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Abstract: During the last decade the offshore wind industry grew ceaselessly and engineering
challenges continuously arose in that area. Installation of foundation piles, known as monopiles,
is one of the most critical phases in the construction of offshore wind farms. Prior to installation
a drivability study is performed, by means of pile driving models. Since the latter have been
developed for small-diameter piles, their applicability for the analysis of large-diameter monopiles
is questionable. In this paper, a three-dimensional axisymmetric pile driving model with non-local
soil reaction is presented. This new model aims to capture properly the propagation of elastic
waves excited by impact piling and address non-local soil reaction. These effects are not addressed
in the available approaches to predict drivability and are deemed critical for large-diameter monopiles.
Predictions of the new model are compared to those of a one-dimensional model typically used
nowadays. A numerical study is performed to showcase the disparities between the two models,
stemming from the effect of wave dispersion and non-local soil reaction. The findings of this
numerical study affirmed the significance of both mechanisms and the need for further developments
in drivability modeling, notably for large-diameter monopiles.

Keywords: pile driving; monopile; impact piling; offshore wind; vibration of shells; non-local
foundation; Galerkin method

1. Introduction

In the area of renewable energy, offshore wind occupies an eminent position. Since
the onset of offshore wind farm construction, monopiles constitute the dominant founda-
tion concept used in shallow and intermediate water depths [1,2]. Installation of monopile
foundations for offshore wind turbines (OWTs) is a considerably challenging operation
and the associated cost comprises a significant part of the total budget for an offshore
wind farm [3,4]. For that reason, in the design stage, close attention is required to vari-
ous aspects, one of which is the analysis of pile drivability. Inaccurate pile drivability
predictions can cause time delays, excessive financial costs, or even greater project risks,
e.g., pile refusal [5]. Thus, it is evident that reliable numerical tools are needed for pile
driving analysis, primarily for offshore monopiles due to the aforementioned possible
complications. As a consequence of ceaseless advancements in offshore wind in recent
years [6], the monopiles used as foundations for OWTs have increased in both length and
diameter, and their installation process has raised various challenges.

For the prediction of pile drivability, an analysis is performed that takes into ac-
count the pile characteristics, the soil profile at the location of installation and the im-
pact/vibratory hammer to drive the pile to the required depth [7]. The vast majority of
pile driving models used in engineering practice are based on the model proposed by
Smith [8]; a one-dimensional model that describes the pile by a system of linear springs
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and masses and the soil reaction by elasto-plastic springs and viscous dashpots. Sub-
sequently, various modifications have been proposed towards rational pile driving models,
by improving certain aspects of Smith’s model, such as the empirical character of the soil
reaction parameters [9,10]. For that purpose, dynamic models that represent the linear
soil reaction, based on analytical formulations [11,12], have been used in conjunction
with non-linear relations to account for the pile penetration process (pile slip). However,
the linear part of these formulations, expressed in terms of fundamental soil properties,
is frequency-dependent. The latter fact is usually overlooked in pile driving analysis and
frequency-independent values are assigned to these elements, in order to facilitate the nu-
merical simulations in the time domain. As a result, local and frequency-independent
springs and dashpots are arranged together with non-linear elements, e.g., frictional sliders,
to represent the soil reaction during installation. Evidently, the above-discussed approaches
comprised significant steps towards less empirical, rational pile driving models.

In the advent of large-diameter monopiles, used in offshore wind, the validity of
the existing approaches to analyse pile drivability was examined. In [13], the applicability
of the available design approaches to compute the static resistance to driving (SRD) was
investigated, since these approaches are largely empirical and were developed for piles of
relatively small diameter (less than 2 m) [13,14]. Furthermore, Byrne et al. [13] introduced
a modification factor in the aforementioned approaches, which resulted in improved and
adequate drivability predictions. However, in a subsequent extensive study [15], both
the existing and the modified approaches were proved not to provide reliable predictions
of the blow counts.

Albeit the above-discussed works focused mainly on determination of the SRD and
its influence on drivability predictions, other aspects of available pile driving models have
also been examined. Due to the increase of the diameter of monopiles, various works
questioned the validity of the classical rod theory, which is exclusively used to describe
the pile dynamics during installation [16,17]. Since the spectrum of frequencies excited
in the pile during a hammer impact may pertain in the range in which dispersive effects
are not negligible, a more accurate description of the pile structure is required. In these
structures, frequencies in the vicinity of the ring frequency correspond to predominantly
radial motions [18], which cannot be addressed in current models and are related to strong
Poisson effects that can significantly affect the soil reaction along the pile shaft [19].

In view of the existing knowledge gaps, a three-dimensional axisymmetric model
is developed herein, as a step towards pile driving models suitable for large-diameter
monopiles. The phenomenon of wave dispersion is treated directly by modelling the pile as
a cylindrical shell according to the Love-Timoshenko thin shell theory. Furthermore the ef-
fect of non-local dynamic soil reaction is introduced, by formulating a non-local foundation
model based on the stiffness and damping parameters of its local counterpart. To demon-
strate the effects of the aforementioned mechanisms, a one-dimensional pile driving model
with local soil reaction, as customarily used in engineering practice, is formulated and
a numerical study is performed to compare the two approaches. It is observed that pile
penetration is significantly affected by wave dispersion, while with ascending diameter
the effect becomes more prominent. Non-locality showcases also a stronger deviation
from the responses of local reaction models for large diameters. Since for large-diameter
cases, both examined mechanisms significantly alter the drivability predictions of standard
approaches, their incorporation in pile driving models for large-diameter monopiles is
deemed critical.

The paper is structured as follows. In Section 2 the description of the one-dimensional
pile driving model and the non-local three-dimensional model are given. The comparison
of the results obtained from the two approaches is presented in Section 3, highlighting
the effects of wave dispersion and non-local reaction for various cases. Conclusively,
in Section 4 the findings are discussed, alongside with the importance of the introduced
effects and insights for further development.
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2. Modelling of Pile Driving

In Section 2.1 a one-dimensional pile driving model is developed, based on approaches
widely used in engineering practice. Wave propagation in thin cylindrical shells is dis-
cussed in Section 2.2, accompanied by the development of a three-dimensional axisym-
metric model with non-local soil reaction. Details about the numerical solution of the two
models are given in Section 2.3.

2.1. One-Dimensional Pile Driving Model

The open-ended pile is modelled as a linear homogeneous elastic rod occupying
the domain 0 ≤ z ≤ Lp, where Lp denotes the length of the pile as displayed in Figure 1.
The soil reaction is represented by a combination of elastic springs, viscous dashpots and
plastic sliders, as described below in the paper. The equation of motion of the rod reads:

ρp Ap
∂2u(z, t)

∂t2 = Ep Ap
∂2u(z, t)

∂z2 −H(z− l1)ps (1)

in which ρp is the mass density of the pile, Ap is the area of the pile cross-section, u(z, t)
is the axial displacement of the pile, which is a function of the spatial coordinate z and
time t, Ep is the Young’s modulus of the pile, H(·) is the Heaviside function, l1 is the non-
embedded pile length and ps is the soil resistance along the pile shaft. The latter is defined
as [9]:

ps =


ks
(
u(z, t)− ueq,s(z, t)

)
+ cs

∂u(z, t)
∂t

, for
∣∣∣∣ks
(
u(z, t)− ueq,s(z, t)

)
+ cs

∂u(z, t)
∂t

∣∣∣∣ ≤ 2πRoqs(z)

2πRoqs(z) sgn
(

∂u(z, t)
∂t

)
, for

∣∣∣∣ks
(
u(z, t)− ueq,s(z, t)

)
+ cs

∂u(z, t)
∂t

∣∣∣∣ > 2πRoqs(z)

(2)

In Equation (2), ks is the soil spring stiffness along the pile shaft, ueq,s(z, t) is the equilib-
rium position of each point along the pile shaft once plastic deformation develops at the pile-
soil interface, cs is the soil dashpot coefficient along the pile shaft, Ro is the outer radius of
the pile and qs(z) is the ultimate shaft resistance. The spring and dashpot coefficients in this
study are chosen in accordance with Deeks and Randolph [20] (viscous effects neglected)
and further modified as ks = 2πGs and cs = 2πRo

√
ρsGs, to account also for the inner shaft

resistance of the open-ended piles, as proposed by Liyanapathirana et al. [21]. The para-
meters Gs and ρs denote the shear modulus and mass density of the soil, respectively.

The mathematical statement is supplemented by the initial and boundary conditions
as follows:

u(z, 0) = 0,
∂u(z, t)

∂t

∣∣∣∣
t=0

= 0, N(0, t) = −Ph(t), N(Lp, t) = −Pt, (3)

in which N is the axial force and Ph(t) is the force exerted on the pile head by the hammer
impact, computed analytically by the model of Deeks and Randolph [22]. Similarly at
the pile tip of an open-ended pipe pile, z = Lp, the soil reaction, Pt, reads [10]:

Pt =


kt(u(Lp, t)− ueq,t(t)) + ct

∂u(z, t)
∂t

∣∣∣
z=Lp

, for
∣∣kt(u(Lp, t)− ueq,t(t))

∣∣ ≤ qt Ap

qt Ap sgn
(

∂u(z, t)
∂t

∣∣∣
z=Lp

)
+ ct

∂u(z, t)
∂t

∣∣∣
z=Lp

, for
∣∣kt(u(Lp, t)− ueq,t(t))

∣∣ > qt Ap

(4)

in which kt = 2GsRo/((1− νs)Ω(η)) is the soil spring stiffness at the pile tip, ueq,t(t)
is the equilibrium position of the pile tip after plastic deformation has occurred, ct =
3.4
(

R2
o − R2

i
)√

ρsGs/(1− νs) is the soil dashpot coefficient at the pile tip, Ri is the inner
radius of the pile, νS is the soil Poisson’s ratio, Ω(η) is a function of the ratio of the inner
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to outer radius of the pile, defined as η = Ri/Ro, according to Egorov [23] and qt is
the ultimate tip resistance.

The ultimate shear strength at the pile-soil interface along the shaft qs(z), for a cohen-
sionless layer of sand, is estimated as a function of depth z according to the Mohr-Coulomb
failure criterion [24]:

qs(z) = K0σ
′
v(z) tan δ

′
(5)

in which K0 is the coefficient of lateral earth pressure, σ
′
v(z) is the effective vertical soil

stress as a function of depth (for z ≥ l1 and σ
′
v(l1) = 0) and δ

′
is the critical friction angle of

the pile-soil interface. It is noted that in the present study, the shaft resistance is assumed
for all piles identical at the inner and outer surface of the pile shaft, leading to a total shaft
resistance qs(z) = 2K0σ

′
v(z) tan δ

′
. Similarly, at the pile tip soil failure takes place according

to the Mohr-Coulomb criterion and an associated flow rule, based on the work of Kumar
and Chakraborty [25]. Accordingly, the ultimate tip resistance reads:

qt = cNc + qo Nqo + γs(ro − ri)Nγs (6)

in which the terms Nc, Nqo and Nγs denote the bearing capacity factors of soil cohesion, c,
soil surcharge pressure, qo, and soil unit weight, γs, respectively [25].

Lp

l1

l2

Ph(t)

Ep , ρp

kt

qt
ct

2πRoqs(z)

ks cs

Embedded pile

z, u(z,t)

dz

Figure 1. The one-dimensional pile driving model, with the pile described as a rod.

2.2. Non-Local Three-Dimensional Axisymmetric Pile Driving Model

An open-ended pipe pile, due to its cylindrical geometry, its small wall thickness
compared to its other dimensions and considering the frequency range of interest, can
be described as a thin cylindrical shell. In fact, the accurate description of elastic wave
propagation in a pile requires a thin shell theory [26]. Notably, in the region of the frequency
spectrum in which the wave dispersion is eminent, around the ring frequency of the shell
fr [27], the motion of the structure is primarily radial and classical rod theory cannot capture
that effect [18]. Alternative rod theories may be used, such as the Love rod theory [28]
which includes dispersion, albeit it is still inaccurate in the vicinity of the ring frequency
and falsely predicts a cut-off frequency. On the other hand, the thin shell theories are
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in excellent agreement with the results of three-dimensional elasticity theory, for the greater
part of the frequency spectrum [29].

In great soil depths and thus high horizontal soil stresses, encountered during installa-
tion of monopiles in the offshore environment, the importance of accurate description of
the pile motion cannot be overemphasized. Excitation of strong radial motions can affect
the soil resistance during installation and render the drivability predictions inaccurate,
as this effect is altogether neglected in most pile driving models. For small-diameter piles
that have been mainly used offshore in the past, that issue had not arisen.

In view of the above considerations, in this work a drivability model that describes
the pile by means of a thin shell theory is developed. As the pile, the force by the hammer
impact, and the soil reaction, both along the shaft and at the tip, are symmetric around
the pile longitudinal axis, the model used is considered axisymmetric. The latter means
that all quantities of the problem are independent of the azimuth, θ, i.e., ∂(·)/∂θ = 0. Given
the aforementioned considerations, the equations of the coupled axial-radial motion of
the pile during impact driving, according to the Love-Timoshenko shell theory [30] read:

ρphp
∂2u(z, t)

∂t2 =
Ephp(

1− ν2
p

) ∂2u(z, t)
∂z2 +

Ephpνp(
1− ν2

p

)
Rp

∂w(z, t)
∂z

− H(z− l1)ps

2πRp
(7)

ρphp
∂2w(z, t)

∂t2 = −
Ephpνp(

1− ν2
p

)
Rp

∂u(z, t)
∂z

−
Ephp(

1− ν2
p

)
R2

p

w(z, t)−
Eph3

p

12
(

1− ν2
p

) ∂4w(z, t)
∂z4 (8)

in which hp is the pile wall thickness and w(z, t) is the radial displacement of the pile. It is
remarked at this point that the soil reaction in the radial direction may also be considered,
albeit in this work it is not introduced such that the two models are comparable and
the effect of wave dispersion can be evaluated separately.

Similarly to Equation (3), the initial conditions are set equal to zero. For the thin
cylindrical shell the axial force resultants are prescribed in the top and the bottom of the pile,
while the remaining boundaries are formulated as free [31]. Accordingly, the boundary
conditions read:

Nz(0, t) = − Ph(t)
2πRp

, Nzθ(0, t) = 0, Qz(0, t) = 0, Mz(0, t) = 0,

Nz(Lp, t) = − Pt

2πRp
, Nzθ(Lp, t) = 0, Qz(Lp, t) = 0, Mz(Lp, t) = 0 (9)

in which Nz(z, t), Nzθ(z, t) and Qz(z, t) denote the axial, in-plane shear and out-plane
shear force resultants, respectively, and Mz(z, t) denotes the moment resultant of the thin
cylindrical shell [26]. The natural boundary conditions from Equation (3) have been
reformulated into Equation (9), such that the prescribed forces at the boundaries, Ph(t) and
Pt, are uniformly distributed along the pile circumference. Finally, the ultimate shaft and
tip resistances are identical to the ones described in Section 2.1 and the described model is
displayed in Figure 2.

As stated before, one of the main challenges in pile drivability predictions, lies
in the strong need for a simple and accurate description of the soil reaction. Available mod-
els employ local and frequency-independent springs and dashpots, arranged together with
non-linear elements to account for the soil reaction in a computationally efficient manner.
The significance of the accuracy in the modelling of the linear part of these phenomeno-
logical models is enhanced when a pile is close to refusal during driving and essentially
the linear regime is strongly present [32]. In view of the aforementioned, the employment
of non-local elasticity comprises a significant step towards computationally efficient and
more realistic foundation models [33], while it has been recently applied for capturing
the lateral response of monopiles [34].
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Lp

l1

l2

Ph(t)

Ep , ρp , vp

kt

qt
ct

2πRoqs(z)

ks cs

r

z w(z,t)
u(z,t)

θ

Embedded pile

dz

Figure 2. The three-dimensional axisymmetric pile driving model, with the pile described as a thin
cylindrical shell.

In the present study, the approach adopted is similar to Friswell [33]. It is assumed
that the spatial kernel function is a Gaussian function g(z, ξ), normalized as shown in [35],
with the following form:

g(z, ξ) =
α√
2π

e−
α2(z−ξ)2

2 (10)

in which α is the inverse of the influence distance of the spatial kernel function g(z, ξ) (see
Figure 3). At this point let us remark that the local foundation models can also be described
in this form and essentially comprise a special sub-category with spatial kernel function
equal to the Dirac delta function, g(z, ξ) = δ(z− ξ). The latter means that the foundation is
locally reacting. According to the previous, the non-local soil reaction along the pile shaft,
p̃s, reads:

p̃s =



Lp∫
l1

g(z, ξ)

(
ks
(
u(ξ, t)− ueq,s(ξ, t)

)
+ cs

∂u(ξ, t)
∂t

)
dξ = G(z, t) , for |G(z, t)| ≤ 2πRoqs

2πRoqs sgn
(

∂u(z, t)
∂t

)
, for |G(z, t)| > 2πRoqs

(11)

The present non-local soil reaction model comprises an extension of its local coun-
terpart, by coupling of the locally reacting elements through prescribed spatial kernel
functions. The accuracy of such models can be evaluated properly, only by comparison
with the dynamic reaction of the three-dimensional soil continuum, which is not considered
in this work.
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Figure 3. The Gaussian function as spatial kernel, g(z, ξ), for α =
√

2π.

2.3. Numerical Solution

For the one-dimensional model presented in Section 2.1, henceforth called 1-d FD
model for brevity, the method of central finite differences, of accuracyO(∆z2), is employed
for the spatial discretization. The boundary conditions are treated by introducing fictitious
nodes [36] and the non-linear partial differential equation (PDE) governing the pile motion,
is decomposed into a set of non-linear ordinary differential equations (ODEs) representing
the dynamic equilibria of the pile nodes.

On the contrary, for the three-dimensional axisymmetric model, henceforth referred to
as 3-d LT model for brevity, the Galerkin method is employed for the spatial discretization
of the thin cylindrical shell [37]. A series discretization method is advantageous for this
system, compared to a method such as finite differences that leads to ODEs at nodal points
and thus increases the computational complexity, due to the dimensions of the problem.
The Galerkin method circumvents the problem of dimensions, albeit requires a more
laborious analytical treatment to utilize its benefits in our case. First, the reformulation of
the boundary conditions is performed, as we have a time-dependent boundary condition at
z = 0 and a non-linear boundary condition at z = Lp. The concentrated body force method
(CBFM) is used to reformulate the boundary conditions into stress-free boundaries and to
translate the boundary stresses into the equation of motion by means of the Dirac delta
function δ(·) [38]. At this point, the free vibration modes of the free-free cylindrical shell in
vacuo are found and employed in our solution as trial and test functions. The solution to
the free vibration problem can be written in the form:

u =
∞

∑
m=0

Um(z) eiωmt, w =
∞

∑
m=0

Wm(z) eiωmt (12)

with Um(z) and Wm(z) being the modal displacements of the m-th free vibration mode
in the axial and radial directions, respectively, and ωm denoting the m-th natural frequency.
Therefore, the solution of Equations (7) and (8) is approximated by the series:

u =
Nm

∑
m=0

Um(z) qm(t), w =
Nm

∑
m=0

Wm(z) qm(t) (13)

in which qm(t) is the m-th generalized coordinate and Nm is the upper limit of the trun-
cated summation, adequate to provide a sufficiently accurate solution. By substituting
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Equation (13) into Equations (7) and (8) the residual is obtained and by integrating over
the shell domain the product of each test function with the residual, the weighted residual,
is derived. By setting the latter equal to zero a set of Nm non-linear coupled ODEs of
qm(t) is formulated. Conclusively, for both 1-d FD and 3-d LT models the resulting sets
of ODEs are arranged in the state-space form, in order to facilitate numerical integration.
The explicit Runge-Kutta method of accuracy O(∆t4) is used in both cases [39].

For both models, the frequency with amplitude equal to the 10% of the maximum
force amplitude (see Section 3.2) and the corresponding wavelength are used to determine
the discretization parameters. For the 1-d FD model the time step is defined as ∆t =
∆z/(10cp), in which ∆z denotes the spatial mesh size, equal to the smallest wavelength
to be analysed, and cp is the longitudinal wave velocity in the pile, such that 10 time
steps are used to represent the wave with the shortest wavelength [40]. In the 3-d LT
model, the upper frequency limit is used to select the truncation limit Nm in Equation (13)
and the time step is set equal to ∆t = π/(5ωm) (10 time steps for the highest frequency
component ωm). Further refinement of the previous discretization parameters is performed
until convergence is met, defined as:

εi =
|ui+1(z, t)− ui(z, t)|

|ui+1(z, t)| < 1% (14)

in which εi is the relative error of the displacement field between the i-th and (i + 1)-th
analyses, used as the convergence criterion.

3. Results

In Section 3.1 the validity of the 3-d LT model is verified, by reducing it into a physically
equivalent model to 1-d FD, for direct comparison. Furthermore, in Sections 3.2 and 3.3
numerical examples that consider the influence of wave dispersion and non-local soil
reaction, respectively, are presented.

3.1. Validation of the 3-d LT Model

At first, a set of numerical analyses for a single hammer blow are performed to
showcase the validity of the 3-d LT model. For this purpose, the 1-d FD model formulated
in Section 2.1 is used as reference and its results are compared to the respective ones
obtained from the 3-d LT model, upon proper reduction to an equivalent classical rod
with local soil reaction. By setting the Poisson’s ratio of the pile νp = 0 and discarding
Equation (8), the Love-Timoshenko shell theory is reduced to the classical rod theory.
Furthermore, by considering α → ∞, the spatial kernel becomes g(z, ξ) = δ(x − ξ) and
the soil reaction is rendered local. Under these considerations, the pile is equivalently
described by the classical rod theory and the soil reaction is local, in both models. In view
of the previous, the results of the numerical analyses by 1-d FD and reduced 3-d LT should
be identical.

The parameters of the validation case are shown in Table 1 and the hammer force
function, Ph(t), together with the amplitude of its Fourier transform, |Ph( f )|, are depicted
in Figure 4.

In Figure 5 the axial tip displacement, u(Lp, t), is presented for a single hammer
blow, as obtained by the two models in consideration. Evidently, the response obtained
by the two approaches is in excellent agreement. Therefore, in the following analyses
the capabilities of the 3-d LT model can be utilized fully, to study the two mechanisms
under discussion in this work, namely the dispersion of elastic waves in the pile and
the introduction of non-locality in the soil reaction along the pile shaft.
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Figure 4. Hammer force function Ph(t) (in black) and the amplitude of its Fourier transform |Ph( f )|
(in grey) for a pile with Rp = 1.1 m and hp = 0.03 m.

Table 1. Parameters of the validation case.

Pile

Young’s modulus Ep 210 GPa
Mass density ρp 7850 kg/m3

Poisson’s ratio νp 0.3
Length Lp 42 m
Radius Rp 1.1 m

Wall thickness hp 0.03 m
Initial embedment depth l2 25.2 m

Soil

Shear modulus Gs 18.52 MPa
Mass density ρs 1900 kg/m3

Poisson’s ratio νs 0.35
Friction angle φ′ 35◦

Soil-pile interface friction angle δ′ 31.5◦

Hammer

Ram mass mr 10,000 kg
Anvil mass ma 1000 kg

Cushion stiffness kc 70.87 × 106 kN/m
Ram impact velocity v0 5 m/s

Figure 5. Axial tip displacement, u(Lp, t), comparison between the 1-d FD and the reduced 3-d LT
model (α→ ∞ and νp = 0).
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3.2. Influence of Wave Dispersion

To isolate the effect of wave dispersion, the 3-d LT model used in the following
examples, had local soil reaction and differed from the 1-d FD solely in the pile description
as a thin cylindrical shell. For the following numerical examples, all the parameters had
the values given in Table 1, except for Rp, hp, l2 and the hammer parameters. The initial
embedment depths of l2 = 0.4Lp, 0.5Lp, 0.6Lp were considered, while various pile radii,
Rp, were used in the analyses (see Table 2), to identify the effect of these parameters on
the wave dispersion. In Table 2 each column provides a pair of pile radius, Rp, and wall
thickness, hp, leading to eleven different pile geometries.

Table 2. Set of variable pile parameters.

Rp 1.1 m 1.4 m 1.7 m 2.0 m 2.3 m 2.6 m 2.9 m 3.2 m 3.5 m 3.8 m 4.1 m
hp 0.03 m 0.03 m 0.03 m 0.04 m 0.04 m 0.04 m 0.04 m 0.05 m 0.05 m 0.05 m 0.05 m

Regarding the properties of the hammer, attention was needed in order to have results
that can be compared on a rational basis. For that purpose, normalization of the hammer
force was performed for all pile driving cases, such that the maximum axial stress at the pile
head was equal to 57% of the yield stress, fy = 355 MPa. The dimensionless mass ratio,
ma∗ = ma/mr, and the dimensionless cushion stiffness, k∗c = kcmr/Z2

p, with Zp denoting
the pile impedance, were used in order to achieve the normalization in all cases [22].
The aforementioned parameters were set to ma∗ = 0.1 and k∗c = 10 in all the cases studied,
while the ram impact velocity, v0, was equal to 5 m/s. Therefore, depending on the pile
geometry, the values of ram mass, mr, anvil mass, ma, and cushion stiffness, kc, were
scaled in order to preserve the dimensionless quantities and the maximum axial stress
level constant. According to the previous, the Fourier transform of the hammer force,
normalized over the maximum amplitude at zero frequency as |Ph( f )| = |Ph( f )|/|Ph(0)|,
is identical for all piles considered. In Figure 6 the normalized amplitude of the hammer
force spectrum is depicted together with the normalized amplitude at the ring frequency
of each pile of this study, indicated by the blue markers.

Figure 6. Normalized amplitude of the hammer force spectrum Ph( f ) (grey line), together with
the corresponding normalized amplitudes at the ring frequency fr of all the examined piles
(blue markers).

In Figure 7 the ultimate pile set ratio uLT(Lp, t f )/uFD(Lp, t f ) is displayed, in which
uLT(Lp, t f ) and uFD(Lp, t f ) denote the tip displacement of 3-d LT and 1-d FD, respectively,
at the final time moment of the analysis, t f . It is noted that t f was adequate for the im-
parted energy into the pile to dissipate through the soil reaction and the final set to be
obtained. As can be observed, for all the examined pile radii and embedment depths there
is deviation from the dispersionless response (i.e., ratio equal to 1.0) of the 1-d FD model.
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Consequently, wave dispersion does have an effect even for small-diameter piles, albeit
its influence on the final pile set is not as high as in the large-diameter cases. With ascend-
ing radius Rp, the amount of energy imparted in frequencies around the ring frequency
fr becomes significant. As a result the increase of |Ph( fr)| leads clearly to reduction of
the ultimate set ratio, as direct consequence of dispersion effects. Embedment depth, l2,
seems to be beneficial for the ultimate set ratio and mitigate partially these effects, which
is rational since additional damping is provided from the increased length of the shaft
in contact with the soil. The motions that are responsible for the wave dispersion are
high-frequency motions, thus increased embedment depth contributes into their decay and
results in a weaker influence on the pile response overall. Notwithstanding the remarks
about embedment depth, it seems that for large radii (Rp ≥ 3.0 m), or better for high
|Ph( fr)|, the set ratio is less sensitive to its influence. For these pile geometries the ring
frequency, fr, corresponds to frequencies that are significantly excited by the hammer im-
pact as |Ph( fr)| approaches 0.5 and relevant induced pile motions obtain large amplitudes.
The aforementioned observations and relevant remarks are better understood through
Figures 8 and 9.

Figure 7. Ratios of ultimate set obtained by 3-d LT model to 1-d FD model, uLT(Lp, t f )/uFD(Lp, t f ),
for the all considered pile radii, Rp and initial embedment depths, l2.

(a) (b)

Figure 8. Tip displacement, u(Lp, t), obtained by the 1-d FD and 3-d LT models for a pile with l2 = 25.2 m, (a) Rp = 1.1 m
and (b) Rp = 4.1 m.
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The tip displacement obtained by the two considered models, for the extreme scenarios
of the smallest and the largest pile radii, are shown in Figure 8. Evidently, the two responses
for Rp = 4.1 m (Figure 8b) deviate much more than for Rp = 1.1 m (Figure 8a). In Figure 8a,
the displacement mainly diverges for the two approaches after the second arrival of
the impact-induced stress wave at the pile tip (after t = 0.02 s), but follows the same
trend. On the contrary, in Figure 8b the response becomes dissimilar already after the first
arrival of the stress wave at the pile tip, as the frequency content of this motion is much
richer in components that display dispersive behaviour. The discrete Fourier transform
(DFT) spectra of the velocities for the cases analysed in Figure 8, are given in Figure 9 to
supplement the previous statement.

(a) (b)

Figure 9. Amplitude of axial velocity spectra,
∣∣∣ ∂u(Lp , f )

∂t

∣∣∣ and radial velocity spectra,
∣∣∣ ∂w(Lp , f )

∂t

∣∣∣ (for the 3-d LT model), for a
pile with l2 = 25.2 m, (a) Rp = 1.1 m and (b) Rp = 4.1 m.

In Figure 9a the amplitude of the axial velocity spectrum for both models is in good
agreement approximately up to 600 Hz. At that point the amplitude of the axial velocity
in the 3-d LT model drops significantly and energy in axial motion is reduced at these
frequencies. However, it is not the case that energy is not present in this region of the fre-
quency spectrum in the pile motion. As can be observed, the radial velocity amplitudes
surge in this region of the spectrum and even surpass the amplitudes of the axial velocity
in some frequencies. For this case the ring frequency is fr = 784.48 Hz, which supports our
findings. Considering further the case of Rp = 4.1 m, in Figure 9b the velocity spectrum
shows some differences with respect to Figure 9a. First, the drop corresponding to the vi-
cinity of the ring frequency occurs much lower in the frequency axis, as fr = 210.47 Hz and
even for the first small peaks in axial velocity, discrepancy exists between the two models.
The latter already indicates that dispersion is present in lower frequency components than
in Figure 9a, in which energy imparted from the hammer impact is greater (see Figure 6).
The peaks that can be distinguished in both Figure 9a,b correspond to the natural frequen-
cies of free vibration of the pile in vacuo, which are correctly represented by the 3-d LT
model as has been discussed in Section 2.2. For Rp = 1.1 m, the velocity amplitudes are
in good agreement up to certain frequency (approximately 600 Hz), albeit for Rp = 4.1 m
they clearly deviate along the whole spectrum indicating the inaccurate description of wave
propagation in the 1-d FD model. The aforementioned remarks lead to the discrepancy
observed in Figure 8b.

3.3. Influence of Non-Local Soil Reaction

At this point, the introduction of non-locality in the soil reaction of the 3-d LT model is
examined. For that purpose, the 3-d LT with local soil reaction and its non-local counterpart
are compared. The exact spatial distribution of the non-local soil reaction is not known
and in this work the Gaussian function is assumed as the spatial kernel a priori, with three
different values of influence distance considered, namely 1/α = Lp/100, Lp/200, Lp/500.
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In Figure 10 the axial tip displacement, u(Lp, t), is presented for Rp = 1.1 m and Rp = 4.1 m
(l2 = 25.2 m). As can be seen, the divergence of the displacement obtained by the non-local
models compared to the local one is much stronger for the large-diameter pile.

(a) (b)

Figure 10. Axial tip displacement, u(Lp, t), obtained by the local and non-local reaction models for various values of α,
with l2 = 25.2 m and (a) Rp = 1.1 m and (b) Rp = 4.1 m.

To better evaluate the effects of non-locality, in Figure 11 for each pile the displacement
ratio of non-local to local models, u(t) = u(Lp, t)/ u(Lp, t)

∣∣
α→∞ is examined for four differ-

ent pile radii. The effect of non-locality seems to become more eminent for large-diameter
piles and the deviation even between the non-local models for different values of α becomes
quite important. On the other hand, for Rp = 1.1 m and Rp = 2.0 m.

(a) (b)

(c) (d)

Figure 11. Displacement ratio of non-local to local reaction models, u(t) = u(Lp, t)/ u(Lp, t)
∣∣
α→∞ for a pile with l2 = 25.2 m

and (a) Rp = 1.1 m, (b) Rp = 2.0 m, (c) Rp = 3.2 m and (d) Rp = 4.1 m.
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All the non-local reaction models considered present a ratio, u(t), from 0.9 to 1.0,
practically meaning that for the values of α considered, local and non-local reaction do not
significantly alter the final pile penetration. In all cases, the non-locality seems to reduce
the final pile penetration for the considered soil profile. Furthermore, the increase of α
(decrease of influence distance) tends to provide a response that converges to the one of
the local reaction model, which is rational. To summarize, Figure 11 reveals that the non-
locality of soil reaction can affect the pile response in variable degree and the pile radius
seems to be a significant factor that determines the amount of this influence.

Apart from the pile radius, the parameter of the embedment depth l2, is finally
considered. In Figure 12, the smallest (Rp = 1.1 m) and the largest (Rp = 4.1 m) pile radii
of this study are shown, for l2 = 16.8 m and l2 = 25.2 m. At a first glance, the different
values of l2 do not appear to significantly alter the displacement ratios, u(t). For both piles
the larger l2 value seems to lead to a minor reduction of u(t). Finally, the introduction of
the soil reaction in the radial direction and its effect on the pile penetration comprises an
additional step, not considered herein as this work focuses on dispersive wave propagation
and non-local soil reaction in the direction of driving.

(a) (b)

(c) (d)

Figure 12. Displacement ratio of non-local to local reaction models, u(t) = u(Lp, t)/ u(Lp, t)
∣∣
α→∞ for a pile with

(a) Rp = 1.1 m and l2 = 16.8 m, (b) Rp = 1.1 m and l2 = 25.2 m, (c) Rp = 4.1 m and l2 = 16.8 m and (d) Rp = 4.1 m and
l2 = 25.2 m.
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4. Conclusions

In this paper a three-dimensional axisymmetric pile driving model with non-local soil
reaction is developed. The pile description is based on the Love-Tismohenko theory for thin
cylindrical shells and the non-local soil reaction is formulated as a convolution integral of
local soil reaction models and the Gaussian function as spatial kernel. Furthermore, a one-
dimensional model, according to widely adopted approaches in the area of pile driving,
is formulated and used for comparison, in order to investigate the effects of dispersion of
elastic waves and non-locality of soil reaction.

First, the dispersion of elastic waves in the pile was studied, for various pile geometries
and initial embedment depths. The main argument of the significance of wave dispersion
in drivability of large-diameter monopiles was ascertained, as the effect of dispersion
was found to increase with ascending pile radius. Embedment depth provided some
mitigation of this effect for small-to-medium pile radii, while for large-diameter piles
the effect of wave dispersion was sustained even for large pile embedments. In the vicinity
of the ring frequency pile motion is predominantly radial and significantly excited by
the hammer impact for large-diameter monopiles. This effect cannot be captured by one-
dimensional models and can alter the soil resistance to driving. In the current effort to
modify, or even reinvent, the existing drivability approaches for large-diameter monopiles
the proper description of the pile motion is essential. Otherwise, certain response features
in monopile installation data, resulting from wave dispersion, may be falsely attributed
to other mechanisms, e.g., soil non-linear behaviour, and lead us further away from an
accurate approach to predict monopile drivability.

Conclusively, the introduction of non-local soil reaction has been realized. A system of
integro-differential equations is obtained, which is solved by means of the Galerkin method
and numerical integration. The results from this study are mostly an indication of how
non-local reaction can affect the pile penetration during impact piling. The effect of non-
locality was found to be more influential in the case of large diameters, while the variable
embedment depth yielded minor differences between local and non-local models. Decrease
of the influence distance, 1/α, showcased the trend to converge to the response of the local
reaction model, which is the expected behaviour. Results for various influence distances
comprise an indication of the degree to which non-locality may or may not affect the overall
behaviour. Finally, the refinement of the non-local soil reaction by introducing a frequency-
dependent spatio-temporal kernel, based on the response of the three-dimensional soil
continuum is considered the optimal next step for the development of the present model.
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