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Abstract: To achieve rapid and flexible vertical profile exploration of deep-sea hybrid structures, a
multi-joint autonomous underwater vehicle (MJ-AUV) with orthogonal joints was designed. This
paper focuses on the 3-dimensional (3D) modeling and attitude control of the designed vehicle.
Considering the situation of gravity and buoyancy imbalance, a 3D model of the MJ-AUV was
established according to Newton’s second law and torque balance principle. And then the numerical
simulation was carried out to verify the credibility of the model. To solve the problems that the pitch
and yaw attitude of the MJ-AUV are coupled and the disturbance is unknown, a linear quadratic
regulator (LQR) decoupling control method based on a linear extended state observer (LESO) was
proposed. The system was decoupled into pitch and yaw subsystems, treated the internal forces and
external disturbances of each subsystem as total disturbances, and estimated the total disturbances
with LESO. The control law was divided into two parts. The first part was the total disturbance
compensator, while the second part was the linear state feedback controller. The simulation results
show that the overshoot of the controlled system in the dynamic process is nearly 0 rad, reaching the
design value very smoothly. Moreover, when the controlled system is in a stable state, the control
precision is within 0.005%.

Keywords: multi-joint autonomous underwater vehicle (MJ-AUV); 3-dimensional modeling; LQR; LESO

1. Introduction

Ocean exploration technology is one of the difficult problems in frontier science and
engineering in the ocean field. The deep-sea region hybrid is an important factor in
maintaining global energy balance and driving deep ocean circulation. Therefore, it is
of great strategic significance to use advanced technology to explore the deep-sea region
hybrid structures [1]. The complex structure of the seabed, as well as unknown extreme
fluid systems such as cold springs and hydrothermal fluids, make the work of exploration
more difficult.

Most of the existing deep-sea submersibles struggle to meet the capabilities necessary
to explore deep-sea hybrid structures rapidly. The glider [2,3] achieves pose control by
adjusting the remaining buoyancy and the position of the mass center, but its motion trajec-
tory is jagged and single, speed is slow, and maneuverability is poor. Most autonomous
underwater vehicles (AUVs) [4] are rigid single-body structures and use tail rudder and
attitude adjustment systems to control the movement direction. In order to further im-
prove the ability of flexible steering of the AUV to allow rapid observation of the deep-sea
3-dimensional (3D) environment, a multi-joint AUV (MJ-AUV) was designed. It consists
of three parts in series: diversion cabin, navigation/control cabin, and propulsion cabin,
each of which is connected by a pair of orthogonal joints. In addition, its tail is equipped
with a propeller. To adjust the yaw attitude and pitch attitude of the body, the MJ-AUV can
change the hydrodynamic appearance of the vehicle by rotating the joints.
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The MJ-AUV is a multi-rigid-body rootless system with high nonlinear and strong
coupling characteristics, the kinematic and dynamic modeling of which is the basis of
studying its motion behavior characteristics and control problems. Xia et al. [5] established
a horizontal dynamic model of a fish-like robot based on Kane’s method. Aiming at the
structure of the underwater gliding snake-like robot, Tang et al. [6] built a gliding and
serpentine swimming model based on the momentum theorem, moment of momentum
theorem, and recursive Newton–Euler method. Based on the principle of force and moment
balance, Kelasidi et al. [7–9] built a horizontal plane and slope dynamics model of the
underwater snake robot in the inertial system. In addition, the Euler–Lagrange method [10]
and the Schiehlen method [11] have also been used to deal with multi-rigid body modeling.

The controller design is the key technology to enable underwater vehicles to complete
a deep-sea exploration mission. Professor Pettersen’s team from the University of Norway
has made many contributions in the field of underwater multi-joint robot control, such
as planar path tracking in the presence of ocean currents [12] and integral line-of-sight
guidance for path following control [13]. Fischer et al. [14] propose an error controller
using continuous robust integration to compensate for the uncertainty of the AUV model
and have carried out experiments under controlled and open-water environments to verify
the effectiveness of the controller. Zhao et al. [15] propose an adaptive plus disturbance
observer (DOB) controller for depth and attitude control of the AUV. The controller consists
of DOB as an inner-loop compensator and a non-regressor based adaptive controller as
an outer-loop controller. In addition, the experiments verify that the controller has strong
robustness. Wu et al. [16], Wang et al. [17] and Kang et al. [18] make improvements on
the basis of the adaptive controller, which is verified in the field of motion control of
AUVs. Zhang et al. [19] present a sliding mode variable structure control algorithm, and
simulation results show that this algorithm has advantages of high control accuracy and
strong robustness. Rodriguez et al. [20] combine sliding mode control with adaptive control
and propose a sliding mode adaptive controller, which is compared with non-adaptive
control and PD control to verify the effectiveness of the controller. References [21–25]
have made improvements based on the active disturbance rejection controller, combining
sliding mode controller, self-searching optimal algorithm, or other methods, to improve the
accuracy and anti-interference performance of the AUV motion control. In addition to the
above methods, in recent years, scholars are also studying the application of reinforcement
learning [26,27] and artificial intelligence algorithms [28] in the field of AUV control.

MJ-AUV is a complex system with high nonlinear, strong coupling, large time delay,
and unknown disturbance, and establishing an accurate mathematical model for the MJ-
AUV is difficult. In the course of pitching and yaw attitude control, the MJ-AUV belongs
to a typical multi-input and multi-output system, with the variation of two joint angles as
the input and the pitch and yaw angles of the body as the output, making the controller
design more difficult. Hence, the main contributions of this paper are as follows:

(1) A novel AUV with orthogonal joints was proposed and designed for rapid and flexible
vertical profile exploration of deep-sea hybrid structures, and the 3D motion model
of the designed AUV was established according to Newton’s second law and the
principle of moment balance.

(2) To reduce the coupling degree of the controller and improve the accuracy of attitude
control, a linear quadratic regulation (LQR) decoupling control method based on a
linear extended state observer (LESO) [29] was proposed.

The remainder of this paper is organized as follows. Section 2 establishes the 3D
motion model of the MJ-AUV. The LQR decoupling control method based on LESO is
presented in Section 3. In Section 4, the pitch and yaw control of the MJ-AUV is simulated
on the MATLAB/SIMULINK platform, followed by the conclusion in Section 5.

2. Modelling

This section introduces the structure design, kinematics, and dynamics analysis of the
MJ-AUV and presents the 3D motion model.
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2.1. Structure of the MJ-AUV

As shown in Figure 1, from front to back, the MJ-AUV is mainly composed of the
diversion cabin, navigation/control cabin, and propulsion cabin, which are connected by
two orthogonal (pitch and yaw degrees of freedom) joints. A propeller and a fixed rudder
are installed at the tail to enhance the body stability. The sensors such as hydrophones and
thermohaline depth meter can be mounted according to specific task requirements.

Figure 1. Reference frames of the MJ-AUV.

The technical challenge of the MJ-AUV is the joint design. The rotation of the orthogo-
nal joint requires two motors to cooperate with each other to drive the bevel gears, so as to
realize the pitch and yaw motion of the joint. The specific working process is as follows.

(1) As shown in Figure 2, when the two motors rotate in the opposite direction, the gear
set is driven to rotate and the pitch motion of the joint can be realized.

Figure 2. Orthogonal joint pitching motion.
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(2) As shown in Figure 3, when the two motors rotate in the same direction, the yaw
motion of the joint can be realized.

Figure 3. Orthogonal joint yaw motion.

2.2. Assumptions

The MJ-AUV is a complex system with multi-rigid body configuration, high nonlin-
earity, and strong coupling, which brings great challenges to the modeling work. In order
to further reduce the modeling difficulty without losing the generality and accuracy of the
model, the following assumptions are proposed:

(1) The vehicle is an ideal multi-rigid body structure, all the forces acting on it can be
equivalent to a combined force.

(2) The influence of the rotation of the earth is ignored, that is, the inertial frame is not
affected by the force generated by the rotation of the earth.

(3) The attitude adjustment of the orthogonal joint is realized by two motors rotating
in the same direction or opposite direction. And the joint angle is a linear mapping
relationship with the motor rotation angle, so the joint angle can be directly used as
the input of the system.

(4) There is a nonlinear mapping relationship between thrust and speed. In practical
engineering, the thrust output of the thruster can be adjusted by the inner loop control.
It is assumed that the inner loop control effect is good, and the thrust is defined as the
direct input of the system.

(5) The vehicle works in the deep-sea environment, where the movement speed is rela-
tively slow and the joints do not swing frequently. Therefore, it is assumed that the
hydrodynamic coefficient of each cabin is only related to its own shape and size.

(6) The center of buoyancy in each cabin coincides with the centroid, and the center of
gravity is directly below the centroid.

(7) It is assumed that the density of seawater at different depths does not change much
and is approximately constant.

2.3. Coordinate System Definition

Figure 1 defines the inertial frame OEXEYEZE, body (navigation/control cabin) frame
OBXBYBZB, diversion cabin frame OB1XB1YB1ZB1, and propulsion cabin frame OB3XB3YB3ZB3.
The inertial frame is the north-east-and-up coordinate system [30]. OB is fixed at the centroid
position of the navigation/control cabin. OBXB runs along the axis of the cabin, OBZB is
perpendicular to OBXB and upwards, and the establishment of OBYB satisfies the right-hand
rule. The coordinate system of the diversion cabin and the propulsion cabin is similar to that
of the body frame.

2.4. Motion Parameters Definition

(1) Displacement

The displacement of the vehicle mainly includes three parts: surge, sway and heave,
which are explained as follows:
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Surge X is the projection of the origin position vector of the body frame on XE, and its
direction is the same as XE.

Sway Y is the projection of the origin position vector of the body frame on YE, and its
direction is the same as YE.

Heave Z is the projection of the origin position vector of the body frame on ZE, and
its direction is the same as ZE.

(2) Attitude

The attitude angles of the vehicle are determined by the relationship between the body
frame and the inertial frame.

Pitch θ is the included angle between XB and the sea level, when the body is descend-
ing, the direction is positive.

Roll ϕ is the included angle between ZB and the plumb plane passing through XB,
when the body rolls to the right, the direction is positive.

Yaw ψ is the included angle between the projection of XB at sea level and XE, when
the body yaws to the left, the direction is positive.

(3) Joint angles

The joint angles are determined by the relationship between the frame of the diversion
cabin or propulsion cabin and the body frame. Each orthogonal joint can be used for pitch
and yaw control.

The joint pitch angle θn is the included angle between XB1 or XB3 and the plane
XBOBYB, where n = 1, 2 represents the joint n, joint 1 is the joint between the diver-
sion cabin and the navigation/control cabin, and joint 2 is the joint between the naviga-
tion/control cabin and the propulsion cabin. When the joint is deflected clockwise, the
direction of θn is specified as positive.

The joint yaw angle ψn is the included angle between the projection of XB1 or XB3 onto
the plane XBOBYB and XB. When the joint is deflected counterclockwise, the direction of
ψn is specified as positive.

For modeling convenience, the rotation order of orthogonal joints is defined here.
First, it rotates around the Z-axis, then it rotates around the Y-axis of the changed frame.

(4) The linear velocity and angular velocity components of the body coordinate system

u, v, and w are the linear velocities along each axis of the body frame, where u, v, and
w are in the same direction as XB, YB, and ZB, respectively. And p, q, and r represent the
component of the attitude angular velocities around each axis of the body frame, which are
roll velocity, pitch velocity, and yaw velocity, respectively.

2.5. Kinematic Analysis

The position of the body under the inertial frame is EPB =
[

X Y Z
]T, and the

posture is EΩB =
[

ϕ θ ψ
]T. The upper left corner of EPB and EΩB is the reference

frame, which can be omitted when the reference frame is itself, and AT is the transpose
of A.

The position of the origin of each cabin BPi is expressed as
PB =

[
0 0 0

]T
BPB1 =

[
lB 0 0

]T
+ BRB1

[
lB1 0 0

]T
BPB3 =

[
−lB 0 0

]T
+ BRB3

[
− lB3 0 0

]T , (1)

where li is half the length of each cabin, i = B1, B, B3; and BRB1 and BRB3 are the con-
version matrices of the diversion cabin frame and the propellant cabin frame to the body
frame, respectively, as follows:

BRB1 = Rot(z, ψ1)Rot(y, θ1)
BRB3 = B3RB

−1 = (Rot(z, ψ2)Rot(y, θ2))
−1 (2)
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Rot(z, ψn) =

 cos(ψn) − sin(ψn) 0
sin(ψn) cos(ψn) 0

0 0 1


Rot(y, θn) =

 cos(θn) 0 sin(θn)
0 1 0

− sin(θn) 0 cos(θn)

 (n= 1, 2), (3)

where R−1 is the inverse of R. Since R is an orthogonal matrix,

BRB3
−1 = BRB3

T = Rot(y, θ2)
TRot(z, ψ2)

T. (4)

The angular velocity Bωi (i = B1, B, B3) and linear velocity Bvi (i = B1, B, B3) are
ωB =

[
p q r

]T
BωB1 = ωB +

[
0 0

.
ψ1

]T
+ Rot(z, ψ1)

[
0

.
θ1 0

]T

BωB3 = ωB −
[

0
.
θ2 0

]T
− Rot(y, θ2)

T
[

0 0
.
ψ2

]T
, (5)



vB =
[

u v w
]T

BvB1 = vB + dBPB1
dt + ωB × BPB1

BvB3 = vB + dBPB3
dt + ωB × BPB3

, (6)

where
.
θn and

.
ψn are the pitch and yaw velocities of the joints n (n = 1, 2), respectively. The

velocity of the body is expressed in the inertial frame as{
E

.
PB = ERBvB

E
.

ΩB = EGBωB
, (7)

where E
.
PB and E

.
ΩB are the velocities of the body frame relative to the inertial frame, and

ERB and EGB are the transformation matrices of the linear velocity and angular velocity
from the body frame to the inertial frame, respectively. Tait-Bryan angles (Z-Y-X) rotation
transformation is adopted to determine the two matrices as follows.

ERB = Rot(z, ψ)Rot(y, θ)Rot(x, ϕ)

=

 cθcψ sϕsθcψ− cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ− sϕcψ
−sθ sϕcθ cϕcθ

 , (8)

EGB =

 1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (9)

for any j = ϕ, θ, ψ, sj = sin j, cj = cos j, tj = tan j; Rot(z, ψ) and Rot(y, θ) are similar to
Equation (3), and

Rot(x, ϕ) =

 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

, (10)

Equation (9) can be obtained by solving p
q
r

 =

 .
φ
0
0

+ Rot(x, φ)T

 0
.
θ
0

+ Rot(x, φ)T Rot(y, θ)T

 0
0
.
ψ

. (11)
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Subject to the mechanical limit, the pitching angle will not reach ±90◦, so EGB will not be
in a singular state.

The angular acceleration Bαi (i = B1, B, B3) and linear acceleration Bai (i = B1, B, B3)
are expressed as follows: 

αB =
[ .

p
.
q

.
r
]T

BαB1 = dBωB1
dt + ωB × BωB1

BαB3 = dBωB3
dt + ωB × BωB3

, (12)



aB = dvB
dt + ωB × vB

BaB1 = dBvB1
dt + ωB × BvB1

BaB3 = dBvB3
dt + ωB × BvB3

, (13)

where
.
p,

.
q, and

.
r are the angular accelerations of the roll, pitch, and yaw of the body,

respectively.

2.6. Dynamic Analysis

In the process of moving, the MJ-AUV is mainly subject to the fluid drag, the inertial
hydrodynamic force caused by additional mass, buoyancy, gravity, thrust, and interaction
forces between joints.

2.6.1. Hydrodynamic Analysis

Figure 1 shows the structure of the MJ-AUV equipped with multiple sensors. Notably,
it is not a regular cylinder. Considering the influence of the pressure drag and the trailing
vortex shedding effect, the drag suffered by each cabin is expressed as follows:

BFdi =
BRi

(
−C2

Disgn(vi)vi
2 − C1

Divi

)
, (i = B1, B, B3) (14)

with

C2
Di =

 c2
Dix 0 0
0 c2

Diy 0
0 0 c2

Diz

, (i = B1, B, B3)

C1
Di =

 c1
Dix 0 0
0 c1

Diy 0
0 0 c1

Diz

, (i = B1, B, B3)

sgn(s) =


1, s > 0
0, s = 0
−1, s < 0

,

vi =
BRi

TBvi, (i = B1, B, B3)

where c2
Dix, c2

Diy, and c2
Diz, and c1

Dix, c1
Diy, and c1

Diz are the quadratic and the first-order
coefficients of drag on 3D linear velocity, respectively.

When the MJ-AUV travels with variable speed motion, it forms a relative accelera-
tion motion with the surrounding water bodies, causing the additional mass effect and
producing the effect opposite to the direction of acceleration, which can be expressed by

BFai = −BRi(λmiai), Mai = −λJiαi, (i = B1, B, B3), (15)
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with

λi =

[
λmi 03×3
03×3 λJi

]
=



λi11 0 0 0 0 0
0 λi22 0 0 0 0
0 0 λi33 0 0 0
0 0 0 λi44 0 0
0 0 0 0 λi55 0
0 0 0 0 0 λi66

, (i = B1, B, B3)

ai =
BRi

TBai, (i = B1, B, B3)

and λi is the added mass matrix of each cabin.
The buoyancy of each cabin of the MJ-AUV is equal to the gravity of the water

discharged from the cabin. Here, assuming that the density of seawater is almost constant
at different depths. Thus, when the MJ-AUV is fully immersed in seawater, the buoyancy
of each cabin is

BFbi =
ERB

T[ 0 0 EFbi
]T, (i = B1, B, B3)

EFbi = ρliquidVig, (i = B1, B, B3 )

(16)

where ρliquid is the density of seawater, Vi is the volume of each cabin, and g is the gravita-
tional acceleration. The buoyancy of each cabin acts at the center, so the moment of which
is 0.

2.6.2. Gravity and Gravitational Moment

In the air, the gravity on each cabin is expressed in the body frame as:

BGi =
ERB

TEGi, (i = B1, B, B3 )

EGi =
[

0 0 mig
]T, (i = B1, B, B3)

(17)

where mi is the mass of each cabin.
The center of gravity is directly below the centroid, so each cabin is affected by the

gravitational moment as:

Mgi =
[

0 0 −lc
]T × (BRi

TBGi

)
, (i = B1, B, B3) (18)

where lc represents the distance between the center of gravity and the centroid of each cabin.

2.6.3. Thrust Analysis

The propeller is installed at the rear of the propulsion cabin of the MJ-AUV and is a
one-way force. The direction is forward along the axial direction of the propulsion cabin.
Therefore, the thrust does not produce a torque effect on the propulsion cabin. The thrust
is expressed in the body frame as:

BFth = BRB3Fth, (19)

with Fth =
[

Ft 0 0
]> and Ft is the thrust from the propeller.

2.6.4. Dynamical Equation

According to Newton’s second law, the force analysis is shown in the following
formula.
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

BFbB1 +
BFdB1 +

BFaB1 − BGB1 +
BFB→B1 = mB1IBaB1

FbB + FdB + FaB −GB − BFB→B1 +
BFB3→B = mBIaB

BFbB3 +
BFdB3 +

BFaB3 − BGB3 − BFB3→B + BFth = mB3IBaB3

, (20)

where BFB→B1 represents the force of the navigation/control cabin on the diversion cabin
in the body frame, BFB3→B stands for the force of the propulsion cabin on the naviga-
tion/control cabin in the body frame, and I is a 3 × 3 identity matrix. By adding the three
expressions in Equation (20), the interaction force between joints can be eliminated, i.e.

BFbB1 +
BFdB1 +

BFaB1 − BGB1 + FbB + FdB + FaB −GB + BFbB3+

BFdB3 +
BFaB3 − BGB3 +

BFth −mB1IBaB1 −mBIaB −mB3IBaB3 = 0
(21)

According to the torque balance principle, the torque analysis is shown in the following
formula. 

MaB1 +
B1M1 −MgB1 +

B1MB→B1 = JB1αB1

MaB + BM2 − BM1 −MgB − BMB→B1 +
BMB3→B = JBαB

MaB3 − B3M2 −MgB3 − B3MB3→B = JB3αB3

, (22)

with
B1MB→B1 =

[
−lB1 0 0

]T × (BRB1
TBFB→B1

)
,

BMB→B1 =
[

lB1 0 0
]T × BFB→B1,

BMB3→B =
[
−lB 0 0

]T × BFB3→B,

B3MB3→B =
[

lB3 0 0
]T × (BRB3

TBFB3→B
)
,

Ji =

 Jixx 0 0
0 Jiyy 0
0 0 Jizz

, (i = B1, B, B3)

αi =
BRi

TBαi, (i = B1, B, B3)

where B1MB→B1 is the torque generated by the navigation/control cabin on the diversion
cabin expressed in the diversion cabin frame; the definitions of BMB→B1, BMB3→B, and
B3MB3→B are similar to B1MB→B1; Ji is the matrix of the moment of inertia of each cabin;
and BFB→B1 and BFB3→B can be obtained from Equation (20).

All the variables in Equation (22) are expressed in the body frame,

BRB1
(
MaB1 −MgB1 +

B1MB→B1
)
+ BM1 = BRB1JB1αB1

MaB + BM2 − BM1 −MgB − BMB→B1 +
BMB3→B = JBαB

BRB3
(
MaB3 −MgB3 − B3MB3→B

)
− BM2 = BRB3JB3αB3

. (23)

The attitude of the MJ-AUV is controlled by changing the joint angle. By adding the
three equations in (23), the following equation can be obtained:

BRB1
(
MaB1 −MgB1 +

B1MB→B1 − JB1αB1
)
+ MaB −MgB − BMB→B1+

BMB3→B − JBαB + BRB3
(
MaB3 −MgB3 − B3MB3→B − JB3αB3

)
= 0

(24)
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The dynamic models of the MJ-AUV, i.e., Equation (7), Equation (21), and Equation (24),
can be expressed as the state space equation as follows:

M
.

X = η(X, U),

M =

[
I6×6 06×6
06×6 M22

]
,

M22 =


∂Ftotal

∂
.
u

∂Ftotal
∂

.
v

∂Ftotal
∂

.
w

∂Ftotal
∂

.
p

∂Ftotal
∂

.
q

∂Ftotal
∂

.
r

∂Mtotal
∂

.
u

∂Mtotal
∂

.
v

∂Mtotal
∂

.
w

∂Mtotal
∂

.
p

∂Mtotal
∂

.
q

∂Mtotal
∂

.
r

,

(25)

whereM is a 12 × 12 inertial matrix, X =
[

X Y Z ϕ θ ψ u v w p q r
]T,

U =
[

θ1 θ2 ψ1 ψ2 Ft
]T, and η(X, U) represents the function about X and U.

Equation (25) can be rewritten as

.
X =M−1η(X, U). (26)

The dynamic model is an analytical model that can be used to study the motion
characteristics of the MJ-AUV and design a modern controller based on this model.

3. Attitude Controller Design

By adjusting the pitch and yaw angles of joints 1 and 2, the relative attitude of each
cabin is adjusted, the hydrodynamic appearance of the MJ-AUV is changed, and then the
attitude angle of the body is adjusted. Because of the mechanical structure characteristics,
joints can only change with one degree of freedom at the same time. To realize pitch
and yaw control of the body at the same time, stipulating that joint 1 is used for the
yaw attitude adjustment, and joint 2 is used for the pitch attitude adjustment, namely,
U =

[
0 θ2 ψ1 0

]T. The MJ-AUV is a complex system with high nonlinear and strong
coupling. To reduce the coupling degree and operation cost of the control system and
improve the anti-disturbance performance, internal forces, coupling factors, and external
disturbance are regarded as total disturbance and establish the subsystem model of the
pitch and yaw as follows: 

..
θ = fθ + b11ψ1 + b12θ2

..
ψ = fψ + b21ψ1 + b22θ2

, (27)

where
..
θ is the pitch acceleration of the body,

..
ψ is the yaw acceleration, bij(i, j = 1, 2) is the

control coefficient of joints 1 and 2 in pitch and yaw motion equations, and fθ and fψ are
nonlinear total perturbation functions associated with X and the input coupling terms.

The pitch and yaw attitude control of the MJ-AUV mainly includes the total dis-
turbance observation compensation and LQR control of each subsystem. The designed
controller structure is shown in Figure 4.

3.1. Linear Extended State Observer Design

The LESO is used to estimate the states and disturbances of the system that cannot be
measured directly. Taking the pitch attitude subsystem as an example, the process of LESO
design is as follows.

Let x1 = θ, x2 =
.
θ, x3 = fθ , u1 = ψ1, and u2 = θ2; then, the pitch attitude subsystem

can be rewritten as: .
x = Ax + Bu + Eh
y = Cx + Du

, (28)
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where A =

 0 1 0
0 0 1
0 0 0

, B =

 0 0
b11 b12
0 0

, C =
[

1 0 0
]
, D =

[
0 0

]
, E =

 0
0
1

,

x = [ x1 x2 x3 ]
T, u = [ u1 u2 ]

T, and h =
.
f θ is unknown but bounded.

Define
^
x = [ x̂1 x̂2 x̂3 ]

T and ŷ as the observed values of x and y. Consequently,
the LESO can be constructed as

.
^
x = A

^
x + Bu + L(y− ŷ)

ŷ = C
^
x + Du

, (29)

where L = [ β1 β2 β3 ]
T is the observer gain vector.

Define
~
x = x− ^

x is the state estimation error. By combining (28) and (29), can be
obtained .

^
x = A

^
x + Bu + L(y− ŷ)

ŷ = C
^
x + Du

,

~
A = A− LC =

 −β1 1 0
−β2 0 1
−β3 0 0

.

(30)

According to [29], through the pole assignment method, all poles are placed at −ω0,
then β1 = 3ω0, β2 = 3ω0

2, and β3 = ω0
3. ω0(ω0 > 0) is the bandwidth of the state

observer. The estimated state of the observer can be adjusted by adjusting ω0, especially
the estimated value f̂θ = x̂3 of the total disturbance fθ . The design of the LESO for the yaw
subsystem is similar to that for the pitch subsystem.

Figure 4. The structure of the LQR decoupling control method based on LESO.

3.2. Control Law Design

To reduce the input coupling degree of the system, the virtual control quantity
_
u =[

b11 b12
b21 b22

]
u is introduced.

θd and ψd are defined as the designed pitch and yaw angles, respectively. Then, the
feedback errors are eθ = θd − θ, eψ = ψd − ψ. Let z1 = eθ , z2 =

.
θ, z3 = eψ, and z4 =

.
ψ;

then, the state equation of the pitch and yaw attitude control of the MJ-AUV is

.
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where
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A =


0 −1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

,
_
B =


0 0
0 1
0 0
1 0

,



J. Mar. Sci. Eng. 2021, 9, 307 12 of 21

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 13 of 22 
 

 

The feedback gain matrix has eight parameters. In this paper, LQR can be optimized 

by LQR to reduce the difficulty of parameter adjustment and obtain the optimal control 

law suitable for the control target by minimizing the performance index. The LQR perfor-

mance index function is selected as 

 T T

0 0
0

dt


 J z Qz u Ru , (35) 

where Q  is the positive semidefinite matrix and R  is the positive definite matrix. The 

former is the penalty function of the system state error, and the latter is the penalty func-

tion of the system input state. The Riccati equation corresponding to the performance in-

dex function is 

T 1 T   A P PA Q PΒR Β P 0 , (36) 

where P  is the solution of the Riccati equation. 

In the case of the Riccati equation, the linear feedback gain matrix is 

1 TK R B P . (37) 

In this case, K  is related to Q  and R . 

3.3. Stability Analysis 

In this part, the stability of the LESO and the closed-loop system are studied accord-

ing to the idea of reference [31].  

A state space equation is defined in the form shown in Equation (38). 

 c Hc o , (38) 

where nc  represents state variable, n nH , no . 

Theorem 1: Assuming that o  is bounded, if H  is the Hurwitz matrix, then the state 

variable c  is bounded stable. 

The proof of Theorem 1 is given in Appendix A. 

According to Theorem 1, in Equation (30), h  is bounded, A  is Hurwitz, and x  is 

bounded stable, that is, LESO is bounded stable. 

The system model of the MJ-AUV is 

  z Az Βu f , (39) 

with 
T

θ ψ[0 0 ]f ff . Because 
f 0 u u u , Equation (39) can be expressed as: 

 f 0   z Az Β u u f . (40) 

By substituting Eqs. (32) and (34) into Equation (40), we can obtain 

   z A ΒK z f , (41) 

with ˆ f f f . In addition, substituting Equation (37) into Equation (41) obtains 

 1 T  z A ΒR B P z f . (42) 

f  is bounded according to LESO stability analysis, and 1 TA ΒR B P  is Hurwitz. 

According to Theorem 1, z  is bounded stable. 

  

= [ z1 z2 z3 z4 ]
T,

^
f = [ 0 f̂θ 0 f̂ψ ]

T, f̂θ and f̂ψ respectively repre-
sent the total disturbance of the pitch and yaw subsystems estimated by LESO.

The control law mainly includes disturbance compensation
_
u f and linear state feed-

back
_
u 0, and

_
u =

_
u f +

_
u 0.

The disturbance compensation control law is

_
u f = −

_
B

T^
f. (32)

Substituting Equation (32) into Equation (31) obtains the following:

.
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+
_
B
_
u 0. (33)

Now, the problem is to design the controller
_
u 0, and the linear state feedback control

law can be designed as
_
u 0 = −K
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with K =

[
K11 K12 K13 K14
K21 K22 K23 K24

]
as the linear feedback gain matrix.

The feedback gain matrix has eight parameters. In this paper, LQR can be optimized
by LQR to reduce the difficulty of parameter adjustment and obtain the optimal control law
suitable for the control target by minimizing the performance index. The LQR performance
index function is selected as

J =
∫ ∞

0

(
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where Q is the positive semidefinite matrix and R is the positive definite matrix. The
former is the penalty function of the system state error, and the latter is the penalty function
of the system input state. The Riccati equation corresponding to the performance index
function is

_
A

T
P + P

_
A + Q− P

_
BR−1_B

T
P = 0, (36)

where P is the solution of the Riccati equation.
In the case of the Riccati equation, the linear feedback gain matrix is

K = R−1BTP. (37)

In this case, K is related to Q and R.

3.3. Stability Analysis

In this part, the stability of the LESO and the closed-loop system are studied according
to the idea of reference [31].

A state space equation is defined in the form shown in Equation (38).

.
c = Hc + o, (38)

where c ∈ <n represents state variable, H ∈ <n×n, o ∈ <n.

Theorem 1. Assuming that o is bounded, if H is the Hurwitz matrix, then the state variable c is
bounded stable.

The proof of Theorem 1 is given in Appendix A.

According to Theorem 1, in Equation (30), h is bounded,
~
A is Hurwitz, and

~
x is

bounded stable, that is, LESO is bounded stable.
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4. Simulation and Results

In this part, the dynamic model of the MJ-AUV was built on the SIMULINK platform,
and the fourth-order Runge–Kuta algorithm was used to solve the second-order differential
dynamics equation. Then, the various motions of the model were simulated and analyzed,
and the attitude control algorithm of MJ-AUV was simulated and verified. Table A1 shows
the model parameters of the MJ-AUV.

4.1. Model Simulation

Figure 5 shows the simulation results of MJ-AUV’s pitching motion, and the pitching
angle of joint 1 is set to θ1 = 0◦, the yaw angle of joint 1 is set to ψ1 = 0◦, the pitch angle of
joint 2 rotates in a sinusoidal manner with an amplitude of 20◦ and a period of 50 s, that
θ2 = 20◦ sin(πt

25 ), the yaw angle of joint 2 is set to ψ2 = 0◦, and the thrust of the propeller
is set to T = 60 N. The simulation duration is 100 s. It can be seen from Figure 5a,e that
the vehicle has a tendency to move upwards, which is caused by the buoyancy force of the
vehicle being greater than its gravity. During the pitching motion, the results in Figure 5a,c
show that the vehicle has no change in displacement and velocity in the Y direction, while
the results in Figure 5b,d show that the attitudes and angular velocities of the vehicle have
no changes in the yaw and roll directions. Therefore, if the vehicle is only controlled in
pitching motion, the relative state quantity of the three degrees of freedom can be zero,
thus simplifying the complexity of the model.

Figure 6 shows the simulation results of the sinuous motion of the MJ-AUV. The
pitching angle of joint 1 is set to θ1 = 0◦, the yaw angle of joint 1 rotates in a sinusoidal
manner with an amplitude of 10◦ and a period of 50 s, i.e., ψ1 = 10◦ sin(πt

25 ), the pitch
and yaw angle of joint 2 is set to 0◦, and the thrust of the propeller is set to T = 60 N.
The simulation duration is 100 s. In the process of this movement, it can be seen from
Figure 6b,d that the MJ-AUV is in roll motion. This is because when the yaw angle of the
joint changes, the metacenter of the diversion cabin is not in the same vertical plane as
the metacenter of the other cabins, so the roll moment is generated, and then the rolling
phenomenon occurs.

Figure 7 shows the result of the spiral diving motion of the MJ-AUV. The pitching
angle of joint 1 is set to θ1 = 0◦, the yaw angle of joint 1 is set to ψ1 = 5◦, the pitch angle of
joint 2 is set to θ2 = 10◦, the pitch angle of joint 2 is set to, the yaw angle of joint 2 is set to
ψ2 = 0◦, and the thrust of the propeller is set to T = 60 N. The simulation duration is 1000 s.
Unfortunately, it can be found from the results in Figure 7b,d that the rolling attitude of
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the vehicle is unstable, which is the same as that of the vehicle in the sinuous motion in
Figure 7. It is all caused by the rolling moment that the metacenter of the diversion cabin
is not in the same vertical plane as the metacenter of the other cabins. This brings a big
problem for the multi-degree of freedom control.
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Figure 6. Yaw motion of the MJ-AUV: (a) Position changes over time; (b) Attitude changes over time; (c) Linear velocity
changes over time; (d) Angular velocity changes over time; (e) 3D motion.
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Figure 7. Spiral dive motion of the MJ-AUV: (a) Position changes over time; (b) Attitude changes over time; (c) Linear
velocity changes over time; (d) Angular velocity changes over time; (e) 3D motion.
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The above simulation results are consistent with the common physical phenomena,
and to a certain extent, it can be considered that the established MJ-AUV 3D dynamic model
is reasonable, without loss of generality and reliability. According to the simulation results,
compared with the single rigid body AUV, the MJ-AUV has stronger flexible maneuvering
characteristics and can perform more complex movements, such as large angle pitching
movement, small radius steering movement, spiral ascending and diving movement, and
so on, which satisfies the design intention.

4.2. Model and Control Parameters

The initial states of the MJ-AUV are θ = 0 rad,
.
θ = 0 rad, θ2 = 0 rad, ψ = 0 rad,

.
ψ = 0 rad, and ψ1 = 0 rad. In addition, the controller parameters are ω0 = 30, b11 = 0,
b12 = 0.1, b21 = 0.1, b22 = 0, Q = diag(500, 600, 500, 600), R = diag(0.1, 0.1), and diag
represents the diagonal matrix. The control gain after LQR optimization is

K =

[
0 0 −70.7107 78.3672

−70.7107 78.3672 0 0

]
.

4.3. Control Simulation

Figures 8–12 show the simulation results of the pitch and yaw attitude control of the
MJ-AUV, that is, when the pitch attitude is kept as 0 rad, the yaw attitude is adjusted
according to the design signal. Figure 8 shows the pitch control results. The reason why
the initial pitch attitude is not 0 rad is that the rest buoyancy of each cabin of MJ-AUV is
positive, and the resultant moment of the body is not 0 rad. In other words, when the joint
angle is 0 rad, the pitch attitude of the body is not 0 rad, so it is necessary to adjust the body
attitude to 0 rad by adjusting the joint angle, which can also be seen from the performance
of joint 2 in Figure 11. Figure 9 and the performance of joint 1 in Figure 11 show that, the
yaw subsystem can be adjusted quickly after encountering multiple step signals, and the
overshoot quantity is nearly 0 rad, with a very smooth transition process. Figure 10 shows
that the maximum control error is within 0.005%, verifying that the designed controller
has a high control accuracy. Figure 12 shows the observer’s estimation results for the
total disturbance of the pitching and yaw subsystem. The results show that the estimated
value of the total disturbance can follow the real value in real time and accurately, further
proving the effectiveness of LESO and making a great contribution to the control of the
disturbance compensation.

Figure 8. The pitching attitude of the MJ-AUV.
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Figure 9. The yaw attitude of the MJ-AUV.

Figure 10. The feedback error of the MJ-AUV.

Figure 11. The input of the MJ-AUV.
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Figure 12. The estimation of the total disturbances of the MJ-AUV.

5. Conclusions

The main contributions of this paper are as follows:

(1) A new type of MJ-AUV with orthogonal joints structure is proposed that can be used
for the rapid exploration of the vertical profile of deep sea.

(2) Considering the imbalance of gravity and buoyancy, a 3D analytical model of the MJ-
AUV is established according to Newton’s second law and torque balance principle,
which provides a theoretical basis for the study of the MJ-AUV’s 3D motion and
model-based controller design.

(3) The LQR decoupling control method based on LESO is proposed. The system is
decoupled into pitch and yaw subsystems, and uses linear state observer to estimate
and compensate for the total disturbance of each subsystem. LQR is used to achieve
the optimal linear feedback control gain according to the expected input and output
effects. It solves the problem of strong system coupling and makes the parameter
tuning work more efficient.

(4) The simulation results show that the improved control algorithm has the advantages
of low overshot and high control precision, and the controller has the advantages of
small computation, independence of the precise model of the system, and has a good
prospect of engineering application.
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Appendix A

Proof of Theorem 1. The Lyapunov function is defined as

V = cTPc, (A1)
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where, P is the unique solution of the Lyapunov equation HTP + PH = −Q, H is the
Hurwitz matrix, and Q is the positive definite matrix, then the derivative of Equation (A1)
is obtained as follows:

.
V = −cTQc + 2oTPc

=
(

cTQ
1
2 − oTPQ−

1
2

)(
cTQ

1
2 − oTPQ−

1
2

)T
+
(

oTPQ−
1
2

)(
oTPQ−

1
2

)T (A2)

Let
.
V < 0, that ∥∥∥cTQ

1
2 − oTPQ−

1
2

∥∥∥
2
>
∥∥∥oTPQ−

1
2

∥∥∥
2
. (A3)

Processing Equation (A3), can be obtained∥∥∥cTQ
1
2

∥∥∥
2
> 2

∥∥∥oTPQ−
1
2

∥∥∥
2
. (A4)

The choice of P depends on Q. In order to make the calculation simple, Q = I is
selected as the identity matrix to meet the requirements of positive definite matrix. Then
Equation (A4) is:

‖c‖2 > 2‖Po‖2. (A5)

Because o is bounded, when c satisfies Equation (A5),
.
V is negative definite, and because V

is positive definite, c is bounded stable. �

Appendix B

Table A1. The Parameters of the MJ-AUV Model.

Diversion Cabin Navigation/Control Cabin Propulsion Cabin

li/m 0.5625 0.775 0.6625
mi/kg 46.5 113.6 46
Vi/m3 0.0471 0.1152 0.0467

Jxx/kg·m 1.129 1.938 1.314
Jyy/kg·m 7.623 29.281 8.877
Jzz/kg·m 7.645 29.447 8.999

c2
Dx 10.05 0 22.73

c2
Dy 75.53 126.5 177.5

c2
Dz 75.53 126.5 159.8

c1
Dx 0.3404 0 0.5009

c1
Dy 6.272 12.61 4.192

c1
Dz 6.272 12.61 7.351

λ11 12.44 17.30 13.40
λ22 57.71 109.13 82.42
λ33 57.71 109.13 87.97
λ44 0 0 0.47
λ55 2.6 16.37 7.85
λ66 2.6 16.37 7.44

Other Parameters lc = 0.01 m, ρliquid = 1000 kg/m3, g = 9.8 N/kg, Ft = 60 N,
−15◦ ≤ ψ1 ≤ 15◦, −20◦ < θ2 < 20◦.
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