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Abstract: For the analysis and design of coastal and offshore structures, viscous loads represent
one of the most influential parameters that dominate their response. Very commonly, the potential
flow theory is used for identifying the excitation wave loads, while the viscous damping loads are
taken into consideration as distributed drag type loads and/or as linear and quadratic damping
loads approximated with the use of motion decay curves of the structure in specific degrees of
freedom. In the present paper, is developed and proposed a numerical analysis method for addressing
wave-structure interaction effects through a velocity-dependent viscous damping model. Results
derived by a computational fluid dynamics model are coupled with a model that uses the boundary
element method for the estimation of the viscous damping loads iteratively in every time-step of the
analysis. The computational fluid dynamics model solves the Navier–Stokes equations considering
incompressible flow, while the second model solves the modified Cummins Equation of motion of
the structure in the time domain. Details about the development of the coupling method and the
velocity-dependent viscous damping (VD-PQ) are presented. The coupling between the different
models is realized through a dynamic-link library. The proposed coupling method is applied for the
case of a wave energy converter. Results derived with the use of the developed numerical analysis
method are compared against experimental data and relevant numerical analysis predictions. The
importance of considering the instantaneous velocity of the structure in estimating the viscous
damping loads is demonstrated. The proposed numerical analysis method for estimating the viscous
damping loads provides good accuracy compared to experimental data and, at the same time, low
computational cost.

Keywords: wave-structure interaction; viscous damping loads; hydrodynamic analysis; VD-PQ
method; linear and quadratic damping; wave energy converters

1. Introduction

Renewables represent the largest source of energy and are set to penetrate the global
energy system more quickly than any fuel in human history; offshore wind turbines are
contributing significantly to this growth and is expecting to dominate into renewables
up to 2040 [1]. However, since the higher energy wind resource exists in deep-sea areas
(approximately deeper than 70 m), the development of floating wind turbines in deep seas
has been targeted. Different floating support platforms are possible for use with offshore
wind turbines [2,3]. On the other hand, the wave energy converters (WECs) technology
is in the pre-commercialization phase. Most of the types of the WECs are designed to
operate and produce power close to their resonance in different degrees of freedom since
large amplitudes in motions result in larger produced power [4]. In addition to marine
renewable energy structures, the offshore oil and gas structures are still being developing at
a growing rate. A huge development of coastal and offshore energy structures and systems
is expected for the years to come in different energy technologies. Analysis and design
methods covering the whole life-cycle range of coastal and offshore energy structures are
continuously redeveloped and reassessed. Analysis and design of coastal and offshore
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energy structures is an equally demanding and challenging task. Accuracy of the calcu-
lated response is required at a maximum level [5], while the computational cost is very
important, especially when we approach the design phase of a coastal and offshore energy
structure and analysis for many operational and extreme environmental conditions is
required to be performed. Unfortunately, the response calculation accuracy contradicts the
computational cost (Figure 1). Wave-structure interaction effects and resulting excitation
wave loads should be appropriately addressed with rationality but within the limitations
of computational capacity and cost. It will be ideal if numerical methods with low compu-
tational cost and larger fidelity can be used in the design phase of marine energy structures,
but with higher accuracy results.

Figure 1. Contradiction between response calculation accuracy and computational cost.

For the analysis and design of coastal and offshore energy structures, wave loads
and rest hydrodynamic coefficients are commonly calculated by using potential flow
theory [6]. Assumptions of inviscid fluid, incompressible and irrotational flow and small
amplitude oscillations are adopted with the potential theory that makes the physical
problem under study linear. The aforementioned assumptions are challenged by real sea
nonlinear hydrodynamic conditions (e.g., vortex shedding, resonance, viscous drag, flow
separation) that are not addressed by the potential flow theory. The calculated wave loads
and rest hydrodynamic coefficients are used as input from finite element model tools for
the solution of the equation of motion of a floating structure, and consequently, for its
analysis and design. This method is very frequently applied in marine structure designs
since low computational cost (capacity and time) is required. For the design of WECs,
potential flow theory has been used and reported in [7–10]. Usually and when the potential
flow theory is adopted for the analysis and design of WECs, in order to consider viscous
effects during analysis, distributed drag type loads are added [11–13].

Alternatively, viscous damping effects for a specific motion of a floating structure can
be simulated with linear and quadratic damping coefficients that can be calculated with
the use of free decay curves. The free decay curves can be generated by experimental tests
or by the use of a computational fluid dynamics (CFD) model. In [6] and [14], different
mathematical methods for calculating the linear and quadratic coefficients are proposed
with the use of decay curves. The PQ method [14] has been applied for the case of a
semi-submersible wind turbine [15], while the method proposed in [6] has been used for
a heaving type WEC [16], both with efficient results. It is noted that for both methods, a
constant value of the linear and quadratic coefficients is used during the analysis of the
floating structure in the time domain irrespectively of the velocity of the structure.

On the other hand, the modeling of the dynamics of the fluid flow with the use of CFD
methods provides high fidelity accuracy and calculation of the excitation wave loads but is
still considered to be relatively computationally expensive, especially when a big number
of analyses for different type of environmental loadings are required. CFD analysis is the
most powerful tool and a mainstream method that can be used for the analysis of different
types of WECs. Up to today, CFD methods and tools have been used successfully for the
analysis of different types of WECs, providing robust and reliable results. The required
extensions that should be used with the CFD toolbox OpenFOAM in order to simulate
efficiently oscillating wave surge converters are discussed in [17]. In [18], a CFD based
numerical wave tank model has been developed for the validation study of the 1:5 scale
Wavestar point-absorber WEC by including the power-take-off the system in the CFD
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model. The required process of coupling a high-fidelity power-take-off model with a CFD-
based numerical wave tank for performing a robust wave-to-wire simulation is discussed
in [19]. The validation of the numerical model of the 1:20 scale Wavestar WEC considering
different test cases of increasing complexity is presented in [20]. In addition, in [21], a CFD-
based model is coupled with different control strategy systems (active and passive) in order
to examine the performance of a three-dimensional oscillating wave surge WEC. Many
critical steps have been accomplished, but further research work should be made towards
the modeling of different components of WECs with CFD-based models [22,23]. Viscous
damping loads are very important for the analysis of WECs and should be accounted in
the relevant analysis.

For the analysis and design of WECs, viscous loads may be accounted in wave-
structure interaction problems as constant loads when the potential flow theory is adopted.
In the present paper, a process for accounting viscous damping loads during the analysis
of WECs in the time domain is developed and presented. The velocity-dependent viscous
damping model (VD-PQ) for wave-structure interaction analysis is proposed. The model is
realized through a Dynamic-link library that is coupling the different numerical models.
The importance of considering the instantaneous velocity of the structure in estimating
the viscous damping loads for every time-step of the analysis is demonstrated through
comparisons of RAOs of motions of a WEC in two degrees of freedom against experimental
data. VD-PQ is generic, provides good accuracy compared to experimental data and, at the
same time, low computational cost, especially when dealing with specific types of analysis
(e.g., full long-term analysis).

2. Description of the Numerical Analysis Method

The numerical analysis method used in the present paper is generic and can be used
for any possible design of coastal and offshore floating structures. The required information
that is needed as input in order for the method to be used is a decay curve of the structure
for a specific degree of freedom calculated either with the use of a CFD model or with the
use of relevant experimental data. CFD or experiments are considered equally reliable and
accurate, and their possible uncertainties are out of the scope of the present paper. In the
present paper, the decay curves of two motions of the WEC are calculated with the use of a
CFD model.

The numerical analysis method of the present paper consists of: (a) a 3D numerical
model based on potential theory (PTM) capable for the calculation of linear hydrodynamic
coefficients (added mass, radiation damping, excitation loads) in the frequency domain,
(b) a 3D computational fluid dynamics model (CFDM) capable for the calculation of
decay curves of the oscillation of the floating structure in specific degrees of freedom,
(c) a numerical analysis process (NAP) capable for the calculation of velocity-dependent
linear and quadratic viscous damping coefficients in every time-step of the solution of the
equation of motion and (d) a 3D model (FEM) capable for the solution of the equation
of motion of the structure in the time domain and the estimation of the response of all
components of the structure and wave field, as well. PTM and CFDM are participating
statically during the numerical analysis since specific outputs derived with their use are
utilized as input by the FEM and NAP. FEM and NAP are directly coupled, and in every
time-step of the analysis, NAP calculates and provides the velocity-dependent viscous
damping values that are used for the solution of the equation of motion of the structure. In
Figure 2, an outline and coupling interconnections between the different models utilized
are presented.
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Figure 2. An outline and interconnections of the proposed numerical analysis method.

A description of the different models used in the present paper is presented below.
Initially, a PTM is used in order the linear hydrodynamic coefficients of the floating structure
under study to be calculated. Those hydrodynamic coefficients are the added mass, radia-
tion damping and excitation wave loads. All the hydrodynamic coefficients are calculated
for a specific grid of the wet surface panels of the floating structure and after an appropriate
grid size study. Furthermore, the hydrostatic stiffness is calculated. The flow is assumed
irrotational and incompressible, and the fluid inviscid while its motion can be described
with the use of the velocity potential. The velocity potential, ϕ, is described as below:

ϕ = ϕD + iω
6

∑
j=1
ξjϕj = ϕ0 +ϕS + iω

6

∑
j=1
ξjϕj (1)

where ϕ0 is the potential of the incident waves:

φ0 =
igA
ω

cosh[k(d + z)]
cosh(kd)

e−ik(Xcosβ+Ysinβ) (2)

where ϕD is the diffraction potential, ϕs is the scattered potential, ϕj, j = 1, . . . , 6, is the
radiation potential of each rigid body motion associated with the waves that are radiated
due to the forced motions of the floating structure, ω is the wave frequency, g is the
gravitational acceleration and k is the wavenumber. The boundary value problem is solved
based on the three-dimensional panel method utilizing Green’s theorem, and appropriate
boundary conditions are used on the free surface, on the sea bottom and on the floating
body. Moreover, the radiation condition for the outgoing waves is adopted [24,25]. With
regard to the hydrodynamic coefficients, namely, added mass, Aij, i, j = 1, . . . , 6, radiation
damping, Bij, i, j = 1, . . . , 6, and wave excitation loads, Xi, i = 1, . . . , 6, those are calculated
after the solution of the first-order boundary value problem as below:

Aij −
i
ω

Bij= ρ
x

SB

niϕjdS i, j = 1, . . . , 6 (3)

Xi = −iωρ
x

SB

niϕDds i = 1, . . . , 6 (4)

where ni, i = 1, . . . , 6, is the normal component of the i-th rigid body mode on the mean body
wetted surface, SB, and ρ is the water density. As far as the coefficients of the hydrostatic
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stiffness matrix, Cij, i, j = 1, . . . , 6, those are calculated with the use of the following equation:

Cij = ρg
x

SB

nj(wi + dDi)ds (5)

where d is the draft of the floating structure and Di is the divergence of the motion displacement.
As far as the computational fluids dynamic model, the CFDM is developed in order to

solve the Navier–Stokes equations and estimate realistic viscous damping loads in specific
degrees of freedom of the structure. By applying an initial displacement on the floating
structure in a specific degree of freedom and letting the structure oscillate, the decay curve
of this motion is calculated with the use of the CFDM. Incompressible viscous flow is
considered by using the following set of equations:

ρ

(
∂V
∂t

+∇ · (VV)

)
= −∇p+∇ · µ

(
∇V +∇VT

)
+ρg + F (6)

∇ ·V= 0 (7)

where V is the velocity of the fluid, p is the pressure, µ is the viscosity, ρ is the water
density, g is the gravitational acceleration, and F represents the force applied due to the
presence of the structure in the computational domain. The Navier–Stokes equations are
solved in the whole numerical domain on a structured grid by second-order finite volume
discretization techniques in space and time. Capturing the free surface of the waves in
the two-phase flow problem under study is modeled through the level set method, while
water–structure interaction is modeled with the use of the immersed boundary method. The
immersed boundary method has been recently adopted in offshore and ocean engineering
problems [26–31] for the robust and efficient numerical modeling of physical problems
related to the interaction between two fluids and moving rigid structures, unstructured
grids, high-density flows, WECs operating in multiple degrees of freedom and water
entry/exit problems. In [32–34], the slip boundary condition is imposed on all sides of the
numerical domain, and no penetration boundary condition is imposed on the solid–fluid
interface. It should be noted that the effect of the modeling details of the CFD model is out
of the scope of the present paper. As explained previously, the CFD model should be able
to provide the decay curves of the floating structure in specific degrees of freedom with a
good level of accuracy.

As far as the third model, the FEM model is developed in order to solve the equation
of motion of the floating structure and, consequently, calculate all relevant responses (e.g.,
motions, the tension of mooring lines). With the use of Newton’s second law, the equation
of motion of the floating body in the time-domain is as below [35]:

(M + α(∞))
..
x(t)+B1

.
x + B2f

( .
x
)
+

t∫
0

.
x h(t− τ)dτ+Cx(t)= X(t) (8)

where M is the structural mass, α is the added mass that corresponds to infinite frequency,
B1 and B2 are the linear and quadratic damping coefficients of the hydrodynamic damping,
C is the summation of hydrostatic stiffness and mooring lines stiffness, and X is the
excitation wave load. It is noted that the hydrodynamic damping can be reproduced
accurately with linear and quadratic damping terms. Moreover, x(t),

.
x(t),

..
x(t) are the

displacement, velocity and acceleration of any translational or rotational degree of freedom
of the structure and h(t-τ) is the retardation function. The calculation of the coefficients
of the matrix of the retardation function and the added mass in infinite frequency is not
straightforward due to the semi-infinite integral and also due to the possibility of instability
for the numerical calculation of the coefficients.

With the use of the CFDM, decay curves are generated for specific degrees of freedom
of the floating structure (Figure 3). It is noted that the decay curve in Figure 3 is an example
of a possible curve; the cycles of oscillations and rest characteristics depend upon the
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wave-structure interaction of a specific structure. With the use of the data of the decay
curve and by following the methods proposed in [14] (PQ method) or in [6] linear, B1,
and quadratic, B2, damping coefficients can be calculated and inserted in the equation of
motion of the floating body in time-domain (Equation (8)). Based on the PQ method [14],
successive positive or negative amplitudes of the decay curve in the whole decay time are
considered in order to determine the relative decrement of the decay curve. The B1 and B2
coefficients are calculated with the following equations:

B1= 2p
M
Tn

(9)

B2=
3
8

qM (10)

where p and q are coefficients calculated with the use of data of the decay curve, M is
the total mass of the floater (e.g., structural mass and added mass in infinite frequency),
and Tn is the natural frequency of the floater for the examined degree of freedom that we
want to calculate the B1 and B2 coefficients. For the estimation of the p and q coefficients,
points with coordinates [(Φi+1 + Φi)× 0.5, (Φi −Φi+1)/(Φi+1 + Φi)× 0.5] are calculated
and plotted where Φ is the peak amplitude (positive or negative) of the decay curve. A line
can be fitted through those points to calculate the intercept (p value) with the vertical axis
and the slope (q value) of the line. Again, it is stated that decay curves can be generated
either with the use of a CFD model or with relevant experimental tests; both types of data
can be used for the estimation of the B1 and B2 coefficients.

Figure 3. A decay curve of a floating structure in a specific degree of freedom.

If we look carefully at Figure 3 (or any possible decay curve), we can see that at the
beginning of the decay curve, the velocity of the structure is large and afterward becomes
very small as the number of oscillations increases. For the case where the damping force
has a large dependence on the Reynolds number or on the Keulegan–Carpenter number
and for the case that the floating structure is not lightly damped, the velocity changes
significantly for each subsequent oscillation. For those conditions, the use of constant B1
and B2 coefficients may be conservative and not representative for the total decay time since
B1 and B2 are calculated considering the whole decay time irrespectively of the velocity of
the structure.

In order to take into account the velocity of the floating structure and its effect on the
viscous damping, a velocity-dependent viscous damping model (VD-PQ) is developed
and used. Depending on the velocity of the floater, different pairs of B1 and B2 can be used
during the analysis (Equation (8)).
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Based on the results of a decay curve, different velocity values,
.
xk,decay, of the floater

can be calculated as below:
.
xk,decay =

|Φi−Φi+1|
|Ti−Ti+1|

(11)

where Φ is the amplitude of the ith peak of the motion (positive or negative) of the decay
curve, T is the relevant time that the ith peak occurs, and k is the total number of positive
or negative peaks of the decay curve. Based on all the calculated values of

.
xk,decay the

decay curve for a specific degree of freedom, the mean velocity value,
.
xM

k,decay, is calculated
as below:

.
xM

k,decay =
1
k

k

∑
k=1

.
xk,decay (12)

It should be stressed that the
.
xk,decay and

.
xM

k,decay values are calculated with the use of the
decay curve data and remain the same during the analysis.

By comparing the velocity of the structure
.
xt with the

.
xM

k,decay value, we can define two

different velocity regions, VR1 and VR2 (VR1 with
.
xt <

.
xM

k,decay and VR2 with
.
xt >

.
xM

k,decay).
It should be stressed that the

.
xt value is calculated with the use of Equation (8). For the

two different regions, we can calculate with Equations (9) and (10) two different pairs
of linear, BVR1

1 and BVR2
1 , and quadratic, BVR1

2 and BVR2
2 , damping coefficients since two

different fitted lines exist in each region. The FEM solver in every time-step of the analysis
(Equation (8)) will use one of the two pairs of the linear and quadratic damping coefficients.
Depending on the velocity,

.
xt, of the floater, the pair of B1 and B2 that corresponds to

the correct velocity range, VR1 or VR2, is used in the analysis made by the FEM model.
The selection of the correct pair of the damping coefficients is made iteratively in every
time-step of the analysis.

At the beginning of the analysis, the pair BVR1
1 and BVR1

2 is assigned as the linear
and quadratic damping coefficients. Afterward (this is made for every time-step, t, of the
analysis), an iteration is made as below in order the correct linear and quadratic damping
coefficients pair to be used in every time-step.

For a specific time-step, t, the linear and quadratic damping coefficients from the
previous time-step, t-1, are randomly assigned. With the use of Equation (8) and after
appropriate numerical integration techniques, the velocity of the floating structure

.
xt,it0(t)

is calculated, and its value is compared with the mean velocity value,
.
xM

k,decay, as calculated
by the decay curve (Equation (12)), as below:

.
xt,it0(t) <

.
xM

k,decay (13)

If Equation (13) holds true, then the pair BVR1
1 and BVR1

2 is assigned as the linear and
quadratic damping coefficients pair, and Equation (8) is solved again, and the new calcu-
lated velocity of the floating structure

.
xt,it1(t) is compared with the

.
xM

k,decay as below:

.
xt,it1(t) <

.
xM

k,decay (14)

If Equation (14) holds true, then the x(t),
.
x(t),

..
x(t) of the floater are calculated with Equation

(8), and the analysis moves to the next time-step, t + 1. If Equation (13) does not hold true,
then the pair BVR2

1 and BVR2
2 is assigned as the linear and quadratic damping coefficients,

Equation (8) is solved, and the new calculated velocity of the floater
.
xt,it2(t) is compared

with the
.
xM

k,decay as below:
.
xt,it1(t) >

.
xM

k,decay (15)

If Equation (15) holds true, then x(t),
.
x(t),

..
x(t) are calculated with Equation (8) and the

analysis moves to the next time-step, t + 1. The iterative process that is performed at every
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time-step of the analysis (Equations (8)–(15)) is realized through a Dynamic-link library
(DLL) and is coupled with the FEM model for solving Equation (8). In this way, a velocity-
dependent viscous damping model (VD-PQ) for wave-structure interaction analysis was
developed and implemented.

3. Results and Discussion

The numerical analysis method that was developed in the present paper was applied
for a heaving type WEC. The WEC consists of two rigid bodies connected with two
vertical tendons. The first body is a fully submerged horizontal cylinder with domed
ends and rectangular-shaped surface piercing columns, while the second one is a fully
submerged mass [36,37]. A system of mooring lines is used to keep the WEC in place by
providing horizontal and heave stiffness. The predictions of the numerical analysis method
were compared with relevant experimental data performed at the Kelvin Hydrodynamics
Laboratory in the University of Strathclyde, Glasgow, UK [36]. It is noted that the numerical
analysis method was developed for the dimensions and properties of the test model without
any upscale. In Figure 4, the examined WEC in the present paper during experiments is
presented. Images of the different numerical models, namely, the PTM, CFDM and FEM,
that were developed and used for the purposes of the present paper are presented in
Figure 5. It is noted that the details and rest characteristics of the components of WEC
as presented in Table 1 and [36]. For both the PTM and CFDM models grid convergence
study was performed for selecting the final grid mesh; more details can be found in [16].
The FEM model is a multi-body model consisting of two rigid bodies, cylinder and mass,
which are connected with vertical tendons. The second rigid body is a mass and is modeled
as a point mass. Hydrodynamic effects of the second rigid body are ignored, as well as
the hydrodynamic interaction between the two rigid bodies. The two bodies are free to
undergo all possible motions (three translational and three rotational).

Figure 4. The examined WEC during experiments.
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(1)–(5)), (b) panel discretization of the wet surface of the PTM model, (c) CFDM for decay curves calculation (Equations
(6)–(7)) and (d) 3D model of the WEC (Equation (8)).

Table 1. Design characteristics of the examined wave energy converters (WEC).

Displacement 0.027 m3 Length of Each Vertical Mooring Line 1.3 m

Structural mass 8.9 kg Tension of each vertical mooring line 88.35 N

Weight of clump mass −19.75 kg Heave stiffness of mooring lines 36.30 N/m

Cylinder diameter 0.2 m Surge stiffness of mooring lines 129.1 N/m

Submergence of centerline of cylinder 0.2 m Rectangular dimensions of piercing columns 0.112× 0.15 mxm

With the use of the CFDM, the decay curves of the heave and surge motions of the
first rigid body are calculated and presented in Figure 6. The in-house CFD tool developed
by [32,33] was used for the estimation of the decay curves in surge and heave. The heave
natural frequency of the WEC predicted by the CFDM is Theave = 2.28 sec, while the surge
natural period is Tsurge = 3.87 sec. Based on the decay curves, the mean velocity value

.
xM

k
is 12.62 mm/sec and 3.41 mm/sec for heave and surge, respectively. For every motion
and based on the peak (positive and negative) values, Φ, of the decay curves, points with
coordinates [(Φi+1 + Φi)× 0.5, (Φi −Φi+1)/(Φi+1 + Φi)× 0.5] are calculated and plotted
for the two different velocity ranges compared to the mean velocity value

.
xM

k . Two lines
are fitted through those points that correspond to the two different velocity regions VR1
and VR2. The p and q values for the two lines for every motion are calculated with the PQ
method and are presented in Table 2. The p and q values are used for the calculation of the
linear and quadratic damping coefficients and consequently are used for the solution of
the equation of motion of the WEC (Equation (8)).
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Figure 6. Decay curves for surge and heave motions of rigid body 1 with the use of the computational
fluid dynamics model (CFDM).

Table 2. p and q damping coefficients for the examined motions and two different velocity regions VR1 and VR2.

Motion. Velocity Range Linear Damping Coefficient, p Quadratic Damping Coefficient, q

Surge VR1 0.2074 0.7118

VR2 0.1018 0.7122

Heave
VR1 0.5005 0.0059

VR2 0.4593 0.0359

With the use of the VD-PQ damping coefficients for both velocity ranges, analysis is
performed for regular waves with different wave periods and heights in order the RAOs of
the heave and surge motions to be calculated. Three different wave heights were examined
equally to 12 mm, 25 mm and 75 mm. Similarly, analysis is performed for the case where
only the radiation damping calculated by potential theory is used. The numerical analysis
predictions from the two different models are compared against experimental data as
reported in [36]. In Figures 7 and 8, comparisons of heave and surge of the first rigid body
of the examined WEC between experimental data and numerical predictions are presented.
The predictions are calculated with the use of the FEM model with the developed iterative
viscous damping VD-PQ and with the use of radiation damping. For both damping models,
the results follow the trends of the relevant experimental data with differences. For heave
motion and irrespectively of the examined wave height, the use of the VD-PQ model results
in RAOs values closer to the experimental data compared to the case that the radiation
damping is only used during the analysis. This is more intense for examined wave periods
in the wave period range close to the natural period in heave, Theave = 2.28 sec, where
the model that uses only the radiation damping completely fails to predict the response.
VD-PQ results to very efficient results for predicting the response of the WEC especially
close to the resonance of the body. On average, the relative difference between numerical
predictions and experimental data is 8.41% and 43.25% for VD-PQ and radiation potential
models, respectively. Especially for examined wave periods close to the heave resonance
of WEC, the model which uses only radiation damping results to unrealistic predictions
that are up to four times larger than the experimental data values. Similar observations can
be found as far as the RAOs of the surge motion. The use of the VD-PQ model results in a
better estimation of the responses in all the examined wave periods and especially close to
the resonance of the WEC in the surge (Tsurge = 3.87 sec). The relative difference for surge
motion is 6.85% and 20.72% for VD-PQ and radiation potential models, respectively. Based
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on the results, it is clear that a correction of the viscous damping model should take place
when studying WECs since WECs operate close to theirs.
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4. Conclusions

In the present paper, the boundary element method is coupled with results derived
by a computational fluid dynamics model for the estimation and update of the viscous
damping loads in every time-step of the analysis. A coupling numerical analysis method
for addressing wave-structure interaction effects through a velocity-dependent viscous
damping model (VD-PQ) in the time domain is developed and proposed. The coupling
between the different models is realized through a Dynamic-link library. The numerical
analysis method is applied for the case of a heaving type WEC, and comparisons are made
against experimental data and relevant numerical analysis predictions. The basic findings
of the research are highlighted below:

A method for accounting velocity-dependent viscous damping loads for every time-
step of the analysis of a WEC in a boundary element model is developed and applied.

VD-PQ model provides very good accuracy compared to experimental data and, at
the same time, low computational cost, especially for specific types of analysis (e.g., full
long-term analysis).

The consideration of instantaneous velocity of the structure in estimating the viscous
damping loads for every time-step of the solution of the equation of motion is important
and should be accounted especially when the wave period is close to the natural period of
motions of the structure.

Viscous damping loads should be appropriately addressed and accounted when
dealing with the analysis and design of WECs.

The use of radiation damping, without any possible correction, for the analysis of
WECs, may result to over-predictions in motions and consequently in the produced power
of the WEC.

The combination and/or coupling of different numerical analysis models may result
to increase of response calculation accuracy and decrease in computational cost.

The VD-PQ viscous damping model that is proposed in the present paper can be
appropriately further developed (e.g., in the elastic degrees of freedom) for the case of
WECs that hydroelasticity is important and dominates their response since the coupling
of the structural deformations with CFD-based models is computationally expensive.
Moreover, the proposed numerical analysis model will be further developed and assessed
for the case of floating structures that are free to move in all six degrees of freedom and for
the case of floating wind turbines. The aforementioned issues are prioritized as future work.
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