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Abstract: In this study, a metamodel of an optimal arrangement of wind turbines was developed to
maximize the energy produced by minimizing the energy loss due to wakes in a limited space when
designing a wind farm. Metamodeling or surrogate modeling techniques are often used to replace
expensive simulations or physical experiments of engineering problems. Given a training set, you
can construct a set of metamodels. This metamodel provided insight into the correlation between
wind farm geometry and the corresponding turbine layout (maximizing energy production), thereby
optimizing the area of the wind farm required to maximize wind turbine capacity. In addition, a
design support Microsoft Excel program was developed to quickly and easily calculate the annual
energy production forecast considering the wake effect, as well as to confirm the prediction suitability,
the annual energy production (AEP) analysis result of the wind farm, and the calculation result from
existing commercial software were compared and verified.

Keywords: metamodel; moving least squares; kriging interpolation; feedforward network; deep
learning; Keras; TensorFlow; wind farm layout; windPRO; optiSLang

1. Introduction

Wind power is now widely used as a renewable, clean, and ecological resource that
is qualified to lead the energy transition process [1]. At the end of 2019, wind power
generation of 60 GW was newly installed (54 GW on land and 6.1 GW on sea), and the
total cumulative capacity reached 651 GW. According to the Global Wind Energy Council
(GWEC), the cumulative amount of offshore wind power generation installed around the
world in 2019 was 29.1 GW, and with the increase of offshore wind power complexes,
offshore wind power generation is a rapidly growing industry in global electricity produc-
tion [2]. Many governments and countries have implemented a huge number of renewable
consolidation policies. As of June 2020, Korea has five offshore wind power projects total-
ing 132.5 MW, including a 60 MW southwest sea wind pilot project completed in January
as the first phase of a large-scale 2.5 GW project. More than 23 offshore wind power
projects totaling 7.3 GW are under preliminary development, as shown in Figure 1 [2].
The main purpose of a wind farm operator is to manage the operation of a wind farm
system as a whole and determine the optimal set point of the wind turbine generators
(WTGs) to achieve different operational objectives. A collective operational objective in
a wind farm system is to maximize the output power of the entire system [3]. As part
of efforts to maximize efficiency and energy production and to reduce installation costs,
proper quantities of wind power plants and their deployment remain important issues
to be further investigated [4]. Further developments have been made in recent years to
optimize wind turbines in larger wind farms [5].
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Figure 1. Offshore wind farm locations in Korea (source: Korea Energy Industry Association). 

Ramos et al. [6] analyzed the factors that affect wind farm energy production and 
indicated that the location selection of a wind farm is very important. Grady et al. [7] ap-
plied a genetic algorithm to determine the optimal placement of wind turbines, maximize 
production capacity, and limit the number of turbines and land acreage in wind power 
plants. Marmidis et al. [8] used the Monte Carlo procedure to extract the optimum number 
and placement of wind turbines. Lazarou et al. [9] used the Powell optimization method 
and Ekonomou et al. [10] used artificial neural networks to determine the optimum num-
ber of wind turbines and total production power. Yang et al. [11] proposed a new wind 
farm layout optimization model to maximize the equivalent power of a wind farm system 
using the particle swarm optimization algorithm. Feng et al. [12] presented a random 
search algorithm based on continuous formulation for wind farm layout optimization to 
provide greater power generation. Gionfra et al. [13] presented a distributed approach to 
the problem of wind farm power maximization, taking into account the wake interaction 
among WTGs as a distributed particle cluster optimization algorithm. The influence of 
turbulence intensity from wind turbine wake in wind farm systems was also investigated 
in [14]. For the accuracy of an annual energy production forecast in a wind farm, the wind 
speed reduction due to the wake effects of each wind direction and the accompanying loss 
of generation should be calculated. 

Therefore, the installation layout of a wind turbine plays an important role in the 
design of every wind farm. In this study, we developed a design support Excel automa-
tion program and wind turbine optimal layout design formula to maximize production 
energy by minimizing energy loss due to the wake within a limited space when designing 
a wind farm. 
  

Figure 1. Offshore wind farm locations in Korea (source: Korea Energy Industry Association).

Ramos et al. [6] analyzed the factors that affect wind farm energy production and
indicated that the location selection of a wind farm is very important. Grady et al. [7]
applied a genetic algorithm to determine the optimal placement of wind turbines, maximize
production capacity, and limit the number of turbines and land acreage in wind power
plants. Marmidis et al. [8] used the Monte Carlo procedure to extract the optimum number
and placement of wind turbines. Lazarou et al. [9] used the Powell optimization method
and Ekonomou et al. [10] used artificial neural networks to determine the optimum number
of wind turbines and total production power. Yang et al. [11] proposed a new wind farm
layout optimization model to maximize the equivalent power of a wind farm system
using the particle swarm optimization algorithm. Feng et al. [12] presented a random
search algorithm based on continuous formulation for wind farm layout optimization to
provide greater power generation. Gionfra et al. [13] presented a distributed approach to
the problem of wind farm power maximization, taking into account the wake interaction
among WTGs as a distributed particle cluster optimization algorithm. The influence of
turbulence intensity from wind turbine wake in wind farm systems was also investigated
in [14]. For the accuracy of an annual energy production forecast in a wind farm, the wind
speed reduction due to the wake effects of each wind direction and the accompanying loss
of generation should be calculated.

Therefore, the installation layout of a wind turbine plays an important role in the
design of every wind farm. In this study, we developed a design support Excel automation
program and wind turbine optimal layout design formula to maximize production energy
by minimizing energy loss due to the wake within a limited space when designing a
wind farm.

2. Offshore Site and Data
2.1. Wind Climate

Each wind power plant project begins with the evaluation and selection of the optimal
location. The wind speed factor is considered the most relevant parameter for annual energy
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production, accounting for over 90% of contributions [1]. Figure 2 is a satellite photo of a
candidate site for the offshore wind farm located the coast of Kori, located in the southeast
of the Korean Peninsula. The location of the ground-based Wind Lidar, the location of
the met mast used for long-term wind correction, and the location of the Kanjeolgot
automated weather station (AWS), which is the Korea Meteorological Administration’s
AWS for verification, are also marked with the water depth measurement results.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 3 of 17 
 

 

2. Offshore Site and Data 
2.1. Wind Climate 

Each wind power plant project begins with the evaluation and selection of the opti-
mal location. The wind speed factor is considered the most relevant parameter for annual 
energy production, accounting for over 90% of contributions [1]. Figure 2 is a satellite 
photo of a candidate site for the offshore wind farm located the coast of Kori, located in 
the southeast of the Korean Peninsula. The location of the ground-based Wind Lidar, the 
location of the met mast used for long-term wind correction, and the location of the Kan-
jeolgot automated weather station (AWS), which is the Korea Meteorological Administra-
tion’s AWS for verification, are also marked with the water depth measurement results. 

 
Figure 2. Offshore wind farm location at Kori. 

Figure 3 shows a comparison of the long-term average wind speeds from the annular 
met mast and the long-term ERA5 numerical model. The ERA5 numerical model is based 
on a maritime location about 7 km from the annular tower. The met mast gives the meas-
ured wind speed at 58 m above the ground, while the Kanjeolgot AWS gives the wind 
speed measured at a 24 m height. Long-term data of 20 years were used for a comparative 
analysis of the monthly wind velocity. 

 
(a) 

Figure 2. Offshore wind farm location at Kori.

Figure 3 shows a comparison of the long-term average wind speeds from the annular
met mast and the long-term ERA5 numerical model. The ERA5 numerical model is based
on a maritime location about 7 km from the annular tower. The met mast gives the
measured wind speed at 58 m above the ground, while the Kanjeolgot AWS gives the wind
speed measured at a 24 m height. Long-term data of 20 years were used for a comparative
analysis of the monthly wind velocity.
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Figure 3. Average wind speed in Kori offshore over 20-year period: (a) Annual mean wind speed
and (b) monthly mean wind speed.

The blue line in Figure 3b represents the average monthly wind speed for Korea
over the same 20 years as measured by the Korea Meteorological Administration. Korea’s
average seasonal wind speed is generally high in the winter and spring seasons and low in
summer and fall. However, unlike typical Korean weather conditions, the average monthly
wind speed of the Kori met mast over these 20 years was the lowest during the winter
season, and the average wind speed during the spring and fall seasons was observed to
be high. Data from the nearby Kanjeolgot AWS also showed similar measurement results,
enabling the verification of wind characteristics in the area.

Figure 4 shows the density of wind energy in the area of the intended site of the off-
shore wind farm using long-term wind speed correction (measure-correlative-predict; MCP)
based on the long-term Kori met mast wind data. For a hub height of 110 m, the Weibull
parameters (A: scale parameter and K: shape parameter) and the frequency and average
wind speed for each direction are summarized, where the main wind direction was NNE.
The Weibull distribution parameters were A = 7.14; K = 1.838; and V (mean) = 6.3 m/s.
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Figure 4. Wind rose diagram at Kori.

The windPRO software used in this paper is used by developers, planners, manufac-
turers, and consultants around the world to design wind power plant layouts and calculate
wind power plant production and environmental impact. The turbulence intensity is actu-
ally calculated based on the assumption of homogeneous terrain with a surface roughness
equal to the roughness length. Input to the calculation is also the turbulence measurement
height. The windPRO Software assumes that Ax = 2.5. If a terrain classification exceeded
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the limits in Table 1 (either the offshore or the open farmland), then the nearest tabular
value was chosen [15–17].

Table 1. Typical wake model parameters.

Terrain
Classification

Roughness
Class

Roughness
Length

Wake Decay
Constant

Ambient
Turbulence at 50 m

Ax = 1.8

Ambient
Turbulence at 50 m

Ax = 2.5

Additional Detailed
Description

Offshore water
areas 0.0 0.0002 0.040 0.06 0.08 Oceans and large lakes.

General water bodies
Mixed water and

land 0.5 0.0024 0.052 0.07 0.10 Mixed water and land

Very open
farmland 1.0 0.0300 0.063 0.10 0.13 No cross hedges.

Scattered buildings

Open farmland 1.5 0.0500 0.075 0.11 0.15

Some buildings.
Crossing hedges with
an 8 m height with a

distance of 1250 m apart

2.2. Wind Turbine Generator

There are two major wind turbine manufacturers in Korea: Doosan Heavy Industries
(DHI) and Construction and Hyosung Heavy Industries (HHI). This paper used a commer-
cial offshore wind turbine of DHI. DHI WinDS5500 is more efficient for the areas of strong
wind and is specialized in offshore. It was decided to be more accurate to use the wind
turbine power curve for the wind turbine power generation at a given wind velocity. The
power characteristics of the DHI WinDS5500 turbine are shown in Figure 5, and Table 2
lists the turbine specifications [18]. The range of incoming wind speed was varied between
the turbine cut-in speed and cut-out speed.
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Table 2. WindDS5500 system specification.

Item Value

Operational Data

Rated Power 5560 kW
Class IB

Cut-in Wind Speed 3.5 m/s
Rated Wind Speed 13 m/s

Cut-out Wind Speed 25 m/s
Rotor Diameter 140 m

Extreme Survival Wind Speed 70 m/s
Blade Length 68 m
Tower Hub Height Site-specific
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3. Wind Turbine Layout Automation
3.1. Constraints on Wind Farm Layout

The pilot production amount and size of the Kori offshore wind farm site were 60 MW
and 3 × 1 km, respectively, and the wind power generator applied to the turbine placements
was made by Doosan Heavy Industries and Construction Co., Ltd. in Korea. The main
constraints are summarized as follows:

(1) The assumed wind-power-producing area was placed within a 3 × 1 km square shape.
This assumption was useful for proving the ground research data’s effectiveness.

(2) We used actual measured wind conditions as wind.
(3) The turbine layout for industrial wind power areas did not consider additional

practical constraints such as dynamic load, shape of the site, and cost of the model.
(4) The wind turbines have identical hub heights and performance.

In this paper, windPRO V3.2, a commercial program developed by EMD International
A/S, was used for the calculation and design of the annual power generation of wind
farms [19]. Wind farm efficiency is a function of many variables, including atmospheric
conditions, terrain, turbine capacity, best turbine solution spacing, and electrical trans-
mission. Generally, it is advantageous in terms of energy production to place the plant
site at right angles to the main wind direction, but wind energy is proportional to the
cube of wind speed fluctuations and size, so systematic design procedures are required to
determine the shape and location of a plant.

Figure 6 is an example of the deployment of the Kori offshore wind farm turbines
using windPRO. The main variables affecting the wind turbine layout were decided to be
(a) separation from the shoreline, (b) the rotation angle of the windfarm, (c) the side angle
of the windfarm, and (d) the front and rear column distance of the wind turbine generator.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 7 of 17 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Basic pattern of wind turbine layout at the Kori offshore wind farm: (a) Coastline distance, (b) base angle, (c) 
side angle, and (d) column distance. 

3.2. Defining the Design Variable and Objective Function 
The purpose of the wind farm layout optimization problem considered in this paper 

was to maximize the annual energy production (AEP) for the predefined size and number 
of turbines of the Kori offshore wind farm and to minimize the wake loss. The issue of 
optimizing the layout of wind farms for design variables xi according to the two scenarios 
was formulated as follows. 

Find xi = [x1, x2, x3, x4, x5, x6, x7, x8, x9] 

Maximize AEP(xi) 

Minimize Wake Loss(xi) 

Subject to xLower ≤ xi ≤ xUpper   i = 1, 2,⋯, 9 

(1)

For Scenario 1, Figure 7 represents nine design variables for optimizing the wind 
farm layout. Coastline separation distance, rotation angle in the main wind direction only, 
lateral angle only, and separation distance in the front and rear columns of the turbine 
were selected. Table 3 presents the design variables and their respective levels. Table 4 
shows the experimental arrangement and its interpretation results using a Taguchi mixed 
orthogonal array regarding the nine design variables [20,21]. 

  

Figure 6. Basic pattern of wind turbine layout at the Kori offshore wind farm: (a) Coastline distance, (b) base angle, (c) side
angle, and (d) column distance.



J. Mar. Sci. Eng. 2021, 9, 148 7 of 16

The problem of turbine placement in actual wind farms in Korea is solved by carrying
out a turbine layout that is dependent on parameter research or designer judgment through
commercial software and the trial-and-error method. Technology accumulation and experi-
ence such as a layout algorithm suitable for a domestic power generation environment and
the optimization of the turbine layout of an automation concept necessary for farm design
are notably lacking compared to advanced countries.

3.2. Defining the Design Variable and Objective Function

The purpose of the wind farm layout optimization problem considered in this paper
was to maximize the annual energy production (AEP) for the predefined size and number
of turbines of the Kori offshore wind farm and to minimize the wake loss. The issue of
optimizing the layout of wind farms for design variables xi according to the two scenarios
was formulated as follows.

Find xi = [x1, x2, x3, x4, x5, x6, x7, x8, x9]

Maximize AEP(xi)

Minimize Wake Loss(xi)

Subject to xLower ≤ xi ≤ xUpper i = 1, 2,···, 9

(1)

For Scenario 1, Figure 7 represents nine design variables for optimizing the wind
farm layout. Coastline separation distance, rotation angle in the main wind direction only,
lateral angle only, and separation distance in the front and rear columns of the turbine were
selected. Table 3 presents the design variables and their respective levels. Table 4 shows the
experimental arrangement and its interpretation results using a Taguchi mixed orthogonal
array regarding the nine design variables [20,21].
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Table 3. Design variables and their levels.

Design Variable Description Unit Initial Level 1 Level 2 Level 3

x1 Coastline Distance m 1000 1000 1250 1500
x2 Farm Base Angle Degree 0 −10 0 10
x3 Farm Side Angle Degree 90 70 90 110
x4 1 × 1 Row Distance m 1000 556 778 1000
x5 1 × 2 Row Distance m 1000 556 778 1000
x6 1 × 3 Row Distance m 1000 556 778 1000
x7 1 × 4 Row Distance m 1000 556 778 1000
x8 1 × 5 Row Distance m 1000 556 778 1000
x9 1 × 6 Row Distance m 1000 556 778 1000

Table 4. Taguchi orthogonal array L54 matrix and results. AEP: annual energy production; CF: capacity factor.

No. x1 x2 x3 x4 x5 x6 x7 x8 x9 AEP (MWh/y) Wake Loss (%) CF (%)

1 1000 −10 70 556 556 556 556 556 556 167,518.2 9.3 25.8
2 1000 −10 70 556 556 556 778 778 778 168,502.4 8.8 25.9
...

...
...

54 1500 0 70 778 1000 556 1000 778 556 169,410.6 8.5 26.1

For Scenario 2, Figure 8 defines the 24 x and y coordinates of each turbine as design
variables for 12 turbines. In Scenario 2, the turbine placement design of experiment (DOE)
sampling implementation program, as a variable, was configured using Visual Studio 2013
C# in Windows 10. The program is run by entering the turbine interval, site size, number
of turbines, output file name, and sampling method in the command window. The results
of the program execution are checked in the .csv file that is displayed in Excel. The DOE
sampling source code for Scenario 2 is shown below.
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DOE (design of experiment) sampling source code for wind farm layout of Scenario 2

class Program
{

static void writeDataFile(string fileName, DATA[ ] writeData)
{

StreamWriter objWriter = new StreamWriter(fileName);
objWriter.Write(“index, x, y”);
//objWriter.WriteLine(“index, x, y”);
objWriter.WriteLine();
for (int i = 0; i < writeData.Length; i++)
{

objWriter.Write(writeData[i].index + “,”);
objWriter.Write(writeData[i].x + “,”);
objWriter.Write(writeData[i].y + “,”);
objWriter.WriteLine(“ “);

}
objWriter.Close();

}
static bool checkValue(DATA[ ] data, double x_val, double y_val, double criteria1)
{

bool check_value = true;
for (int i = 0; i < data.Length; i++)
{

double delta_x = data[i].x - x_val;
double delta_y = data[i].y - y_val;
//
double radius = Math.Sqrt(delta_x * delta_x + delta_y * delta_y);
if (radius < criteria1)
{

check_value = false;
}

}
//
return check_value;

}
static void Main(string[ ] args)
{

if (args.Length != 7)
{

Console.WriteLine(“Argument must be 6 length!!!”);
Console.WriteLine(“Current argument is {0}”, (int)args.Length-1);
// exit

Environment.Exit(-1);

The interval for the x and y coordinates of the two accumulated turbines were set to at
least four times the turbine diameter (4 D) and defined using the following expression [22].

N−1

∑
i = 1

N

∑
j = i+1

√(
xi − xj

)2
+
(
yi − yj

)2 ≤ 4D (2)

where xij and yij are the arrays storing the wind turbine row and column numbers for the
wind turbine x and y coordinates for the unrestricted coordinate method, respectively. The
sum of the distances of all pairs i and j is a design constraint to minimize the total distance
of the accumulated 12 turbine positions.
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3.3. Development of the Metamodel for Wind Turbine Layout

After calculating the amounts of power generated in accordance with Scenarios 1 and
2, the next step was to select an approximation function to use as a turbine-positioning
metamodel. We evaluated approximate quality and selected an optimum model for offshore
wind farm layout optimization using the polynomials, moving least squares (MLS), kriging
interpolation model, and feedforward network methods.

The evaluation of the metamodel quality was performed using the coefficient of
determination (CoD) and the coefficient of prognosis (CoP). The degree of agreement
between the DOE data and the estimate of the meta-model was measured by the CoP value
in Equation (3) for the use of additional test design points [23].

CoP =

[
E[YTestŶTest]
σYTestσŶTest

]2
=

[
∑N

k=1(y(k)−µy)(ŷ(k)−µy)
(N−1)σyσŷ

]2

0 ≤ CoP ≤ 1
(3)

where y is the test value, ŷ is the estimate of the metamodel, and µ and σ are the mean and
standard deviation, respectively, calculated from each of the N-many DOE data y(k).

The CoP is calculated in a similar manner as the more common CoD or R2 values,
except that it is calculated through a cross-validation process where the data are parti-
tioned into subsets that are each used only for the metamodel calculation or the CoP
calculation, not both. For this reason, it is preferred as a measure for how effective the
model is at predicting unknown data points, which is particularly valuable in this kind of
metamodel application.

Tables 5 and 6 show the accuracy results of each type of metamodel for wind farm
design for two scenarios. The metamodeling techniques considered within the scope of
this study included polynomials, MLS, kriging and feedforward network methods. The
feedforward network is a deep learning-based metamodel. It uses the Keras library with
TensorFlow as backend to create a metamodel by training a neural network [24–26]. The
accuracy of the metamodels was evaluated by the CoD and the CoP. Scenario 1 was found
to have a higher metamodel accuracy than Scenario 2. The metamodel for optimum turbine
layout design was the feedforward network with high predictive quality. For example,
the AEP had an approximate quality of about 97% and a prediction accuracy of about 96%
when compared to the windPRO analysis results at any design point.

Table 5. Accuracy of metamodeling techniques for Scenario 1. MLS: moving least squares; CoD: coefficient of determination;
CoP: coefficient of prognosis.

Metamodel Type Response No. Parameters No. Coefficients CoD CoP

Polynomial
(Box–Cox)

AEP 9 10 0.967 0.955
Wake Loss 9 19 0.932 0.889

Capacity Factor 9 10 0.944 0.924

MLS
(exponential weight)

AEP 6 7 0.864 0.839
Wake Loss 4 5 0.620 0.568

Capacity Factor 6 7 0.836 0.807

Kriging
(isotropic kernel)

AEP 6 1 0.942 0.853
Wake Loss 6 1 0.726 0.852

Capacity Factor 6 1 0.915 0.817

Feedforward network
AEP 9 9 0.996 0.979

Wake Loss 9 9 0.912 0.914
Capacity Factor 9 9 0.988 0.962
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Table 6. Accuracy of metamodeling techniques for Scenario 2.

Metamodel Type Turbine Number Response No. Parameters No. Coefficients CoD CoP

Kriging
(isotropic kernel) WTG1

AEP 6 1 0.804 0.431

Polynomial
(no mixed term) Wake Loss 2 5 0.657 0.587

Polynomial
(with mixed terms) WTG2

AEP 2 6 0.710 0.684

Polynomial
(with mixed terms) Wake Loss 2 6 0.827 0.812

Polynomial
(no mixed term) WTG3

AEP 3 7 0.703 0.674

Polynomial
(Box–Cox) Wake Loss 3 7 0.829 0.811

Polynomial
(no mixed term) WTG4

AEP 6 13 0.754 0.645

Polynomial
(no mixed term) Wake Loss 5 11 0.757 0.660

MLS
(exponential weight) WTG5

AEP 2 5 0.807 0.674

MLS
(exponential weight) Wake Loss 2 5 0.840 0.730

Kriging
(isotropic kernel) WTG6

AEP 2 1 0.792 0.618

Polynomial
(Box–Cox) Wake Loss 3 10 0.835 0.797

Kriging
(isotropic kernel) WTG7

AEP 4 1 0.851 0.685

Kriging
(isotropic kernel) Wake Loss 3 1 0.881 0.724

MLS
(exponential weight) WTG8

AEP 2 5 0.867 0.744

MLS
(exponential weight) Wake Loss 2 5 0.918 0.843

MLS
(exponential weight) WTG9

AEP 5 11 0.727 0.593

Kriging
(isotropic kernel) Wake Loss 4 1 0.966 0.809

Polynomial
(with mixed terms) WTG10

AEP 2 6 0.728 0.682

Polynomial
(with mixed terms) Wake Loss 2 6 0.729 0.682

Kriging
(isotropic kernel) WTG11

AEP 3 1 0.931 0.787

Kriging
(isotropic kernel) Wake Loss 3 1 0.957 0.887

Polynomial
(with mixed terms) WTG12

AEP 2 6 0.782 0.724

Polynomial
(with mixed terms) Wake Loss 2 6 0.889 0.861

ANOVA was used to quantitatively investigate the effects of the design variables on
the AEP and wake loss. The results of an ANOVA for the AEP and wake loss are shown
in Tables 7 and 8. Here, the ANOVA was evaluated via the orthogonal analysis of the
sensitivity of each variable to the response with a polynomial component. The primary
and secondary components in the table are the fractional orders of the design variables
and are expressed as F-values. In this paper, we used the F-value to calculate the p-value,
which was used to make a decision about the statistical significance of the test. The p-value
is a probability that measures the evidence against the null hypothesis. Lower probabilities
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provide stronger evidence against the null hypothesis. A sufficiently large F-value indicates
statistical significance. Therefore, the p-value is a very useful parameter that determines
the significance of a design variable.

Table 7. Analysis of variance for the AEP.

Design Variable Sum of Squares Degree of Freedom F-Value p-Value Percentage
Contribution (%)

x1
Linear 12,848,521 1 19.56 0 20.9

Quadratic 540,417 1 14.86 0 0.1

x2
Linear 69,342,815 1 20.82 0 15.9

Quadratic 666,685 1 12.75 0.001 0.2

x3
Linear 10,607,289 1 2.56 0.119 22.3

Quadratic 24,901 1 0.48 0.495 0.1

x4
Linear 5,394,393 1 1.45 0.237 13.6

Quadratic 12,175 1 0.32 0.573 3.6

x5
Linear 7,241,302 1 0.92 0.343 2.7

Quadratic 40,476 1 0.05 0.832 1.2

x6
Linear 3,735,458 1 0.21 0.650 0.5

Quadratic 109,201 1 0.09 0.772 5.7

x7
Linear 5,010,360 1 3.40 0.074 1.6

Quadratic 56,989 1 1.09 0.304 2.2

x8
Linear 6,143,541 1 5.34 0.027 0.3

Quadratic 106,251 1 2.03 0.163 2.4

x9
Linear 7,789,495 1 2.29 0.139 1.0

Quadratic 13,849 1 0.26 0.610 0.3
x2 x3 Interaction 261,685 1 5.00 0.032 5.3

Total 129,945,804 19 93.48 100

Table 8. Analysis of variance for wake loss.

Design Variable Sum of Squares Degree of Freedom F-Value p-Value Percentage
Contribution (%)

x1
Linear 0.00111 1 11.69 0.002 17.2

Quadratic 0.14815 1 11.99 0.001 1.1

x2
Linear 2.66778 1 6.72 0.014 17.6

Quadratic 0.14815 1 9.99 0.003 0.2

x3
Linear 0.11111 1 0.93 0.342 9.9

Quadratic 0.00926 1 0.62 0.435 1.6

x4
Linear 1.17361 1 3.46 0.071 14.7

Quadratic 0.00454 1 1.62 0.212 4.5

x5
Linear 1.73361 1 2.47 0.125 1.4

Quadratic 0.00009 1 0.72 0.402 1.5

x6
Linear 0.93444 1 0.12 0.726 0.9

Quadratic 0.06259 1 1.12 0.297 6.2

x7
Linear 1.17361 1 3.08 0.088 5.1

Quadratic 0.01565 1 1.05 0.312 2.4

x8
Linear 1.36111 1 4.19 0.049 2.4

Quadratic 0.02370 1 1.60 0.215 4.5

x9
Linear 2.05444 1 3.07 0.089 3.6

Quadratic 0.00926 1 0.62 0.435 0.9
x2 x3 Interaction 0.04481 1 3.02 0.091 4.4

Total 11.67704 19 68.08 100

The percentage contribution by each design variable in the total sum of the squared
deviations could be used to evaluate the importance of the design variables’ change on
the wind farm layout. The design variables that were found to have a dominant influence
on the AEP were the rotation of farm side angle (x3) and the distance between coastlines
(x1) in the main wind direction. The effect of the farm side angle (x3) for wake loss was
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relatively smaller than that of the AEP. The interaction of farm based angle (x2) and farm
side angle (x3) existed but was mild.

Equations (4)–(6) were used to indicate an approximate model of the AEP, wake loss,
and capacity factor for the wind farm layout by selecting a significant order of the design
variables and considering the interaction.

AEP =
148,220 + 17.376 × (x1) − 0.005758 × (x1)2 − 271.69 × (x2)-2.3571 × (x2)2

− 47.64 × (x3) + 0.1139 × (x3)2 + 2.737 × (x4) − 0.000852 × (x4)2 + 2.185 × (x5)
− 0.000320 × (x5)2 + 1.103 × (x6) + 0.000437 × (x6)2 + 3.856 × (x7) − 0.001398
× (x7)2 + 4.832 × (x8) − 0.001909 × (x8)2 + 3.168 × (x9) − 0.000689 × (x9)2

+ 1.4767 × (x2) × (x3)

(4)

Wake Loss =
16.7652 − 0.00446667 × (x1) + 0.0272222 × (x2) − 0.0152778 × (x3)
− 0.00142722 × (x4) − 0.00107619 × (x5) + 0.00155448 × (x6) − 0.00195342
× (x7) − 0.00227908 × (x8) − 0.00195308 × (x9) + 1.77778 × 106 × (x1

2)
+ 0.00111111 × (x2

2) + 6.94444 × 105 × (x3
2) + 3.94539 × 107 × (x4

2) + 5.63627
× 108 × (x5

2) − 1.46543 × 106 × (x6
2) + 7.32715 × 107 × (x7

2) + 9.01803 × 107

× (x8
2) + 5.63627 × 107 × (x9

2)

(5)

Capacity Factor =
24.4237 + 0.000355556 × (x1) − 0.0216667 × (x2) − 0.00375 × (x3)
+ 0.000262763 × (x4) + 0.000325325 × (x5) + 0.000237738 × (x6)
+ 0.000262763 × (x7) + 0.0003003 × (x8) + 0.000337838 × (x9)

(6)

Figure 9 compares the polynomial-based metamodel in Equations (4)–(6) and the
windPRO analysis result of the AEP, wake loss, and capacity factor, respectively. The
total errors between the metamodel and the windPRO analysis, i.e., R2 for the AEP, wake
loss, and capacity factor, were 98.7%, 95.9%, and 97.6%, respectively; the R2

adjusted values
were 97.9%, 93.5%, and 96.2%, respectively. Hence, the accuracies of the metamodels were
considered adequate for this paper. It can be seen that the approximation values agreed
well with the windPRO analysis result on the whole.

3.4. Design Support Excel Automation Program

Figure 10 shows the Excel metamodel solver for turbine layout calculation using
optiSLang and Python script. A metamodel solver (also called Metamodel of Optimal
Prognosis (MOP) Solver) and a CoP Matrix for optimal turbine placement were created for
use in Excel. The two main features were as follows.

CoP Matrix: The full model CoPs for every output parameter were shown in the
last column in Excel automation program display. The single CoP values of the input
parameters were shown line-by-line. When using the CoP matrix, the most important
input parameters could be determined and the forecast qualities of the identified surrogate
models could be evaluated.

MOP Solver: The MOP Solver was integrated in Excel to use metamodels for windPRO
calculations. Starting from a reduced number of simulations, a metamodel (polynomial or
feedforward network) of the original physical problem could be used to perform various
possible design configurations for a wind farm layout without computing any further
analyses. The metamodel results were stored in an optiSLang monitoring database file and
could be used for the MOP Solver calls to replace the original solver process.
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The AEP, wake loss, and utilization rates of 12 individual turbines and the entire wind
farm were obtained in real time in seconds without windPRO calculations for arbitrary
positions of wind turbines. In addition to the arrangement of turbines, wind farms also
need to define parameters for various design conditions (ground area, installation cost,
fatigue, etc.). Whenever the parameters for these design conditions are modified, design
re-evaluation is time-consuming and costly. Therefore, linking approximation models for
different design conditions on the basis of a proven metamodel for turbine deployment is
expected to provide insight to select and compromise on various turbine deployments and
design conditions.

4. Conclusions and Future Work

An Excel metamodel solver for turbine layout calculation using Python script was
created in this work. The AEP, wake loss, and utilization rates of each of the 12 individ-
ual turbines and an entire wind farm were obtained within seconds without windPRO
calculations for the turbines’ arbitrary design points. The automated turbine placement
calculations using metamodels helped to understand the AEP and wake loss for turbine
layout, thus allowing for cost models, turbine life assessments for digital twins, and other
extensions to this task. Additionally, using our approach, plant designers could save
significant money and time that could be spent calculating wind farm layouts. Since our
demonstration is a small area, the savings could actually be even greater if considering a
larger offshore site for a new project.
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