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Abstract: So far, very few studies have focused on the quantification of the environmental impacts
of a wave energy converter. The current study presents a preliminary Life Cycle Assessment (LCA)
of the MegaRoller wave energy converter, aiming to contribute to decision making regarding the
least carbon- and energy-intensive design choices. The LCA encompasses all life cycle stages from
“cradle-to-grave” for the wave energy converter, including the panel, foundation, PTO and mooring
system, considering its deployment in Peniche, Portugal. Background data was mainly sourced from
the manufacturer whereas foreground data was sourced from the Ecoinvent database (v.3.4). The
resulting impact assessment of the MegaRoller is aligned with all previous studies in concluding that
the main environmental impacts are due to materials use and manufacture, and mainly due to high
amounts of material used, particularly steel. The scenario analysis showed that a reduction of the
environmental impacts in the final design of the MegaRoller wave energy converter could potentially
lie in reducing the quantity of steel by studying alternatives for its replacement. Results are generally
comparable with earlier studies for ocean technologies and are very low when compared with other
power generating technologies.

Keywords: life cycle assessment; cumulative energy demand; GHG emissions; environmental impacts;
SimaPro software; wave energy

1. Introduction

Global warming due to emissions of greenhouse gases (GHG) is increasing the need to
move towards a low carbon economy. In parallel, energy planners need to keep satisfying
a growing electricity demand which is expected to grow by 80% by 2040 [1]. Research &
Development in renewable energy sources (RES) and its commercialization and deployment
in the electrical grid is one of the partial solutions to the problems of carbon dependency in
electricity production and climate change. Although wave power is seen as a considerable
opportunity for clean renewable energy supply, to date, most of the wave energy technology
developed still requires further research and demonstration tests to prove its reliability. As
the Marine Renewable Energy (MRE) sector develops, it is important to ensure that the
technology proves to be a sustainable alternative [2].

As a form of renewable energy, wave energy sources are low-impact and contribute to
a more sustainable energy supply. However, it is not environmentally friendly per se [3].
since energy is consumed and pollutants are emitted during the construction, operation
and decommissioning of the energy converters. Holistic analyses with an energy trilemma
perspective—economics, security of supply and environmental impacts—have been widely
employed to assess potential benefits. However, to date, most studies provide only a
qualitative analysis of the potential environmental impacts. There is little qualitative
evidence to support decision makers. In particular, questions over whether these new
technologies will deliver a net reduction in GHG emissions lead to the need for the use of a
life cycle based approach, in order to assess all the emissions and energy consumption of a
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device [4]. The life cycle assessment (LCA) methodology is an established technique for the
identification and evaluation of the inputs, outputs and potential environmental impacts
of products and services [5]. It has been widely recognized as an efficient methodology to
assess clean energy technologies’ environmental performance over their life cycle.

The development of the LCA on wave energy technologies is critical to overcome
the current limitations and seize several advantages in the sector by identifying the most
critical stages of the life cycle of a system. Besides being useful for technology developers
when deciding on the best design option for a certain device, it provides quantitative
evidence to support decision making amongst potential investors, energy and government
authorities before investing or commissioning a project [6]. Furthermore, its quantitative
nature fosters the comparison of environmental impacts associated with alternative energy
generation systems [7].

Knowledge of the potential direct and indirect environmental impacts generated by
marine renewable energy projects due to materials, processes and energy required is still
scarce. Based on this, the application of the LCA methodology produces metrics and indica-
tors such as embodied carbon and energy and energy and carbon payback times accounting
for the whole life cycle of the project. To date, LCA methodology has been performed on
very few wave and tidal energy converters [4,6,8–10] with a focus on the assessment of
GHG emissions as the most significant contributor to climate change and hence adopted as
an indicator to evaluate the environmental performance of renewable energies.

The current study presents a preliminary LCA of the MegaRoller wave energy con-
verter, aiming to support decision making regarding the least carbon and energy intensive
design choices. It will help identifying the most important life cycle stages of the device
regarding respective environmental impacts and a scenario analysis will support the iden-
tification of alternatives with the least impact considering all life cycle stages. Results
will then be compared with other marine renewable technology and traditional means
of electricity generation with the aim of identifying the benefits of using wave energy in
comparison with other technologies. In the broader picture, this study contributes to a
recent but rising number of existing LCA studies on the wave energy sector.

Life Cycle Assessment Methodology

Life Cycle Assessment (LCA) has been recognized as an efficient tool to quantitatively
assess the cumulative environmental impacts of a product or service throughout its life
cycle by encompassing all materials, energy, emissions and waste products associated with
all stages from raw material extractions to disposal and end-of-life. This methodology is
regulated by the International Standards Organization (ISO): ISO 14040:2006 [5] and ISO
14044:2006 [11], which suggest the principles, framework, requirements and guidelines for
conducting this type of assessment. It is a comprehensive stepwise method which consists
of four interrelated stages: goal and scope definition; life cycle inventory (LCI) analysis;
life cycle impact assessment (LCIA) and interpretation (Figure 1).
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2. Methods
2.1. System Description—The MegaRoller Device

The MegaRoller concept is based on the existing design implemented and commercial-
ized as WaveRoller, an oscillating wave surge converter (OWSC). This class of wave power
technology uses bottom-hinged plates oscillating in pitch following the surge movement of
the water particles in the nearshore zone (10–25 m water depth) and is designed to absorb
wave energy through horizontal motion of the prime mover. The wave surge moves the
device’s panel which is installed at approximately 8–20 m of depth, approximately 400 m
from shore. The device is anchored to the seabed and depending on tidal conditions it is
mostly or fully submerged. A set of key parameters established within the MegaRoller
project for the preliminary device design and relevant for the present LCA analysis is
summarized in Table 1.

Table 1. Key parameters of MegaRoller.

Parameter Value

Number of Wave Energy Converters 1
Location Peniche, Portugal

WEC nominal capacity 1000 kW
WEC average power 320 kW

PTO efficiency 88%
Power efficiency (wave to wire) 25%

Operation lifetime 20 years
Annual Energy Production (per device) 2.1–3.2 GWh

Distance from shore 400 m

The wave energy converted into motion by the panel is transmitted through a driv-
etrain to the power take-off (PTO). The PTO is the core component that converts wave-
induced oscillations from mechanical energy to electricity. It consists of two-cylinder units
and one standardized power unit. As the panel moves back-and-forth, the PTO’s hydraulic
pistons pump hydraulic fluids inside a closed hydraulic circuit inside a hermetic structure.
These cylinders are composed of single action pistons, one cylinder acting when the panel
moves towards the coast, and another when the movement has the opposite direction.
These high-pressure fluids are fed into a hydraulic motor that drives an electricity generator.
The cylinders are sealed in a watertight compartment and are not exposed to the marine
environment. The cylinders use the mechanical power applied to the pistons to compress
the hydraulic fluid and store it in the accumulators. The accumulators help to attenuate
the variation of the power produced, caused by the irregular profile of the incident waves.
The energy stored in the accumulators is transferred through pressurized hydraulic flow to
a hydraulic motor, followed by an electric generator that converts it into electrical energy.
The electrical output is then connected to the electric grid via a subsea cable [12].

The MegaRoller project aims at developing the PTO of the first MW-level OWSC
generation, with a nominal capacity of 1 MW. The focus of the project is to design, build and
validate a generic high performance, cost-efficient and reliable PTO that can be integrated
into OWSC designs and therefore globally deployed in the energy sector. Figure 2 shows
the main components of the MegaRoller device excluding the mooring system.
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2.2. Goal and Scope

The goal of the LCA is to assess the environmental impacts of the early design phase
of the MegaRoller device. The functional unit (FU) used is 1 kWh of electricity delivered to
the Portuguese electricity network by a 1 MW wave energy device with a reference flow
of 1 MegaRoller device, as recommended by The International EPD System [13]. A single
device is estimated to produce an average of 2.65 GWh/year over its 20-year lifespan.
The LCA was conducted according to the International Reference Life Cycle Data (ILCD)
System Handbook for LCA [14].

2.3. System Boundaries

The system boundary encompasses all life cycle stages from “cradle-to-grave” as
recommended by [15], taking into consideration the production of each component part,
their assembly and transport to the installation site, deployment and O&M, as well as the
process of decommissioning and disposal, as illustrated in Figure 3. The PTO manufacture
comprises electrical subcomponents (transformer, frequency converter and housing) which
are located in the device’s central unit and hydraulic subcomponents (motor-generator
packages, accumulators, hydraulic cylinders and housing) which are to be located in the
side units. Apart from the PTO itself, the analysis also covers the panel, foundation and
mooring system. The subsea cable connection to the grid as well as the substation and all
parts of the onshore electricity network are outside the scope of this analysis. The central
and side units’ assembly is followed by the PTO subassembly. This is followed by the
final MegaRoller assembly of the PTO with the panel, foundation and mooring system and
deployment. The O&M stage follows throughout the project lifetime after which the device
is towed to shore and decommissioned. All life cycle stages are detailed as part of the Life
Cycle Inventory (Section 2.5).

Since this is a descriptive study aiming at understanding the impact of a product and
comparing it with other products with the same functional unit, the modelling principle
for the Life Cycle Inventory (LCI) followed an attributional LCA approach [14].

The LCA will reflect a wave power device to be built in the near future. Regarding
the geographical boundaries, the device will be placed off the coast of Portugal, in Praia
da Almagreira, Peniche. Manufacture is assumed to take place in Finland and Portugal,
and the final assembly is assumed to take place in a fabrication yard in Estaleiros Navais
de Peniche (ENP) followed by the device’s installation. All data regarding extraction of
raw materials, semi-finished products, and components reflect the geographical region
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where the processes are assumed to take place. To allow comparison with other marine
renewable technology and traditional means of electricity generation, carbon dioxide
equivalent emissions per produced electricity (g CO2 eq/kWh) was the main unit defined
for the study. This measure accounts for all six Kyoto GHG emissions: carbon dioxide
(CO2), methane (CH4), nitrous oxide (N2O), Hydrofluorocarbons (HFC’s), Perfluorocarbons
(PFCs) and Sulphur Hexafluoride (SF6).
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2.4. Tools and Impact Assessment Methods

SimaPro v8.5.2 was the LCA software used to model the system, with LCI data
sourced from the Ecoinvent database (version 3.4). SimaPro is a tool used to collect, analyze
and monitor the sustainability performance data of products and services. The software
can be used for several applications, e.g., sustainability reporting, carbon and water foot
printing, product design, generating environmental product declarations and determining
key performance indicators. Ecoinvent is the LCI database containing over 16.000 unique
datasets covering a wide array of products, services and processes, from building materials
to food and from resource extraction to waste management.

The Life Cycle Impact Assessment (LCIA) was carried out with the ReCiPe 2016 Midpoint
method [16], one of the most widely used midpoint impact assessment methods. Although
all impact categories were analyzed, climate change was the main target since the results
are easier to communicate due to the current political focus on the field and because it was
proved adequate for the identification overall hotspots [17]. In addition, an energy input
assessment was carried out using Cumulative Energy Demand (CED) method to calculate the
total direct and indirect amount of energy consumed throughout the life cycle [18].
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2.5. Life Cycle Inventory
2.5.1. Data Collection

Foreground or primary data were collected from the project design team, material
experts and engineers. All background or secondary data were ultimately derived from
the Ecoinvent database. Since the Ecoinvent database does not contain all inventory
information, assumptions and approximations (explained in this section) were made
for some manufacture processes according to the energy consumed using data sourced
elsewhere and new materials were created based on previous studies. Most data in this
database reflects average European conditions. One exception is electricity production, for
which data is provided by country. This means that, for manufacturing processes assumed
to take place e.g., in Finland, the electricity mix used was changed to Finish electricity
mix. For processes taking place in an unknown (European or global) location, the average
European (code RER) or global (code GLO) electricity mix was used.

Given the expected small contribution of some electronic and electrical systems to the
overall embodied carbon and considering their complexity, a cut-off criterion of 1% was
applied throughout the life cycle to exclude minor impacts and help set boundaries for the
total system inventory [19].

2.5.2. Raw Materials and Manufacture

The life cycle begins with the raw material extraction and processing followed by the
manufacture phase which comprises the molding and shaping of the materials to form
the device sub-components. MegaRoller is largely constructed from steel and cement.
Steel is cut and welded to shape before being painted with corrosion-resistant paint. A
mass-based analysis was carried out for the device with a breakdown of the materials used
in Figures 4 and 5 with data provided by the manufacturer. Over 70% of the total mass of
the MegaRoller is concrete.
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2.5.3. Foundation

The foundation is of a gravitational type and made of reinforced concrete, weighing
approximately 3215 tons, according to the technology developer data. The structure is
manufactured in ENP, through processes of molding, steel reinforcing, placing and curing
of concrete. Since Ecoinvent doesn’t include processes of manufacture deemed appropriate,
the study considered only an estimate of the energy consumption for concrete molding [20].

2.5.4. Panel

It is estimated by the manufacturer that the panel will be a 26 × 10 m structure and
4.7 m thick at its thickest point. It will have an approximate mass of 358 tons consisting of
a welded steel structure and it is assumed to be manufactured in Finland. Panel castings
are assumed to be manufactured in Turkey. Final subassembly, including assembly with
panel bearings, is assumed to take place in ENP. The steel plates go through processes of
welding, machining and hot rolling until desired shape after which the panel is assumed to
be painted with a corrosion-resistant paint. The process of painting was created based on
assumptions made by [21]. The energy consumption for the machining processes was based
on [22] assuming an average consumption of 8 MJ/kg of processed steel and 10 MJ/kg
for casting iron. Calculations for the welding process were undergone assuming a need of
4.35 kg of weld steel per meter [23].

2.5.5. Power Take-off (PTO)

The PTO is structured in two main systems: hydraulic system and electrical system.
All the hydraulic components of the PTO are contained in the two side units - hydraulic
cylinders, accumulators (approximately 350 in total), motors. The electrical central unit
(ECU) contains only electrical components: transformer and frequency converter. The
central unit is connected to the side units (hulls) via electric cables. Since the hydraulic
components of the ECU are all contained in one hull, each entire hydraulic module can
be manufactured, assembled, tested and delivered ready for deployment. This limits
the potential environmental impact by decreasing the amount of assembly that needs
to occur on the barge. Excepting the component housing and hydraulic cylinders (the
latter go through manufacture processes of welding, machining, casting and hot rolling),
the electrical and hydraulic system components are prefabricated and therefore their
manufacture processes were excluded from the analysis. The components’ housing is
painted with the same type of paint as the panel but, since no data was given for the
dimensions, the process of painting was excluded from the analysis.

2.5.6. Mooring System

The mooring system is assumed to comprise 4 sets of chromium steel chains connected
to a concrete anchor. The set will attach to the device to ensure that it remains where it
will be installed, given the highly dynamic and energetic characteristics of this coastal
area. Since two anchors are already on site, the analysis only considers the manufacture
of 4 chains and 2 anchors. Each chain is assumed to have 130 m of length and weigh
approximately 28.5 tons [24]. Welding (for chains) and heavy machining (for anchors) were
the processes considered. Chains are assumed to be manufactured through arc welding [23],
whose heating source is the use of an electric arc that is placed between the tip of a covered
electrode and the desired surface of the metal being weld [25].

2.5.7. Raw Materials and Manufacture

The assembly involves the transport of each subcomponent to the fabrication yard for
final device assembly before the installation (Table 2). Foundation was not included since it
is manufactured in the harbor. The ‘tkm’ is the functional unit for transport and represents
the transport of 1000 kg goods over 1 km. Estimates for distances were made based on the
location between ENP and the main port in each case. The PTO’s subassembly is assumed
to take place in Finland with the final device assembly taking place in ENP (Portugal).



J. Mar. Sci. Eng. 2021, 9, 206 8 of 17

Table 2. Transportation requirements during final device assembly by cargo ship to Estaleiros Navais
de Peniche (ENP).

Component Weight (ton) Manufacturing/
Source Location

Distance to
ENP (km)

Payload
Distance (km)

Mooring system 124.3 China 19,820 24,632,230
Panel 289 Finland 3635.5 105,066

Panel bearings 68 UK 1354 92,072
Power take-off 293.2 Finland 3635.5 1,065,786

A 60-tonne overhead crane and fork-lift trucks are needed for final assembly. A 60-tonne
overhead crane was assumed to work for 4.7 h consuming 18 kWh from the Portuguese grid.
A typical fork-lift truck is estimated to consume 2.55 L/hr [26]. After final assembly, specialist
sea vessels are required to install moorings, prepare the seabed, tow and install the device.
The device is towed for about 16 km from the harbor to the installation site. The overall
estimated duration of the installation stage is 12 h. According to the manufacturer data, two
tugboats will be required to tow the device for 4 h and to stand-by during deployment for
another 8 h which accounts for a total diesel consumption of 8800 L.

2.5.8. Operation and Maintenance

Maintenance activities will be essentially onsite by activating the buoyancy system,
requiring an inspection vessel for small interventions (Table 3). It was assumed 1.3 days
of sea vessel operations per year and a fuel consumption of 500 L/day (21). According
to previous studies on the WaveRoller, major maintenance is assumed to be undergone
every 5 years and these are expected to take place in the ENP. The system is lifted back
to the surface by pumping air into the chambers. Then the MegaRoller is towed to the
harbor. This results in an estimation of 3 days of operations, including tow to shore and
redeployment, over the device’s lifetime. It is assumed that no major part must be replaced
during the 20-year lifetime which may underestimate impacts from this stage.

Table 3. Sea vessel operations over device’s lifetime.

Sea Vessel Fuel Consumption (L/day) Total Days of Operation

Installation
Tugboat 8800 1

Maintenance
Tugboat 1490 3

Inspection vessel 500 26
Decommissioning

Tugboat 8800 1

2.5.9. Decommissioning and Disposal

Decommissioning the MegaRoller will require the use of sea vessels to unlatch the
technology, tow the device to the harbor of Peniche and recover some of the mooring
system. Type of sea vessels and fuel consumption at this stage were assumed to be the
same as in during the installation of the device as shown in Table 3. The disposal scenario
of the MegaRoller device is expected to follow two different End-of-Life (EoL) routes based
on literature—recycling and landfilling (Table 4). Following similar assumptions made
in other studies for the technology, metal components are assumed to be transported to
a recycling center and the concrete blocks re crushed and re-used. Following a similar
methodology adopted in a previous study [17], recycling leads to materials recovery, thus
avoiding respective production from virgin sources.
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Table 4. Assumptions for End-of-Life (EoL) scenarios.

Material Type of Disposal and Ratios

Low alloyed and Stainless Steel Recycle 85% Waste treatment 15%
Concrete Recycle 85%, Waste treatment 15%
Cast Iron Recycle 70%, Waste treatment 30%

3. Results
3.1. Life Cycle Impact Assessment (LCIA)

The ReCiPe and CED impact assessment methods were applied to characterize the
results of the LCIA, and the environmental impacts are summarized in Table 5. The
global warming potential (GWP) was found to be 33.8 g CO2 eq/kWh and the CED to be
432 kJ/kWh. These values rise to 75.1 g CO2 eq/kWh and 1010 kJ/kWh if the disposal
scenario is excluded, highlighting the crucial role this uncertain stage plays in the overall life
cycle. Since ocean energy is being broadly considered as a technology that will contribute
to a low-carbon energy system, the analysis of ReCiPe method results focuses on the global
warming potential (GWP). Nevertheless, an overview of all 18 impacts is presented.

Table 5. Results of LCIA and CED calculation with acronyms.

Impact Category

Global Warming Potential (GWP) 33.8 g CO2 eq/kWh
Stratospheric ozone depletion (SOD) 11.5 µg CFC-11/kWh

Ionizing radiation (IR) 1.6 Bq Co-60 eq/kWh
Ozone formation, Human health (OF Hum) 115.0 mg NOx eq/kWh
Fine particulate matter formation (FPMF) 6.4 mg PM2.5 eq/kWh

Ozone formation, Terrestrial ecosystems (OF Eco) 118.0 mg NOx eq/kWh
Terrestrial acidification (TA) −90.7 mg SO2 eq/kWh

Freshwater eutrophication (F Eut) 4.0 mg P eq/kWh
Marine Eutrophication (M Eut) 1.1 mg N eq/kWh
Terrestrial ecotoxicity (T Etox) 236.0 g 1,4-DCB /kWh
Freshwater ecotoxicity (F Etox) 2.2 g 1,4-DCB /kWh

Marine ecotoxicity (M Etox) 2.8 g 1,4-DCB /kWh
Human carcinogenic toxicity (HT car) −6.6 g 1,4-DCB /kWh

Human non-carcinogenic toxicity (HT noncar) 22.3 g 1,4-DCB /kWh
Land use (LU) 10.9 cm2a crop eq/kWh

Mineral resource scarcity (MRS) 1.1 g CU eq/kWh
Fossil resource scarcity (FRS) 7.0 g oil eq/kWh

Water Consumption (WC) 310.0 cm3/kWh
Cumulative Energy Demand (CED) 432.0 kJ/kWh

Figure 6 illustrates the contribution of the life cycle stages to each impact category.
The manufacture of each individual subcomponent is displayed separately. Transport of
the subcomponents to the harbor for final assembly as well as the transport of the device
to the installation site are included in the Assembly & Installation. For almost all impact
categories, it can be observed that manufacture contributes the most environmental impacts,
particularly the foundation. Freshwater and marine eutrophication and mineral resource
scarcity impacts are linked mainly to the manufacture of steel. Energy consumption
(due to electricity generation) has effects on categories such as human toxicity and global
warming potential.
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(relative contribution).

The results for the impact category GWP are shown in Figure 7 in g CO2 eq/kWh.
Impacts related to Assembly & Installation and O&M (1.88% and 1.89%, respectively)
have a small impact on the overall results whereas the manufacture stage has the biggest
impact of all lice cycle stages. Transport contributes 5.3% to the overall GWP results. The
manufacture of the foundation accounts for 42% (approx. 32 g CO2 eq/kWh) of the impacts
during this stage (before applying credits for recycling). These impacts are largely due to
the fact that cement production is very energy-intensive, and thus contributes substantial
GHG emissions. The manufacture of the PTO, mooring system and panel account for
18.6%, 14.8% and 21.5%, respectively.
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Figure 7. Global Warming Potential (GWP).

The CED is calculated for five classes of primary energy carriers: fossil, nuclear,
hydro, biomass, and others (wind, solar and geothermal). Differences for different types
of cumulative energy demands are mainly due to the consideration of location-specific
electricity mixes. A breakdown of embodied energy by component is showed in Figure 8.
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3.2. Energy and Carbon Payback Times

Energy and Carbon payback time (EPT and CPT, respectively) are important indicators
for evaluating the degree of acceptability of renewable resources. CPT measures the period
(months) required for the MegaRoller to offset the carbon emissions generated throughout
the device’s life cycle process and is calculated according to Equation (1).

CO2eq payback (CPT) =
Total CO2eq emissions throughout li f e cycle (gCO2eq)

Annual CO2eq avoided
(1)

The Energy payback time (EPT) represents the amount of time that the system needs
to run for in order to produce the amount of energy that was consumed throughout its
lifetime. It is calculated according to Equation (2),

Energy payback time (EPT) =
Li f e Cycle Embodiede Enrgy

Energy produced (EP)year
(2)

where Life Cycle Embodied Energy represents the primary energy demand throughout all
stages considered in the LCA, and Energy produced (EP) per year represents the annual
energy production. EPB values depend mainly on annual energy production, device life
and type of materials required.

The carbon avoided by the device will depend on what generation is displaced and
is time and location dependent. However, it is accepted practice to assume that the
electricity offset by the device will be the average of the Portuguese grid, with a CO2
intensity of 0.295 kg CO2/kWh [27]. The GWP and CED were found in Section 4 to be
33.8 g CO2 eq/kWh and 432 kJ/kWh, respectively. These values correspond to a CPT of
2.3 years and an EPT of 2.4 years.

3.3. Alternative Scenario Analysis

A range of scenarios was drawn (Table 6) to model potential improvements in
MegaRoller’s life cycle environmental impact. Results illustrated in Figure 9 are indicative
and their interpretation needs further study regarding the sensitivity of each parameter
variation. Although concrete makes about 90% of the overall foundation’s weight, rein-
forcing steel is responsible for 54.3% of the GWP in the manufacture of the foundation. As
such, a scenario was drawn for the substitution of steel reinforced concrete foundation
by a glass fiber reinforced concrete foundation. Considering this substitution happens
on a percentage of 0.5% of the concrete weight [28], a potential reduction of 24% in GHG
emissions can be observed. Such a significative reduction should be considered when
studying this and other alternative materials for this component. Considering the large
contribution that stainless steel makes to environmental impacts, the whole amount of
this material needed for the MegaRoller manufacture was substituted by low alloyed steel,
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resulting in a decrease of 28% in the overall carbon intensity. By assuming the manufacture
of the whole device near the installation site, a potential reduction of 5% in carbon intensity
can be observed, which might indicate that transport of components is not significant in
the overall global warming potential impacts. An alternative scenario was drawn for waste
treatment, by varying the recycling ratio for steel. A decrease of 35% in the recycling ratio
for steel resulted in an increase of almost 24% in the carbon emissions. This variation
shows the importance of this parameter and that special attention should be given for
the EoL of the MegaRoller device. Further attention should also be given to the recycling
ratio of concrete. Increasing the device’s lifetime means increasing the average production
of the device over its lifetime from 53 GWh to 79.5 GWh. This alternative results in a
carbon intensity of 22.4 g CO2 eq/kWh, which means a decrease of 33% compared to the
baseline scenario.

Table 6. Parameters for scenario analysis.

Assumptions Baseline Scenario Alternative Scenarios

Alternative material choice for foundation reinforcement Steel reinforcement Glass fiber reinforcement
Alternative material for stainless steel Stainless steel Low alloyed steel

Manufacture Locations UK, Finland, Turkey, Italy Portugal (close to installation site)
Waste Scenario for Steel Recycling rate 85% Recycling rate 50%

Higher lifetime reflecting an increased durability 20 years 30 years
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MegaRoller demands a high input of materials per installed capacity (3987 kg/kW)
when compared with other renewable energy technologies, e.g., 330 to 360 kg/kW for
photovoltaic systems [29] and 340 to 770 kg/kW for wind turbines [30]. Therefore, since
steel is one of the largest contributors to the overall GWP impacts, another scenario
considered was the use of lightweight materials such as the use of aluminum. This would
involve greater specific environmental impacts per kg of material but also a possible
reduction in impacts due to the lower amount of material used. However, there was a lot
of uncertainty around this scenario e.g. the extent to which the structural weight could be
reduced, so the results were not considered to be robust enough; this might be studied in
future technologies.

4. Discussion
4.1. Comparison with Other Studies of Ocean Energy

Overall, results show that most of the CO2 emissions generated by these type of
devices come from the manufacture of structural components such as foundations and
mooring (particularly materials such as stainless steel, concrete and cast iron). Further-
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more, the environmental impacts resulting from assembly, installation, operation and
maintenance are not significant.

LCA analysis has been applied to other MRE converters. The study results are
consistent with Uihlein’s results on GWP for a similar device [4] as part of a very complete
study on LCA of ocean energy technologies which analyses the GWP for 15 tidal and wave
technologies. It concludes that total GHG emissions range from 15 g CO2 eq/kWh for
enclosed-tip devices to 105 g CO2 eq/kWh for point absorber and rotating mass devices,
with an average of 53 ± 29 g CO2 eq/kWh for all technologies. However, the PTO was
the subcomponent that accounted for more GHG emissions for the OWSC device assessed
in this study, whereas the foundation is the biggest contributor in the case of MegaRoller
during manufacture. Like MegaRoller though, the proportions of O&M and Assembly &
Installation are negligible for all device types.

Table 7 shows the studies used for comparison of MegaRoller results with other MRE
projects. Dahlsten [19] conducted a LCA of a WEC and concluded that most of the impacts
are related to the material used besides installation and maintenance, and decommissioning
cannot be disregarded. Offshore wind converters are the least carbon intensive technolo-
gies (also compared with other means of electricity generation as observed in Section 4.2).
Thomson et al. [21] revealed that Pelamis WEC emits 35 g CO2 eq/kWh and has a CED of
493 kJ/kWh from the results of an LCA study, the closest values from MegaRoller results
among the reviewed literature. Walker and Howell [31] used LCA to assess environmen-
tal burdens of Oyster wave energy converter and SeaGen tidal turbine, comparatively.
Despite both being oscillating body systems with hydraulic PTOs and largely made of
steel, differences in results between Pelamis and Oyster might be due to differences in
technology, but could also be due to variations in analysis methodology and assumptions.
The carbon footprint of Wave Dragon, a floating overtopping device, is comparatively
lower, which might be because it is predominantly made of concrete. Douglas et al. [6]
assessed the carbon and energy intensity of SeaGen, a marine current turbine, having
identified manufacture as the main contributor to the results, and suggested a couple of
improvements through the use of alternative materials with greater recycling potential.
Ref [32] identified the cradle to gate phase as the most intensive phase for all parameters.
Some studies conclude that recycling in the disposal stage represents a significant reduction
in the GHG emissions [6,33].

Table 7. Carbon footprint and embodied energy estimates for a selection of MRE production studies.

Device Carbon Intensity
(g CO2 eq/kWh) Energy Intensity (kJ/kWh) Reference

Wave energy converters
MegaRoller 33.8 432.0

Oyster 25.0 236.0 [31]
Pelamis 35.0 493.0 [21]

Wave Dragon 13.0 - [34]
Wavestar 47.0 536.0 [32]

Point absorber 39.0–126.0 - [19]
BRD WEC 89.0 387.0 [35]

OBREC WEC 37.0 - [36]
Tidal energy converters

SeaGen 15.0 214.0 [6]
Deep Green Tidal 10.7 140.0 [37]

Open Hydro 19.6 - [33]
ScotRenewables 23.8 - [33]
Tidal turbines 8.6 149.0 [38]

Offshore wind converters
Offshore wind turbine 11.0 - [17]
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4.2. Comparison with Other Sources of Electricity Generation

The MegaRoller aims to be a low-carbon alternative to conventional power generation,
but it is expected that it will have lower environmental impacts across all categories, in
particular eutrophication, depletion of fossil fuels, toxic effects on humans and ecosystems
and ozone formation. Figure 10 summarizes the environmental impacts caused by the
production of 1 kWh of electricity by a range of other means of electricity generation from
the Ecoinvent database. Values are shown as relative to the highest score in each impact
category. MegaRoller has significantly lower impacts than coal and gas-fired generation
(combined cycle gas turbine or CCGT) in GWP, ozone formation and depletion, fossil
resource scarcity and CED. However, nuclear and CCGT have a better performance in a
range of other categories such as Land use or Ecotoxicity. MegaRoller was found to have
the highest impacts in mineral resource scarcity – this category uses quantity of minerals
and fossil fuels used and converts this LCA data to a ratio of quantity of resource used
versus quantity of resource left in the reserve. Regarding GWP, onshore and offshore wind
and nuclear perform better than MegaRoller. This comparison shows the importance of
assessing more than the GWP and energy consumption for renewable technologies.
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Figure 10. Comparison of impacts of MegaRoller with other forms of energy production, pre-sented relative to the highest
score in each category.

It can also be seen that other renewable technologies such as onshore and offshore
wind perform better than MegaRoller in terms of GHG emissions. Offshore wind was in
fact found to be the technology with the lowest GHG emissions for electricity and heat
generation from renewable energy technologies (RETs) according to Amponsah et al. [39],
with a carbon intensity of 5.3–13.0 g CO2 eq/kWh. Some studies come to energy and carbon
intensity levels that are in range with those of MegaRoller, namely 35 to 50 g CO2 eq/kWh
for wind and solar PV respectively [40], 20–80 g CO2 eq/kWh for concentrated solar
power [41] and 40–80 g CO2 eq/kWh for geothermal [42]. However, it is very important to
remember that these are much more established technologies than MRE. As demonstrated,
almost all the energy consumed throughout the device’s life cycle derives from fossil fuels,
which is a direct effect of the current fossil-based global economy. This will potentially
change as global infrastructure and technology evolves.

5. Conclusions

This preliminary LCA was intended to choose the least carbon intensive design option
for the WEC and opt for the most efficient processes throughout the device’s life cycle. The
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resulting carbon intensity of 33.8 g CO2 eq/kWh and energy intensity of 432 kJ/kWh are
generally comparable with earlier studies for wave and tidal technologies and are very
low when compared to other power generating technologies. Results are aligned with all
previous studies on MRE technologies in concluding the main environmental impacts are
due to materials use and manufacture, while Assembly & Installation and O&M do not
show significant impacts. High GWP and CED levels during manufacture are due to high
amounts of material used, particularly steel. Results are based on a high rate of recycling
of steel and concrete being achieved. Significant differences in relative contributions of
each life cycle stage across all 18 impact categories shows the importance of assessing
more categories than the GWP and energy consumption for renewable technologies. Both
preliminary energy and carbon payback times were found to be slightly below 2.5 years
emphasizing once again the capability of renewable energy sources of paying back the
energy and GHG emissions embedded in their life cycle.

The scenario analysis showed that there are alternative process and design choices
that may improve the energy consumption and GHG emissions throughout the life cycle.
While some scenarios showed a modest influence, others such as varying recycling rates
and alternative material for stainless steel resulted in significant variations in the overall
results. This is indicative of the importance of an in-depth analysis of the sensitivity of
several parameters throughout the life cycle.

EoL is currently excluded from operational boundaries of the majority of MRE de-
velopments and its inclusion in eco-design initiatives is challenged by uncertainties on a
temporal, technological and business level such as uncertainties regarding recycling ratios.
This report corroborated previous studies by proving the importance of the EoL scenario to
the overall environmental performance and highlighted that a significative positive effect
can be achieved if virgin materials can be replaced by recycled materials. Therefore, further
efforts should be undertaken to better understand how to properly model this stage.

An opportunity to reduce environmental impacts could lie with the substitution
of reinforcing steel in the manufacture of the foundation (responsible for 42% of the
overall GHG emissions) by another material such as glass fiber. The improvement of the
MegaRoller mooring system should also be an area of further research, which is currently
being undertaken by AW Energy by replacing stainless-steel chains with steel wire.

In order to understand the realistic impacts of wave energy devices at a commercial
scale, this study should also be carried out considering not one MegaRoller device but
an array of devices, which would certainly reduce environmental impacts per kWh of
electricity produced since sharing some components (e.g. foundation systems) will certainly
reduce the material intensity.
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