was about 0.5 seconds
quicker than the DeepLab v3+_Xception model. The difference in mIoU between these two
network models in inferring the complete validation set was around 3.6%. This is because
ResNet101 has a greater depth and learning power, as well as stronger generalisation
capability. However, because of its more complicated structure, ResNet takes longer to
train and is more prone to overfitting than the Xception network model, thus it is critical to
monitor the training process while stated parameters are used.

From a runtime perspective, although the DeepLab v3+_ResNet101 model is faster and
more accurate than the DeepLab v3+_Xception network model, the capacity of processing
images in real time is slightly limited due to the inherent network architecture limitations.
However, we argue that the main focus of this paper is on refining edges detection and
the inference time can be improved by implementing light weight structures such as
MobileNets [54] into the proposed model.

Table 2. DeepLab v3+ network and the average inference time and mIoU with the SLIC algorithm
module on board.

Model Time(s) mIoU(%)

DeepLab v3+_Xception 1.2301 85.5

DeepLab v3+_ResNet101 0.6725 89.1

DeepLab v3+_Xception + SLIC 1.7865 85.9

DeepLab v3+_ResNet101 + SLIC 1.1256 90.1

Table 3. Comparison of mIoU between the WODIS [37] and our DeepLabv3+_ResNet101+SLIC on
the SMD, MID and MODD2 validation datasets.

mIoU(%) SMD MID MODD2

WODIS [37] 93.7 88.1 88.2

DeepLabv3+_ResNet101+SLIC 93.5 89.2 88.1

5. Conclusions

This paper proposes a novel deep semantic segmentation model for unmanned surface
vehicles operating in the complex maritime environment. The proposed model employs
a deep neural network with an auto-encoder layout and a superpixel refinement module
which refines the reconstruction output from the deep neural network. Three open-source
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maritime image datasets are applied to train and validate the developed semantic segmen-
tation model. The results imply that the deep neural network assisted by the superpixel
method has achieved improved semantic segmentation performance with slightly increased
inference time. The improved segmentation performance is attributed to the SLIC super-
pixel method, which is good at distinguishing edges in images. Such a unique feature
compensates for the imperfect edge information provided by the deep neural network,
consequently leading to an improved mean IoU of 90.1% when the combination of DeepLab
v3+_ResNet101 + SLIC is applied. Additionally, we have also observed that the model is
less effective in images with a low fraction of obstacles, which is possibly due to the insuffi-
cient connectivity between the SLIC and the deep neural network. The SLIC processing
also increases the time complexity. In future work, the SLIC will be better integrated with
the deep learning processes.
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