X-ray Computed Tomography as a Tool for Screening Sediment Cores: An Application to the Lagoons of the Po River Delta (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sediment Core Sampling
2.2. CT-Scan Examination
2.3. Core Subsampling and Sediment Analyses
3. Results and Discussion
3.1. Sediment Characteristics
3.2. CT Number, Bulk Density and Water Content
3.3. Relations between Water Content and Sediment Characteristics
3.4. Relations between CT Number and Sediment Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orsi, T.H.; Edwards, C.M.; Anderson, A.L. X-Ray computed-tomography—A non-destructive method for quantitative analysis of sediment cores. J. Sediment. Res. Sect. A Sediment. Petrol. Process. 1994, 64, 690–693. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, G.; Long, B.F. CAT-scan analysis of sedimentary sequences: An ultrahigh-resolution paleoclimatic tool. Eng. Geol. 2009, 103, 127–133. [Google Scholar] [CrossRef]
- Reilly, B.T.; Stoner, J.S.; Wiest, J. SedCT: MATLAB tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner. Geochem. Geophys. Geosyst. 2017, 18, 3231–3240. [Google Scholar] [CrossRef]
- Dorador, J.; Rodriguez-Tovar, F.J. High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects. Earth-Sci. Rev. 2018, 177, 226–237. [Google Scholar] [CrossRef]
- Ma, S.H.; Zheng, J.N.; Tang, D.W.; Li, Y.P.; Li, Q.P.; Lv, X. Application of X-Ray Computed Tomography Technology in Gas Hydrate. Energy Technol. 2019, 7. [Google Scholar] [CrossRef]
- Duck, Y.; Lorke, A.; Jokiel, C.; Gierse, J. Laboratory and field investigations on freeze and gravity core sampling and assessment of coring disturbances with implications on gas bubble characterization. Limnol. Oceanogr. Methods 2019, 17, 585–606. [Google Scholar] [CrossRef]
- Tonai, S.; Kubo, Y.; Tsang, M.Y.; Bowden, S.; Ide, K.; Hirose, T.; Kamiya, N.; Yamamoto, Y.; Yang, K.H.; Yamada, Y.; et al. A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370. Front. Earth Sci. 2019, 7, 117. [Google Scholar] [CrossRef]
- Nichols, M.M.; Boon, J.D. Sediment transport processes in coastal lagoons. In Coastal Lagoon Processes (Elsevier Oceanography Series, 60); Kjerfve, E., Ed.; Elsevier Sciences Publishers: Amsterdam, The Netherlands, 1994; Volume 60, pp. 157–219. [Google Scholar]
- Machado, A.S.; Dal Bó, P.F.F.; Lima, I.; Borghi, L.; Lopes, R. X-ray microtomography characterization of carbonate microbialites from a hypersaline coastal lagoon in the Rio de Janeiro State—Brazil. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 574–580. [Google Scholar] [CrossRef]
- Amos, C.L.; Bergamasco, A.; Umgiesser, G.; Cappucci, S.; Cloutier, D.; DeNat, L.; Flindt, M.; Bonardi, M.; Cristante, S. The stability of tidal flats in Venice Lagoon—the results of in-situ measurements using two benthic, annular flumes. J. Mar. Syst. 2004, 51, 211–241. [Google Scholar] [CrossRef]
- Emmanouilidis, A.; Messaris, G.; Ntzanis, E.; Zampakis, P.; Prevedouros, I.; Bassukas, D.A.; Avramidis, P. CT scanning, X-ray fluorescence: Non-destructive techniques for the identification of sedimentary facies and structures. Revue Micropaléontol. 2020, 67, 100410. [Google Scholar] [CrossRef]
- Istituto Superiore per la Protezione e la Ricerca Ambientale—Gli Annali Idrologici. Available online: https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/acque-interne-e-marino-costiere-1/progetto-annali/gli-annali-idrologici (accessed on 10 February 2021). (In Italian)
- Pirrone, N.; Trombino, G.; Cinnirella, S.; Algieri, A.; Bendoricchio, G.; Palmeri, L. The Driver-Pressure-State-Impact-Response (DPSIR) approach for integrated catchment-coastal zone management: Preliminary application to the Po catchment—Adriatic Sea coastal zone system. Reg. Environ. Chang. 2005, 5, 111–137. [Google Scholar] [CrossRef]
- Abbiati, M.; Mistri, M.; Bartoli, M.; Ceccherelli, V.U.; Colangelo, M.A.; Ferrari, C.R.; Giordani, G.; Munari, C.; Nizzoli, D.; Ponti, M.; et al. Trade-off between conservation and exploitation of the transitional water ecosystems of the northern Adriatic Sea. Chem. Ecol. 2010, 26, 105–119. [Google Scholar] [CrossRef]
- Zonta, R.; Cassin, D.; Pini, R.; Dominik, J. Assessment of heavy metal and As contamination in the surface sediments of Po delta lagoons (Italy). Estuar. Coast. Shelf Sci. 2019, 225, 106235. [Google Scholar] [CrossRef]
- Verza, E.; Cattozzo, L. Atlante Lagunare Costiero del Delta del Po; Regione del Veneto, Associazione Culturale Naturalistica Sagittaria, Consorzio di Bonifica Delta del Po: Taglio di Po-Rovigo, Italy, 2015; pp. 1–341. (In Italian) [Google Scholar]
- Maicu, F.; De Pascalis, F.; Ferrarin, C.; Umgiesser, G. Hydrodynamics of the Po river-delta-sea system. J. Geophys. Res. Oceans 2018, 123, 6349–6372. [Google Scholar] [CrossRef]
- Dalrymple, N.C.; Srinivasa, R.P.; Freckleton, M.W.; Chintapalli, K.N. Introduction to the Language of Three-dimensional Imaging with Multidetector CT. RadioGraphics 2005, 25, 1409–1428. [Google Scholar] [CrossRef]
- Boudreau, B.P.; Algar, C.; Johnson, B.D.; Croudace, I.W.; Reed, A.; Furukawa, Y.; Dorgan, K.M.; Jumars, P.A.; Grader, A.S.; Gardiner, B.S. Bubble growth and rise in soft sediments. Geology 2005, 33, 517–520. [Google Scholar] [CrossRef]
- Liu, L.; De Kock, T.; Wilkinson, J.; Cnudde, V.; Xiao, S.; Buchmann, C.; Uteau, D.; Peth, S.; Lorke, A. Methane Bubble Growth and Migration in Aquatic Sediments Observed by X-ray μCT. Environ. Sci. Technol. 2018, 52, 2007–2015. [Google Scholar] [CrossRef]
- Zonta, R.; Cassin, D.; Pini, R.; Dominik, J. Substantial Decrease in Contaminant Concentrations in the Sediments of the Venice (Italy) Canal Network in the Last Two Decades—Implications for Sediment Management. Water 2020, 12, 1965. [Google Scholar] [CrossRef]
- Percival, J.B.; Lindsay, P.J. Measurement of physical properties of sediments. In Manual of Physico-Chemical Analysis of Aquatic Sediments; Mudrock, A., Azcue, J.M., Mudrock, P., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 7–45. [Google Scholar]
- Hobbs, C.H. A method for determining the dry bulk density of subaqueous sediments. J. Sediment. Res. 1983, 53, 663–665. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Ritvo, G.; Meijer, L.E.; Kochba, M. Water content, organic carbon and dry bulk density in flooded sediments. Aquac. Eng. 2001, 25, 25–33. [Google Scholar] [CrossRef]
- Hamilton, E.L. Sound velocity and related properties of marine sediments, North Pacific. J. Geophys. Res. 1970, 75, 4423–4446. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils, Revision 1; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30.
- United States Environmental Protection Agency. Method 2007: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4; United States Environmental Protection Agency: Cincinnati, OH, USA, 1994; pp. 1–58.
- Gupta, L.P.; Tanikawa, W.; Hamada, Y.; Hirose, T.; Ahagon, N.; Sugihara, T.; Abe, N.; Nomura, S.; Masaki, Y.; Wu, H.Y.; et al. Examination of gas hydrate-bearing deep ocean sediments by X-ray Computed Tomography and verification of physical property measurements of sediments. Mar. Pet. Geol. 2019, 108, 239–248. [Google Scholar] [CrossRef]
- Ashi, J. CT scan analysis of sediments from Leg 146. Proceed. Ocean Drill. Program. Sci. Results 1995, 146, 191–199. [Google Scholar]
- Amos, C.L.; Sutherland, T.F.; Radzijewski, B.; Doucette, M. A rapid technique to determine bulk density of fine-grained sediments by X-ray computed tomography. J. Sediment. Res. 1996, 66, 1023–1039. [Google Scholar] [CrossRef]
- Fortin, D.; Francus, P.; Gebhardt, A.C.; Hahn, A.; Kliem, P.; Lisé-Pronovost, A.; The PASADO Science Team. Destructive and non-destructive density determination: Method comparison and evaluation from the Laguna Potrok Aike sedimentary record. Quat. Sci. Rev. 2013, 71, 147–153. [Google Scholar] [CrossRef]
- Gupta, S.C.; Larson, W.E. Estimating soil-water retention characteristics from particle-size distribution, organic- matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Keller, G.H. Organic matter and geotechnical proprieties of submarine sediments. Geo-Mar. Lett. 1982, 2, 191–198. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet. Sci. Lett. 2008, 273, 138–151. [Google Scholar] [CrossRef]
- Duchesne, M.J.; Moore, F.; Long, B.F.; Labrie, J. A rapid method for converting medical Computed Tomography scanner topogram attenuation scale to Hounsfield Unit scale and to obtain relative density values. Eng. Geol. 2009, 103, 100–105. [Google Scholar] [CrossRef]
- Orsi, T.H.; Anderson, A.L. Bulk density calibration for X-ray tomographic analyses of marine sediments. Geo-Mar. Lett. 1999, 19, 270–274. [Google Scholar] [CrossRef]
- Akin, S.; Kovscek, A.R. Computed tomography in petroleum engineering research. Geol. Soc. Lond. Spec. Publ. 2003, 215, 23–38. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G. Geochemical proxies of sediment provenance in alluvial plains with interfering fluvial systems: A study case from NE Italy. Catena 2017, 157, 67–74. [Google Scholar] [CrossRef]
- Flemming, B.W.; Delafontaine, M.T. Mass physical properties of muddy intertidal sediments: Some applications, misapplications and non-applications. Cont. Shelf Res. 2000, 20, 1179–1197. [Google Scholar] [CrossRef]
- Boespflug, X.; Long, B.F.N.; Occhietti, S. CAT-scan in marine stratigraphy—A quantitative approach. Mar. Geol. 1995, 122, 281–301. [Google Scholar] [CrossRef]
WC | OC | Porosity (1) | Bulk Density (1) | TN | <16 μm (2) | IC | Fe (3) | CT Number | |
---|---|---|---|---|---|---|---|---|---|
% | % | % | g cm−3 | % | % | % | % | HU | |
Minimum | 18.4 | 0.18 | 37.4 | 1.28 | 0.016 | 5.2 | 1.13 | 1.3 | 491 |
Maximum | 64.2 | 2.39 | 82.4 | 2.03 | 0.322 | 77.9 | 4.07 | 4.3 | 1389 |
Median | 39.6 | 0.9 | 62.7 | 1.58 | 0.100 | 38.5 | 2.13 | 2.6 | 876 |
Mean | 41.2 | 1.01 | 63.6 | 1.59 | 0.116 | 43.2 | 2.16 | 2.2 | 906 |
STD | 11.2 | 0.46 | 10.7 | 0.18 | 0.060 | 17.4 | 0.43 | 0.6 | 229 |
CV% (4) | 27.1 | 45.0 | 16.9 | 11.2 | 51.3 | 40.3 | 19.9 | 21.5 | 25.3 |
Regression | Intercept | Constant | R2 | Reference |
---|---|---|---|---|
1 | 0.926 | 7.36 × 10−4 | 0.893 | this work |
2 | 0.924 | 8.0 × 10−4 | 0.990 | [29] |
3 | 1 | 8.0 × 10−4 | 0.933 | [30] |
4 | 0.921 | 6.94 × 10−4 | 0.992 | [31] |
Dependent Variable: WC | Dependent Variable: CT Number | |||||||
---|---|---|---|---|---|---|---|---|
Independent Variables | Independent Variables | |||||||
Regression Type | TN | <16 μm | OC | WC | TN | <16 μm | OC | |
linear | R2 | 0.79 | 0.66 | 0.63 | 0.85 | 0.70 | 0.67 | |
x coefficient | 166 | 0.52 | 19.3 | −3527 | −11 | −410 | ||
intercept | 22 | 19 | 22 | 1316 | 1384 | 1323 | ||
polynomial | R2 | 0.83 | 0.67 | 0.90 | 0.71 | |||
x2 coefficient | −481 | −7.95 | 10,876 | 155 | ||||
x coefficient | 279 | 38 | −6500 | −769 | ||||
intercept | 15 | 13 | 1476 | 1494 | ||||
linear partial | limit | <0.2% | <1.8% | <0.2% | <1.8% | |||
R2 | 0.79 | 0.64 | 0.87 | 0.68 | ||||
x coefficient | 202 | 23.4 | −4344 | −492 | ||||
intercept | 19 | 18 | 1389 | 1390 | ||||
n * | 227 | 236 | 227 | 236 | ||||
Multiple reg. 1 | R2 adj. | 0.84 | 0.90 | |||||
x coefficient | 118 | 0.22 | −2629 | −4.6 | ||||
intercept | 17.7 | 1403 | ||||||
Multiple reg. 2 | R2 adj. | 0.84 | 0.90 | |||||
x coefficient | 120 | 0.22 | −0.21 | −2629 | −4.6 | 10.9 | ||
intercept | 17.8 | 1400 | ||||||
Multiple reg. 3 | R2 adj. | 0.93 | ||||||
x coefficient | −12.6 | −1432 | ||||||
intercept | 1593 | |||||||
Multiple reg. 4 | R2 adj. | 0.94 | ||||||
x coefficient | −9.7 | −1394 | −2.46 | |||||
intercept | 1575 | |||||||
Multiple reg. 5 | R2 adj. | 0.94 | ||||||
x coefficient | −9.7 | −1466 | −2.42 | 8.9 | ||||
intercept | 1572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zonta, R.; Fontolan, G.; Cassin, D.; Dominik, J. X-ray Computed Tomography as a Tool for Screening Sediment Cores: An Application to the Lagoons of the Po River Delta (Italy). J. Mar. Sci. Eng. 2021, 9, 323. https://doi.org/10.3390/jmse9030323
Zonta R, Fontolan G, Cassin D, Dominik J. X-ray Computed Tomography as a Tool for Screening Sediment Cores: An Application to the Lagoons of the Po River Delta (Italy). Journal of Marine Science and Engineering. 2021; 9(3):323. https://doi.org/10.3390/jmse9030323
Chicago/Turabian StyleZonta, Roberto, Giorgio Fontolan, Daniele Cassin, and Janusz Dominik. 2021. "X-ray Computed Tomography as a Tool for Screening Sediment Cores: An Application to the Lagoons of the Po River Delta (Italy)" Journal of Marine Science and Engineering 9, no. 3: 323. https://doi.org/10.3390/jmse9030323
APA StyleZonta, R., Fontolan, G., Cassin, D., & Dominik, J. (2021). X-ray Computed Tomography as a Tool for Screening Sediment Cores: An Application to the Lagoons of the Po River Delta (Italy). Journal of Marine Science and Engineering, 9(3), 323. https://doi.org/10.3390/jmse9030323