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Abstract: In the present study, a semi-analytical model based on the small-amplitude wave theory is
developed to describe the wave fields around a single gravity-type cylindrical open fish net cage.
The cage may be submerged to different depths below the free-water surface. The fish cage net
is modelled as a flexible porous membrane, and the deflection of the net chamber is expressed by
the transverse vibration equation of strings. The velocity potential is expanded in the form of the
Fourier–Bessel series and the unknown coefficients in these series are determined from matching the
boundary conditions and the least squares method. The number of terms for the series solution to
be used is determined from convergence studies. The model results exhibit significant hydroelastic
characteristics of the net cages, including the distribution properties of wave surface, pressure drop
at the net interface, structural deflection, and wave loading along the cage height. In addition, the
relationships between wave forces on the net cage with hydrodynamic and structural parameters are
also revealed. The findings presented herein should be useful to engineers who are designing fish
cage systems.

Keywords: fish net cage; hydroelastic analysis; potential flow model; wave scattering; Fourier–Bessel series;
porous medium theory

1. Introduction

Fish farming not only provides an important protein supply for humans but also
brings huge economic benefits. Average data from 2015 to 2017 indicates that fish products
provide at least 20% of the animal protein intake of 3.3 billion people [1], and aquatic
products accounted for about 46.4% of the food and agriculture production in 2017 [2].
In addition, the aquaculture industry of Australia is in a stage of rapid development and
reached an annual output value of AUD 3.3 billion in 2020 [3]. In order to guarantee a stable
output, the fishing cage system requires excellent reliability under environmental loads,
such as waves and currents. Therefore, suitable modelling and studies on the dynamic
response of the net cage to waves are crucial.

In many studies, the dynamic behaviour of fish cage nets is simulated by numerical
models, for example, the bar element model in [4,5] or mass-spring model in [6,7], in which
the hydrodynamic force on each element is estimated by the Morison equation or the
screen-type method proposed by [8]. However, these models neglect the interferences of
the structure and its motions on the flow field. For this reason, some researchers, e.g., Bi
et al. [9] and Martin et al. [10], introduced computational fluid dynamics (CFD) techniques
to achieve a fluid–structure interaction (FSI), but this requires tremendous computational
time. In [10], it is reported that the simulation of a semisubmersible cage in irregular
waves by FSI takes around 185 h for 300 s of simulation time on 64 cores (Intel Sandy
Bridge) with 2.6 Ghz and 2 GB memory per core. This is not feasible to model a full-scale
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fish net cage in detail in engineering practice. If some characteristics of the wave passing
through the net can be simplified and solved analytically, then the computational time can
be reduced significantly.

Usually, in theoretical analysis that allows for interaction between net cage and waves,
the wave field is described by the linear potential flow theory, and the fish cage net is
modelled as a porous medium membrane. The porous wavemaker theory is proposed
by Chwang [11] to analyse the water wave generated by the harmonic oscillation of a
vertical porous barrier, where the porous flow is described by Darcy’s law. With the
eigenfunction expansion and matching the boundary conditions, the particular solution
of the velocity potential can be derived for the scattering issue of small-amplitude waves
passing through permeable barriers in [12,13]. In terms of the interference effects among
multiple rigid porous cylinders in waves, the scattering potential of each body in different
local coordinates can be transformed by Graf’s addition theorem in [14,15]. Furthermore, if
waves interact with flexible structures, the motion of the structure can be approximately
described by the vibration equation of the continuum according to [16–18].

Recently, some studies have adopted the aforementioned theoretical approaches to
analyse the interaction between waves and net cages. The transverse displacement of
the circular cage is assumed to be governed by the vibration equation of the elastic beam
in [19,20], and the deflection of the horizontal net plate can be described by the two-
dimensional membrane vibration equation, which was introduced by [21]. Selvan et al. [22]
extend the theory of [21] to the interference effect of multiple cages. Furthermore, Guo
et al. [23] present a detailed review about the mathematical modelling of wave interaction
with flexible net-type structures.

Moreover, a few researchers employed numerical techniques based on the linear
potential flow theory to investigate the wave–structure interaction problems. The scaled
boundary finite element model is applied to investigate the interaction mechanism between
waves and pile groups with arbitrary spatial layouts and cross-sections in [24]. A hybrid
method is adopted to evaluate the wave force acting on a cube net cage in [25], where the
velocity potential of the far-field wave is expressed in the Fourier–Bessel series, and the
ambient waves are solved by Green’s theorem, i.e., the boundary element method (BEM).
In [26], the BEM and the Morison equation are combined to investigate the hydrodynamic
characteristics of a semisubmersible aquaculture facility. The numerical and experimental
comparisons in [25,26] both show acceptable agreement.

Based on the above literature review, several research gaps are identified. Firstly,
when evaluating hydrodynamic loads with empirical models (Morrison equations or
screen type methods), the wave field distribution induced by diffraction and radiation
effects around the net cage has to be determined. Secondly, fish net cages may be designed
with submerged capabilities to avoid strong surface waves. However, the above analytical
models from [20–22] do not consider this scenario. Thirdly, for the net cage exposed
to a wave field, knowledge about its hydroelastic behaviours is scarce. Therefore, it is
essential to establish an analytical model to predict some key factors that determine the
wave responses of fish net cages.

In the present study, the interactions between waves and submersible cylindrical
fish net cage are approximated by a semi-analytical solution based on linear hydroelastic
theory. The characteristics of the cage response to wave (free-water surface, pressure,
hydrodynamic load, structural motion, etc.) are to be determined. This information is
crucial for the design and application of fish cages. The linear model has advantages in
the derivation of analytical solutions even if the boundary value problem is relatively
complicated. The potential flow theory is also convenient for dealing with the domain
with an infinite boundary, which means that an extremely large wave field is feasible to be
analysed. The paper is arranged as follows: Section 2 presents the assumptions, modelling,
governing equation, and boundary conditions for the wave–cage interaction problem.
In Section 3, the method of solution for the governing equations and boundary value
problems is elaborated. Section 4 presents the convergence studies and model validation.
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Section 5 presents the calculated results and explains the hydroelastic behaviour of the
net cage under wave action. In Section 6, parametric studies are established to reveal
the relationship between the wave force on the net cage and various hydrodynamic and
structural parameters. Finally, brief conclusions are given in Section 7.

2. Problem Definition, Assumptions, Modelling, Governing Equation, and Boundary
Conditions

In this study, a cylindrical net cage is considered as shown in Figure 1, and it is
convenient to describe the physical problem in a cylindrical coordinate system (r, θ, z). A
small-amplitude wave propagates along the direction of θ = 0 with a circular frequency
ω and a wave height H. The mean water level is at z = 0, and the cage is submerged in a
finite water depth of h. The central axis of the cage with a height of d2 is located at the
position r = 0, and its top end can be submerged below the mean water level in d1. In
addition, the top end is constrained by mooring systems at z = −d1, whilst the bottom end
of z = −(d1 + d2) is free.
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Figure 1. A sketch of a cylindrical net cage submerged in a finite water depth: (a) plan view. (b) side view.

The flow domain may be divided into two zones: Region 1 (r > a, −h < z < 0) is the
external region outside the net cage, while Region 2 (r < a, −h < z < 0) is the area within the
circular net chamber. For the structural domain, the notations Snet and Sgap represent the
net region of−(d1 + d2)≤ z≤ d1 and the gap portions of−d1 < z ≤ 0 ∪ −h ≤ z < −(d1 + d2),
respectively.

The problem at hand is to determine the hydroelastic behaviour of the submerged
cylindrical net cage under wave action.

2.1. Governing Equations

Assuming that the fluid is incompressible, irrotational, and inviscid, Φ1 and Φ2
represent the velocity potentials in Regions 1 and 2, respectively, and the velocity potential
Φj (r, θ, z, t) (j = 1, 2) can be written as

Φj = Re
[

ϕj(r, θ, z)e−iωt
]
, (1)
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where ϕj is the spatial component of the velocity potential, and it is governed by the
Laplace equation in the cylindrical coordinate:

∂2 ϕj

∂r
+

1
r

∂ϕj

∂r
+

1
r2

∂2 ϕj

∂θ
+

∂2 ϕj

∂z2 = 0. (2)

In addition, ϕj can be represented as a superposition of the incident wave component ϕI

and the scattered (diffraction and radiation) wave component ϕS
j , i.e.,

ϕj = ϕI + ϕS
j . (3)

2.2. Boundary Conditions

At the free-water surface z = ξ, the linearised kinematic free surface (KFSBC) boundary
condition satisfies

∂Φj

∂z
=

∂ξ

∂t
, at z = 0, (4a)

and dynamic free surface boundary condition (DFSBC) is

ξ = − 1
g

∂Φj

∂t
, at z = 0. (4b)

By combining Equation (4a,b), the boundary condition at the mean water level is

∂ϕj

∂z
− ω2

g
ϕj = 0, at z = 0, (4c)

and the slip boundary condition on the seabed is given by

∂ϕj

∂z
= 0, at z = −h. (5)

Furthermore, the scattered potential component ϕS
j satisfies the Sommerfeld radiation

condition when r approaches infinity [27], i.e.,

lim
r→∞

√
r

(
∂ϕS

1
∂r
− ik0 ϕS

1

)
= 0, (6)

where k0 is the incident wavenumber.
As shown in Figure 2, the cage net is modelled as a porous membrane, so the pene-

trated flow through the net interface satisfies the linearised kinematic condition:

∂ϕj

∂r
= iσ(ϕ2 − ϕ1)− iωηcosθ, at r = a and z ∈ Snet, (7)

in which η is the spatial component of the transverse deflection of the cage along
the incident direction of the wave, and σ is the porous-effect parameter of the net that is
expressed by an empirical formula given by Ito et al. [25]:

σ = (1 + iσi)σr (8a)

σr =
k0

2π
× (27.73/ε + 469.0)G2

1 + (0.5510− 0.01998/ε)G
, (8b)

where G is the opening ratio of the net, ε is the incident wave slope Hk0/2, and the imaginary
part of σ represents the fluid inertia effect. A high Keulegan–Carpenter number indicates a
minor fluid inertia effect compared to the fluid drag effect. In [7], for the net twine with a
diameter of a few millimetres, its KC (Keulegan–Carpenter) number is 160 to 350 based on
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the laboratory tests, and the wave-induced inertia force is considered negligible compared
to its drag force on the fish net. In the real sea condition, higher wave height and wave
periods also mean a greater KC number. Currently, there is no appropriate formula of σi
given for the cylindrical net cage; therefore, it is taken as 0 if there is no special explanation.
Notably, the influence of σi is discussed in Section 6.
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In addition, the continuity of the normal velocity and pressure of the flow at the
interface between Regions 1 and 2 requires

∂ϕ1

∂r
=

∂ϕ2

∂r
, at r = a,−h < z < 0, (9a)

ϕ1 = ϕ2, at r = a and z ∈ Sgap. (9b)

On the other hand, it is assumed that the cross-section of the cage maintains its
circular shape under wave action if the cage is imposed a high axial tension and has a
small deformation relative to its overall size. Liu et al. [28] showed a deformed net cage
simulated by the finite element method using truss elements, and it is observed that the
cage approximately maintains a circular cross-section. Therefore, the transverse deflection
of the cage is ζ = Re[η(z)e-iωt], and the transverse vibration equation of the string to describe
the complex amplitude η is given by Mandal and Sahoo [21]:

d2η

dz2 +
msω2

Q
η = − aiωρ

Q

∫ 2π

0
(ϕ1 − ϕ2) cos(π − θ)dθ, (10)

in which Q is the axial uniform tensile force in the net, ms is the uniform mass of the net per
unit length, and ρ is the water density. In [28], a comparison between the analytical model
based on Equation (10) and the FEM simulation for the cylindrical net cage illustrates
acceptable errors.

For the edge restraint condition of the net chamber, its top end is assumed to be
constrained by the mooring systems according to [28], and there is no transverse traction
at the bottom end, i.e.,

Q
dη

dz
= ksη, at z = −d1, (11a)

dη

dz
= 0, at z = −(d1 + d2). (11b)

where ks is the spring constant of the mooring cables.
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3. Method of Solutions

In view of the governing equation, Equation (2), and the boundary conditions, Equa-
tions (4c), (5), and (6), the solution of ϕ1 is sought in the form

ϕ1 = ϕI + ϕS
1 , (12a)

where

ϕI =
∞

∑
m=0
− igH

2ω

cos h[k0(z + h)]
cosh(k0h)

µm Jm(k0r) cos(mθ), (12b)

µm =

{
1, m = 0
2im, m > 0

, (12c)

ϕS
1 =

∞

∑
m=0

∞

∑
n=0

AmnR1
m(knr) fn(z) cos(mθ), (12d)

R1
m(knr) =


Hm(knr)
H′m(kna) , n = 0
Km(knr)
K′m(kna) , n > 0

, (12e)

fn(z) =


cos h[kn(z+h)]

cos h(knh) , n = 0
cos[kn(z+h)]

cos(knh) , n > 0
. (12f)

Similarly, according to the governing equation, Equation (2), and the boundary condi-
tions, Equations (4c) and (5), the general solution of ϕ2 is

ϕ1 = ϕI + ϕS
1 , (13a)

where
ϕS

2 = ∑∞
m=0 ∑∞

n=0 BmnR2
m(knr) fn(z) cos(mθ), (13b)

R2
m(knr) =


Jm(knr)
J′m(kna) , n = 0
Im(knr)
I′m(kna) , n > 0

. (13c)

kns are the real roots of the following dispersion relations:{
ω2 = gkntanh(knh), n = 0
ω2 = −gkn tan(knh), n > 0

, (14)

and Amn and Bmn are the unknown constants, Jm is the first kind of Bessel function, Hm is
the first kind of Hankel function, Im is the first kind of modified Bessel function, and Km
is the second kind of modified Bessel function, where the subscript m is the order of the
Bessel function.

By substituting Equations (12a–f) and (13a–c) into the boundary condition Equation
(9a) and applying the orthogonality operation of cosh[kn(z + h)], cos(knh), n = 0, 1, 2 . . .
over −h ≤ z ≤ 0 and cos(mθ), m = 0, 1, 2 . . . over 0 ≤ θ ≤ 2π, the unknown constants in
Equations (12d) and (13b) satisfy

Amn = Bmn. (15)

Therefore, one can write

∆ϕ = ϕ1 − ϕ2 = ∑∞
m=0 ∑∞

n=0 AmnXmn fn(z) cos(mθ), at r = a, (16a)

where
Xmn = R1

m(kna)− R2
m(kna). (16b)
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By substituting Equation (16a,b) into Equation (10) and noting the orthogonality of
cos(mθ), m = 0, 1, 2 . . . over 0 ≤ θ ≤ 2π, Equation (10) might be rewritten as

d2η

dz2 + α1η = α2 ∑∞
n=0 A1nX1n fn(z), (17a)

where
α1 = msω2/Q and α2 = πaiωρ/Q. (17b)

Therefore, the general solution for η(z) is

η(z) = ∑2
κ=1 Cκeqκz + ∑∞

n=0 A1nFn fn(z), (18a)

in which

Fn =

{ α2X1n
α1+k2

n
, n = 0

α2X1n
α1−k2

n
, n > 0

, (18b)

and qκs are the roots of the characteristic equation of Equation (17a), and they are given by

q1 = iω
√

ms/Q and q2 = −iω
√

ms/Q. (18c)

By substituting Equation (18a–c) into the boundary condition, Equation (11a,b), the
constant Cκs are acquired through{

∑2
κ=1 Cκ(ks − qQ)e−qκd1 + ∑∞

n=0 A1n[ksFn fn(−d1)−QFn f ′n(−d1)] = 0
∑2

κ=1 Cκqκe−qκ(d1+d2) + ∑∞
n=0 A1nFn f ′n[−(d1 + d2)] = 0

. (19)

For the net portion z∈Snet, substituting Equations (12a–f), (16a,b), and (18a–c) into
Equation (7) and invoking the orthogonality of cos(mθ) again, one obtains,

when m 6= 1,

∑∞
n=0 Amnkn fn(z) + iσ

∞

∑
n=0

AmnXmn fn(z)−
igHk0

2ω

cos h[k0(z + h)]
cos h(k0h)

µm J′m(k0a) = 0, (20a)

and when m = 1,

∑∞
n=0 A1nkn fn(z) + iσ ∑∞

n=0 A1nX1n fn(z) + iω ∑∞
n=0 A1nFn fn(z)−

igHk0
2ω

cos h[k0(z+h)]
cos h(k0h) µm J′m(k0a) + iω ∑2

j=1 Cκeqκz = 0.
(20b)

For the gap portion z∈Sgap, substituting Equation (16a) into Equation (9b) and using
the orthogonality of cos(mθ) yields

∑∞
n=0 AmnXmn fn(z) = 0. (21)

As a result, a system of equations can be obtained from Equations (20a,b) and (21):

Sm(z) = ∑∞
n=0 Amnεmn(z) + λm(z) = 0, (22a)

where, when m 6= 1,

εmn(z) =
{

(kn + iσXmn) fn(z), z ∈ Snet
Xmn fn(z), z ∈ Sgap

, (22b)

λm(z) =

{
− igHk0

2ω
cos h[k0(z+h)]

cos h(k0h) µm J′m(k0a), z ∈ Snet

0, z ∈ Sgap
, (22c)
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and when m = 1,

εmn(z) =
{

(kn + iσXmn + iωFn) fn(z), z ∈ Snet
Xmn fn(z), z ∈ Sgap

, (22d)

λm(z) =

 −
igHk0

2ω
cos h[k0(z+h)]

cos h(k0h) µm J′m(k0a) + iω
2
∑

j=1
Cκeqκz, z ∈ Snet

0, z ∈ Sgap

. (22e)

Truncating the infinite series after Nth terms in Equation (22a) yields

Sm(z) = ∑N
n=0 Amnεmn(z) + λm(z) = 0. (23)

By manipulating the least-squares approximation for Equation (23), one obtains∫ 0

−h
|Sm(z)|2dz = min⇒

∫ 0

−h
S∗m

∂S(z)
∂Amn

dz = 0, (24)

and a system of equations about Amn is acquired by substituting Equation (23) into Equation
(24):

∑N
n=0 A∗mnΨmn,l = Ωm.l , (25a)

where

Ψmn,l =
∫ 0

−h
ε∗mnεm,ldz and Ωm,l = −

∫ 0

−h
λ∗mεm,ldz, (25b)

and m = 0, 1, 2, . . . , M; l = 0, 1, 2, . . . , N.
Therefore, Amn and Cκ are solved by combining Equations (19) and (25a,b), and the

complex amplitude of the velocity potential ϕj is calculated from Equations (12a–f) and
(13a–c).

Finally, in view of the linearised Bernoulli’s equation, the complex dynamic pressure
p is

pj = −ρ
∂
(

ϕje−iωt)
∂t

, (26)

and the complex pressure difference acting on the net interface is defined as

∆p = p1 − p2, at r = a. (27)

As a result, the complex function of the horizontal hydrodynamic force per unit length
along the cage height is given by

f (z) = a
∫ 2π

0
∆p cos(π − θ)dθ = −πaiωρ ∑N

n=0 A1nX1n fn(z)e−iωt, (28)

and the wave force and the resulting overturning moment with respect to the top of the
cage are

F =
∫ −d1

−(d1+d2)
f (z)dz and Mo =

∫ −d1

−(d1+d2)
f (z)

(
z + d1 +

d2

2

)
dz. (29)

Furthermore, according to the DFSBC, Equation (4b), the free-water surface elevation
ξ is given by

ξ j = Re

(
iωϕje−iωt

g

)
. (30)

4. Convergence Studies and Model Validation

In Section 3, the derived solution is written in the form of the Fourier–Bessel series,
and the infinite terms have been truncated after Nth and Mth terms. Theoretically, the
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calculated result is only valid when the solution converges with the increasing number of
the series term. Therefore, convergence studies are required to determine the truncated
terms to use for accurate results. For the convergence studies, the following parameters
are adopted: H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m, and G = 0.7. The nondi-
mensional mooring spring constant α = ks/(msg) is 20, the nondimensional axial tensile
force in the net γ = Q/(msgd2) is taken as 1, and the nondimensional net mass per unit
length β = ms/(ρd2

2) = 0.001. The wave frequency ω varies from 0.2 rad/s to 1.4 rad/s
at an interval of 0.4 rad/s. In Equation (18a–c), due to the orthogonality of cos(mθ), the
convergence of η is only determined by the series term generated by the wavenumbers
from the dispersion relation Equation (14), so a control error ∆Er (N) versus the truncated
term N is defined as

∆Er(N) =

∣∣∣∣η(−d1 − d2
2

)
,N+1

− η
(
−d1 − d2

2

)
,N

∣∣∣∣∣∣∣∣η(−d1 − d2
2

)
,N

∣∣∣∣ . (31)

The variations of ∆Er (N) versus N from 1 to 50 are shown in Figure 3a. The results
exhibit different convergency speeds for different wave frequencies, and the values of ∆Er
(N) converge more slowly when the wave frequency is larger. Notably, when N > 30, the
maximum control error is less than 2.25% for all cases. Alternatively, for the solution of the
local wave field near the cage, the control error ∆Er (M) versus the truncated term M is
defined as follows:

∆Er(M) =

∣∣∣∑−d1
z=−(d1+d2)

∑2π
θ=0 ∆ϕ(a, θ, z),M+1 −∑−d1

z=−(d1+d2)
∑2π

θ=0 ∆ϕ(a, θ, z),M

∣∣∣∣∣∣∑−d1
z=−(d1+d2)

∑2π
θ=0 ∆ϕ(a, θ, z),M

∣∣∣ . (32)

The curves of ∆Er (M) versus M from 1 to 50 are presented in Figure 3b. Similarly,
if the wave frequency is lower, the control error will show a more rapid decay, and the
control errors of the whole cases are closed to 0 for when M > 18. Based on the convergence
studies, it is sufficient to take N = 30 and M = 20 to guarantee the accuracy for the solution
of the imposed wave action and cage displacement.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 9 of 26 
 

 

γ = Q/(msgd2) is taken as 1, and the nondimensional net mass per unit length β = ms/(ρd22) 
= 0.001. The wave frequency ω varies from 0.2 rad/s to 1.4 rad/s at an interval of 0.4 rad/s. 
In Equation (18a–c), due to the orthogonality of cos(mθ), the convergence of η is only 
determined by the series term generated by the wavenumbers from the dispersion relation 
Equation (14), so a control error ∆Er (N) versus the truncated term N is defined as 

∆𝐸(𝑁) = ቤ𝜂ቀ−𝑑ଵ−ௗమଶ ቁ,ேାଵ−𝜂ቀ−𝑑ଵ−ௗమଶ ቁ,ேቤ
ቤ𝜂ቀ−𝑑ଵ−ௗమଶ ቁ,ேቤ . (31)

The variations of ∆Er (N) versus N from 1 to 50 are shown in Figure 3a. The results exhibit 
different convergency speeds for different wave frequencies, and the values of ∆Er (N) 
converge more slowly when the wave frequency is larger. Notably, when N > 30, the 
maximum control error is less than 2.25% for all cases. Alternatively, for the solution of 
the local wave field near the cage, the control error ∆Er (M) versus the truncated term M 
is defined as follows: 

∆𝐸(𝑀) = ฬ∑ ∑ ∆ఝ(,ఏ,௭)మഏഇసబషభసష(భశమ) ,ಾశభି∑ ∑ ∆ఝ(,ఏ,௭)మഏഇసబషభసష(భశమ) ,ಾฬฬ∑ ∑ ∆ఝ(,ఏ,௭)మഏഇసబషభసష(భశమ) ,ಾฬ . (32)

The curves of ∆Er (M) versus M from 1 to 50 are presented in Figure 3b. Similarly, if the 
wave frequency is lower, the control error will show a more rapid decay, and the control 
errors of the whole cases are closed to 0 for when M > 18. Based on the convergence 
studies, it is sufficient to take N = 30 and M = 20 to guarantee the accuracy for the solution 
of the imposed wave action and cage displacement. 

  
(a) (b) 

Figure 3. Convergence curves of control errors versus truncated terms for different wave frequencies: (a) ∆Er (N) versus 
N; (b) ∆Er (M) versus M. 

In order to examine the correctness of the aforementioned formulations, consider a 
rigid impermeable or porous circular cage illustrated in [29,30] with the parameters of h = 
5 m, a = 0.15 m, d1 = 0, and d2 = 0.3 m. The structural parameters adopted α = 1000, γ = 1000, 
and β = 1000 to ensure the cage motion is negligible. The nondimensional horizontal wave 
force acting on the cage versus the normalized wavenumber k0a is shown in Figure 4a. 
There are no significant differences between the present model and the aforementioned 
studies. A small discrepancy observed is because a horizontal impermeable plate is 

N M

Figure 3. Convergence curves of control errors versus truncated terms for different wave frequencies: (a) ∆Er (N) versus N;
(b) ∆Er (M) versus M.



J. Mar. Sci. Eng. 2021, 9, 1445 10 of 26

In order to examine the correctness of the aforementioned formulations, consider a
rigid impermeable or porous circular cage illustrated in [29,30] with the parameters of
h = 5 m, a = 0.15 m, d1 = 0, and d2 = 0.3 m. The structural parameters adopted α = 1000,
γ = 1000, and β = 1000 to ensure the cage motion is negligible. The nondimensional hori-
zontal wave force acting on the cage versus the normalized wavenumber k0a is shown in
Figure 4a. There are no significant differences between the present model and the aforemen-
tioned studies. A small discrepancy observed is because a horizontal impermeable plate is
considered at the bottom of the cage in [29,30]. In addition, the current analytical solution
of the cage deflection amplitude |η| is validated with the numerical solution generated by
the Runge–Kutta method, where the parameters adopt the one in the convergence studies
and ω = 1 rad/s. Figure 4b indicates that the derived analytical solution is completely
consistent with the numerical results.
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5. Hydroelastic Analysis of Fish Net Cage

This section discusses the hydroelastic spatial characteristics of the net cages by some
numerical results. Five case groups were designed with various wave periods T (Cases
A), net opening ratios G (Cases B), nondimensional mooring spring constants α (Cases C),
nondimensional axial tensile forces γ in the net (Cases D), and immersed depths d1 of the
cage (Cases E). The detailed parameter settings are shown in Table 1. In this analysis, a
full-scale cage deployed in the marine aquaculture industry is considered, in which the
cage radius a = 50 m, the cage height d2 = 50 m, and the dimensionless net mass per unit
length β = 0.001. Moreover, the wave height H = 7 m and the water depth h = 200 m
are adopted.



J. Mar. Sci. Eng. 2021, 9, 1445 11 of 26

Table 1. Case group with different parameters.

Cases T (s) G α γ d1 (m)

A1 4 0.7 20 1 0
A2 6 0.7 20 1 0
A3 8 0.7 20 1 0
A4 10 0.7 20 1 0

B1 8 0.1 20 1 0
B2 8 0.2 20 1 0
B3 8 0.3 20 1 0
B4 8 0.4 20 1 0
B5 8 0.6 20 1 0
B6 8 0.7 20 1 0
B7 8 0.8 20 1 0
B8 8 0.9 20 1 0

C1 8 0.7 1 1 0
C2 8 0.7 10 1 0
C3 8 0.7 20 1 0
C4 8 0.7 Fixed end 1 0

D1 8 0.7 20 0.5 0
D2 8 0.7 20 1 0
D3 8 0.7 20 2 0
D4 8 0.7 20 4 0

E1 8 0.7 20 1 0
E2 8 0.7 20 1 10
E3 8 0.7 20 1 30
E4 8 0.7 20 1 50

5.1. Hydrodynamic Behaviours

The present model can evaluate the distribution of the velocity potential Φ of the fluid
domain and then derive its corresponding dynamic pressure and free surface elevations
at a series of discretised points. Here, Cartesian coordinates (x = rcosθ and y = rsinθ) are
established to facilitate the description of the results, where the central axis of the cage
is located at the z-axis, and the incident wave propagates along the positive direction of
the x-axis.

The free surface elevations ξ (m) around the cage with varied net opening ratios (Cases
B1 to B4) are illustrated in Figure 5, in which ξ is calculated from Equation (30) in a domain
of x = ± 200 m and y = ± 200 m. In this example, ξ adopted the values at time t = nT,
n = 0, 1, 2, . . . , ∞, and the black circle is the demarcation between Regions 1 and 2. It can be
observed that the presence of the cage causes perturbations to the wave surface, especially
for the cage with an impermeable interface (i.e., net opening ratio G = 0). The transmitted
wave passing through the cage will be attenuated, and its amplitude will gradually restore
to its original state. This occurs because, when the scattered wave radiates away from the
cage, the scattering potential gradually decays. Alternatively, the wave surface in the inner
region of the cage also has different extents of attenuation, and the energy dissipation is
the most severe, especially when G = 0. It is worth noting that, due to the blocking effect
of the porous net, the water surface elevation inside the cage is affected by a certain lag
in propagation when compared with the waves outside the cage. Furthermore, when the
opening ratio of the net is gradually increased, the disturbance of the cylindrical net to
the wave surface will gradually become weak, and the observed wave scattering becomes
relatively minor for the cases with G > 0.3. In engineering practice, the adopted opening
ratio of the fish net is usually greater than 0.6, so the influence of the net cage on the wave
surface has become weak at this time.
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Figure 6 shows the amplitude distributions of the pressure differences |∆p| on the 
windward and leeward sides of the net chamber in the incident wave direction. |∆p| is 
defined in Equation (27), and the results in Cases A1 to A4 with different wave periods 
are discussed. The maximum values of |∆p| are mainly concentrated at the top of the 
cylindrical cage, in which the maximum values are greater when the wave periods are 
smaller, that is 1.20 kPa (T = 4 s), 1.13 kPa (T = 6 s), 1.04 kPa (T = 8 s), and 0.89 kPa (T = 10 
s). Nevertheless, the values of |∆p| at the lower part of the cage are relatively minor, and 
the values at its bottom end are close to 0. These results demonstrate that the wave has a 
more significant impact on the top part of the cage. Notably, more areas on the cage 
surface will withstand the pressure drop with high amplitudes under the wave action 
with longer periods, because short waves mainly concentrate on the free-water surface. 
Moreover, due to the energy dissipation of the transmitted wave, the pressure drop |∆p| 
on the leeward side is also slightly higher. 
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Figure 6 shows the amplitude distributions of the pressure differences |∆p| on the
windward and leeward sides of the net chamber in the incident wave direction. |∆p| is
defined in Equation (27), and the results in Cases A1 to A4 with different wave periods
are discussed. The maximum values of |∆p| are mainly concentrated at the top of the
cylindrical cage, in which the maximum values are greater when the wave periods are
smaller, that is 1.20 kPa (T = 4 s), 1.13 kPa (T = 6 s), 1.04 kPa (T = 8 s), and 0.89 kPa (T = 10 s).
Nevertheless, the values of |∆p| at the lower part of the cage are relatively minor, and
the values at its bottom end are close to 0. These results demonstrate that the wave has a
more significant impact on the top part of the cage. Notably, more areas on the cage surface
will withstand the pressure drop with high amplitudes under the wave action with longer
periods, because short waves mainly concentrate on the free-water surface. Moreover, due
to the energy dissipation of the transmitted wave, the pressure drop |∆p| on the leeward
side is also slightly higher.
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5.2. Structural Dynamic Responses

In this section, the structural dynamic responses of the net cage are investigated. Two
important indices are presented: the nondimensional amplitude of the structural transverse
deflection |η|/d2, and the nondimensional amplitude of the horizontal wave load per unit
length Kf along the cage height. Following in the work of Mandal and Sahoo [21], Kf is
defined as

K f =
| f (z)|
ρgaH

, (33)

in which the horizontal wave load per unit length f (z) is found from Equation (28). The
curves of |η|/d2 and Kf versus the relative position defined as (z + d1)/d2 are plotted in
Figures 7–11.
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Figure 7. (a) Nondimensional transverse deflection amplitudes of cage |η|/d2, and (b) nondimensional horizontal wave
load amplitudes per unit length Kf along cage height for various wave periods T, Cases A1 to A4.
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Figure 9. (a) Nondimensional transverse deflection amplitudes of cage |η|/d2, and (b) nondimensional horizontal wave
load amplitudes per unit length Kf along cage height for various dimensionless mooring spring constants α, Cases C1 to C4.
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It can be observed that the greater transverse deflection of the cylindrical net chamber
occurs at the upper part of the cage height, and the horizontal wave load per unit length
is the largest at the top end of the cage. At the bottom end of the structure, the values
of |η|/d2 and Kf are the smallest. In addition, due to the assumption of structural edge
constraints, the cage has a displacement at the top end (mooring constrained end), and the
first derivatives to z are 0 at the bottom end (free end) for the curves of |η|/d2.

Figure 7 presents the results of Cases A1 to A4 with T varying from 4 s to 6 s with an
interval of 2 s. It can be seen that when T = 8 s, the transverse deflection and wave load on
the structure are much greater than the values of the other periods. That indicates that the
net cage structure has a critical dynamic response at specific wave frequencies.

In Figure 8, Cases B5 to B8, when the porosity of the fish net increases, the transverse
deflection amplitude at the upper part of the net chamber decreases but the value of the
lower part slightly increases. With regard to the coefficient Kf, the values at the upper
part of the cage have a greater difference, but when (z + d1)/d2 is smaller than −0.3, these
differences are relatively small. This is because these cases are set as floating conditions,
and the porous effect of the fish net will have a more significant blocking impact on the
flow close to the wave surface.

In Figure 9, Cases C1 to C4 show the effect of the mooring cable stiffness, and there is
also a fixed end case (η = 0 at z = −d1) presented. When α = 0.5, a weak spring stiffness
results in the vanishing of peaks on the curves of |η|/d2 and a significant reduction of the
normalized wave load Kf. Nevertheless, when α > 10, its influence on wave action becomes
relatively minor.

Referring to Figure 10 (Cases D1 to D4), the distribution characteristics of |η|/d2 and
Kf are similar when γ < 4. If the axial tension in the cage increases, the overall deformation
of the cage can be suppressed, but the top displacement will increase. When γ = 4, there are
no peaks along the curves of |η|/d2. Moreover, the wave action is enhanced to a certain
extent for a stiffer net cage.

In Figure 11 (Cases D1 to D4), it can be seen that the wave effect will gradually become
minimal as the diving depth of the cage increases. The corresponding structural deforma-
tion and wave load are also reduced significantly. This justifies the submergence of the
cage into a deeper water level to avoid the strong surface waves. Moreover, the 3D shapes
of the net chamber with the maximum deformation are plotted at different submerged
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depths in Figure 12, where the deflection values are magnified by an exaggerated scale of 5
times. Little wave response of the cage is observed when it is submerged at d1/h = 0.25.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 17 of 26 
 

 

  
(a)  (b) 

Figure 11. (a) Nondimensional transverse deflection amplitudes of cage |η|/d2, and (b) nondimensional horizontal wave 
load amplitudes per unit length Kf along cage height for various relative diving depths d1/h of the cage, Cases E1 to E4. 

   
(a) (b) (c) (d) 

Figure 12. Three-dimensional (3D) shapes of a net cage at different submerged depths with the maximum deformation in 
an exaggerated scale of 5 times: (a) d1/h = 0. (b) d1/h = 0.05. (c) d1/h = 0.15. (d) d1/h = 0.25. 

6. Parametric Study 
In order to investigate the effects of hydrodynamic and structural parameters on the 

wave loads, parametric studies are conducted in this section. The nondimensional 
amplitude of the hydrodynamic force KF in the horizontal direction and the 
nondimensional amplitude of the overturning moment KM with respect to the cage top are 
defined similarly to Mandal and Sahoo [21]: 𝐾ி = |ி|ఘு and 𝐾ெ = |ெ|ఘு(ௗభାௗమ), (34) 

in which the wave force F and the resulting overturning moment Mo are found from 
Equation (29). In the parametric studies, the following nondimensional hydrodynamic 

|η|/d2 Kf

Figure 12. Three-dimensional (3D) shapes of a net cage at different submerged depths with the maximum deformation in
an exaggerated scale of 5 times: (a) d1/h = 0. (b) d1/h = 0.05. (c) d1/h = 0.15. (d) d1/h = 0.25.

6. Parametric Study

In order to investigate the effects of hydrodynamic and structural parameters on
the wave loads, parametric studies are conducted in this section. The nondimensional
amplitude of the hydrodynamic force KF in the horizontal direction and the nondimensional
amplitude of the overturning moment KM with respect to the cage top are defined similarly
to Mandal and Sahoo [21]:

KF =
|F|

ρgaHh
and KM =

|Mo|
ρgaHh(d1 + d2)

, (34)

in which the wave force F and the resulting overturning moment Mo are found from
Equation (29). In the parametric studies, the following nondimensional hydrodynamic
parameters are defined: the wave-effect parameter Cw = g/(ω2h) defined by Chwang [11],
the incident wave steepness H/L, and the relative water depth h/L, where L is the incident
wavelength. The parameters related to the cage dimensions include the relative diameter
of the cage 2a/L, the relative dividing depths of the cage d1/h, and the relative height of
the cage d2/h. Furthermore, the structural parameters have the nondimensional mooring
spring constant α, the nondimensional axial tensile force in the net γ, the nondimensional
net mass per unit length β, and the net opening ratio G.

6.1. Hydrodynamic Conditions

The relationship between the wave load on the cage and the wave frequency is given
in Figure 13. The curves of KF and KM versus Cw show multiple peak points and zero
points. This may be because when the wavelength is at a specific value, the phase difference
between the scattered waves in the outer region and the inner region near the circular cage
is 180 degrees, resulting in wave attenuation. Conversely, if the phase difference is small,
the wave action will be strengthened at this frequency.
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Figure 13. Effect of wave-effect parameter Cw on (a) nondimensional amplitude of horizontal hydrodynamic force KF

and (b) nondimensional amplitude of horizontal overturning moment KM for various net opening ratios G, H = 7 m,
h = 200 m, a = 50 m, d1 = 0 m, d2 = 50 m, α = 20, γ = 1, and β = 0.001.

As shown in Figure 14, the coefficients KF and KM are firstly decreased to the minimum
values with the relative wave height H/L, and then they start to increase. In the small-
amplitude wave theory, the velocity of the water particle has a linear relationship with the
wave height. However, Equation (8b) indicates that the real part σr of the porous-effect
parameter σ is changed related to the varied incident wave slope ε = Hk0/2. As a result,
the wave load acting on the fish net does not increase linearly with the wave height.
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and 1.70. The wave force on the cylindrical cage has a similar variation under various 
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Figure 14. Effect of incident wave steepness H/L on (a) nondimensional amplitude of horizontal hydrodynamic force
KF and (b) nondimensional amplitude of horizontal overturning moment KM for various net opening ratios G, T = 8 s,
h = 200 m, a = 50 m, d1 = 0 m, d2 = 50 m, α = 20, γ = 1 and β = 0.001.

Referring to Figure 15, when the water depth h increases from the values of the cage
height to twice the wavelength, the values of KF and KM will decrease in opposition to the
increase in the relative water depth h/L. It is worth noting that the water depth h is the
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denominator in the definition of the coefficients KF and KM, which may also contribute to
the decrease in the values.
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6.2. Cage Dimensions

As illustrated in Figure 16, at a constant wavelength, by increasing the diameter of
the cage, the curves of the coefficients KF and KM will experience multiple peak points and
zeros points as well, where the hydrodynamic force will vanish when 2a/L is around 0.59
and 1.70. The wave force on the cylindrical cage has a similar variation under various wave
frequencies. Therefore, the ratio of the diameter of the circular cage to the wavelength is
crucial in engineering design.
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Figure 16. Effect of relative cage diameter 2a/L on (a) nondimensional amplitude of horizontal hydrodynamic force KF and
(b) nondimensional amplitude of horizontal overturning moment KM for various net opening ratios G, T = 8 s, H = 7 m,
h = 200 m, d1 = 0 m, d2 = 50 m, α = 20, γ = 1, and β = 0.001.
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If the cage is submerged to a deeper location underwater, the effect of surface waves
will be weakened, so the coefficients KF and KM will be reduced in Figure 17. However,
this decreasing trend will slow down as the wave action has been minimal at extremely
deep water levels.
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Figure 17. Effect of relative cage diving depth d1/h on (a) nondimensional amplitude of horizontal hydrodynamic force KF

and (b) nondimensional amplitude of horizontal overturning moment KM for various net opening ratios G, T = 8 s, H = 7 m,
h = 200 m, a = 50 m, d2 = 50 m, α = 20, γ = 1, and β = 0.001.

The effect of cage height on the wave load is shown in Figure 18. Attentively, as the
cage height d2 increases, the axial tensile force Q and the mass per unit length ms of the net
chamber will increase if the defined nondimensional parameters γ and β remain constant.
This is unreasonable. Therefore, the relevant structural parameters are assumed to take
the following values: Q/(msga) = 1 and ms/(ρa2) = 0.001. Assuming that the top of the
cage is at the mean water level, with the increase of the cage height, the values of KF and
KM will rapidly rush to the peak point, and then begin to decrease. The magnitude of KF
will remain constant after d2/h = 0.2. This is because the imposed wave pressure has been
already negligible at the part of the cage close to the deep water level.

6.3. Structural Parameters

It can be observed from Figure 19 that as the spring stiffness of the mooring rope
increases, the wave action coefficients KF and KM increase to reach a peak value, and then
gradually decrease. When α > 40, this trend is also slowed down.

The curves in Figure 20 show that the coefficients KF and KM are greater with respect
to increasing γ. This might be explained by the fact that more momentum of the fluid
is dissipated when impacting on stiffer structures. However, the curves of KF present a
slowdown in the growth trend, but KM increases approximately linearly when γ > 1.
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Figure 18. Effect of relative cage height d2/h on (a) nondimensional amplitude of horizontal hydrodynamic force KF and
(b) nondimensional amplitude of horizontal overturning moment KM for various net opening ratios G, T = 8 s, H = 7 m,
h = 200 m, a = 50 m, d1 = 0 m, α = 20, Q/(msga) = 1, and ms/(ρa2) = 0.001.
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Figure 20. Effect of nondimensional axial tensile force γ in the net on (a) nondimensional amplitude of horizontal
hydrodynamic force KF and (b) nondimensional amplitude of horizontal overturning moment KM for various net opening
ratios G, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0 m, d2 = 50 m, α = 20, and β = 0.001.

The mass of the fish net is generally determined by different net materials or biomass
effects. In Figure 21, in order to ensure a constant mooring stiffness and axial tension in the
net, we have taken that ks/(ρgd2

2) = 0.02 and Q/(ρgd2
3) = 0.001. It can be observed that,

with increasing β from 0 to 0.01, the wave force coefficient KF initially decreases and then
increases slowly, but the moment coefficient KM decreases slightly first and then increases
rapidly.
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In Figure 22, under different axial tensions in the net, the coefficients KF and KM show
different varying trends when G < 0.4. However, the increase in the porosity of the fish net
is conducive for reducing the wave action when the opening ratio is over 0.4. Consequently,
it is important that the porosity of the net is kept high, and it is essential to clean the net
often to remove the biofouling organisms and hydroids to reduce the wave load on the fish
cage. Notably, when the net opening ratio G = 1, i.e., the net does not exist, the predicted
wave forces are not zero. According to [25], theoretically, the porous effect parameter σ
should go to infinity when the net interface becomes completely permeable, but Equation
(8b) obviously does not obey this scenario. Therefore, a more suitable formula for the
porous effect parameter is required in future studies.
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Figure 22. Effect of net opening ratio G on (a) nondimensional amplitude of horizontal hydrodynamic force KF and
(b) nondimensional amplitude of horizontal overturning moment KM for various nondimensional axial tensile forces γ in
the net, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m, α = 20, and β = 0.001.

On the other hand, although the assumption in Equation (8a,b) ignores the fluid
inertia effect for the flow penetrating through the net interface, its influence still needs to
be discussed. An empirical formula of σi provided by Ito et al. [25] indicates that most
values are in a range of less than 1 for the cube net cage. Here, by assuming that the values
of σi for most cylindrical net cages are less than 1, the variations of KF and KM with respect
to σi from 0 to 1 are shown in Figure 23. These curves indicate a significant influence of σi
when the values of γ are high. A minor effect of σi is seen when γ is smaller, especially
for the coefficient KM. As a result, the porous effect of the fish net will exhibit different
properties with different axial tensions, and thus the fluid inertia effect parameter σi still
needs further investigation.
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Figure 23. Effect of fluid inertia effect parameter σi on (a) nondimensional amplitude of horizontal hydrodynamic force KF

and (b) nondimensional amplitude of horizontal overturning moment KM for various nondimensional axial tensile forces γ

in the net, T = 8 s, H = 7 m, h = 200 m, a = 50 m, d1 = 0, d2 = 50 m, G = 0.7, α = 20, and β = 0.001.

7. Conclusions

A semi-analytical model for wave–cage interaction is established based on the poten-
tial flow theory to investigate the hydroelastic behaviour of a cylindrical fish net cage under
wave actions. The net cage is modelled as a flexible porous cylinder and its motions are
governed by the string vibration equations. By separating variables, the general solution
of this physics problem can be expressed by the Fourier–Bessel series. The unknown
constants in these series are determined from matching the boundary conditions and the
least squares method. Based on this study, the following conclusions may be drawn:

(1) The disturbance caused by the cage to the wave surface is weaker when the opening
ratio of the net is greater than 0.3. The wave actions are stronger near the mean water
level, as expected. Consequently, a submersible cage is recommended to avoid the
high surface-wave energy.

(2) Under different mooring stiffness and axial tension in the net, the deflection amplitude
of the cage presents different distribution characteristics.

(3) The net chamber will be subjected to critical wave responses at particular frequencies,
but some specific ratios of the cage diameter to the wavelength might cause the
vanishing of the wave force and the overturning moment on the cage.

(4) Appropriately increasing the porosity and reducing the axial tension of the net cham-
ber are beneficial in reducing the wave load.

(5) The porous effect of the fish net is significantly impacted by the axial tension in
the cage.

The present study reveals some mechanical characteristics of the interaction between
the wave and the net cage and provides a reference for the design and application of fish
cage systems. However, the theories and formulas used in the present study are all based
on linear models, so they cannot solve nonlinear problems in wider scenarios, such as
nonlinear waves, quadratic porous flow models, etc., and the structural vibration equation
may be oversimplified. Those problems will be considered and resolved in future studies.
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