Influence of Wind on Suspended Matter in the Water of the Albufera of Valencia (Spain)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Meteorological Data
3.2. Remote Sensing Images
3.3. Multivariate Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Marcó, L.; Azario, R.; Metzler, C.; García, M.D. La turbidez como indicador básico de calidad de aguas potabilizadas a partir de fuentes superficiales. Propuestas a propósito del estudio del sistema de potabilización y distribución en la ciudad de Concepción del Uruguay (Entre Ríos, Argentina). Rev. Hig. Sanid. Ambient. 2004, 4, 72–82. [Google Scholar]
- Leggett, C.G.; Bockstael, N.E. Evidence of the effects of water quality on residential land prices. J. Environ. Econ. Manag. 2000, 39, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Howick, G.L. Turbidity in Lake Carl Blackwell: Effects of water depth and wind. Proc. Okla. Acad. Sci. 1985, 65, 51–58. [Google Scholar]
- Barstow, S.F. The ecology of Langmuir circulation: A review. Mar. Environ. Res. 1983, 9, 211–236. [Google Scholar] [CrossRef]
- Wu, T.; Timo, H.; Qin, B.; Zhu, G.; Janne, R.; Yan, W. In-situ erosion of cohesive sediment in a large shallow lake experiencing long-term decline in wind speed. J. Hydrol. 2016, 539, 254–264. [Google Scholar] [CrossRef]
- Eleveld, M.A. Wind-induced resuspension in a shallow lake from Medium Resolution Imaging Spectrometer (MERIS) full-resolution reflectances. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. Living Planet Symp. 2016, 740, 54. [Google Scholar]
- Domínguez Gómez, J.A.; Alonso, C.; Alonso, A. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs). Environ. Monit. Asses. 2011, 181, 317–334. [Google Scholar] [CrossRef]
- Margalef, R. Limnología; Barcelona: Omega, Spain, 1983. [Google Scholar]
- Austin, R.W. Remote sensing of the diffuse attenuation coefficient of ocean water. AGARD Spec. Top. Opt. Propag. 1981, 9. [Google Scholar]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Loiselle, S.; Yesou, H. Determination of the Downwelling Diffuse Attenuation Coefficient of Lake Water with the Sentinel-3A OLCI. Remote Sens. 2017, 9, 1246. [Google Scholar] [CrossRef] [Green Version]
- Erena, M.; Domínguez, J.A.; Aguado-Giménez, F.; Soria, J.; García-Galiano, S. Monitoring Coastal Lagoon Water Quality through Remote Sensing: The Mar Menor as a Case Study. Water 2019, 11, 1468. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, S. Landsat TM based quantification of chlorophyll-a during algae blooms in coastal waters. Int. J. Remote Sens. 1992, 13, 1913–1926. [Google Scholar] [CrossRef]
- Lopez Garcia, M.J.; Caselles, V. A multi-temporal study of chlorophyll-a concentration in the Albufera lagoon of Valencia, Spain, using Thematic Mapper data. Int. J. Remote Sens. 1990, 11, 301–311. [Google Scholar] [CrossRef]
- Eder, E.; Dörnhöfer, K.; Gege, P.; Schenk, K.; Klinger, P.; Wenzel, J.; Gruber, N. Analysis of Mineral-Rich Suspended Matter in Glacial Lakes Using Simulations and Satellite Data. In Living Planet Symposium; Ouwehand, L., Ed.; ESA Communications: Noordwijk, The Netherlands, 2016. [Google Scholar]
- Giardino, C.; Bresciani, M.; Stroppiana, D.; Oggioni, A.; Morabito, G. Optical Remote Sensing of Lakes: An Overview on Lake Maggiore. J. Limnol. 2014, 73, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI Images to Retrieve Suspended particulate matter concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Butman, D. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Ciancia, E.; Campanelli, A.; Lacava, T.; Palombo, A.; Pascucci, S.; Pergola, N.; Tramutoli, V. Modeling and Multi-Temporal Characterization of Total Suspended Matter by the Combined Use of Sentinel 2-MSI and Landsat 8-OLI Data: The Pertusillo Lake Case Study (Italy). Remote Sens. 2020, 12, 2147. [Google Scholar] [CrossRef]
- Garg, V.; Aggarwal, S.P.; Chauhan, P. Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomat. Nat. Haz. Risk 2020, 11, 1175–1195. [Google Scholar] [CrossRef]
- Kratzer, S.; Brockmann, C.; Moore, G. Using MERIS full resolution data to monitor coastal waters—A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sens. Environ. 2008, 112, 2284–2300. [Google Scholar] [CrossRef]
- Sòria-Perpinyà, X.; Urrego, P.; Pereira-Sandoval, M.; Ruiz-Verdú, A.; Peña, R.; Soria, J.M.; Moreno, J. Monitoring the ecological state of a hypertrophic lake (Albufera of València, Spain) using multitemporal Sentinel-2 images. Limnetica 2019, 38, 457–469. [Google Scholar] [CrossRef]
- Soria, J.M. Past, present and future of la Albufera of Valencia Natural Park. Limnetica 2006, 25, 135–142. [Google Scholar]
- Sebastiá-Frasquet, M.T.; Aguilar-Maldonado, J.A.; Santamaría-Del-Ángel, E.; Estornell, J. Sentinel 2 Analysis of Turbidity Patterns in a Coastal Lagoon. Remote Sens. 2019, 11, 2926. [Google Scholar] [CrossRef] [Green Version]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Moreno, J. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sci. Total Environ. 2020, 698, 134305. [Google Scholar] [CrossRef]
- Carlson, R.E.; Havens, K.E. Simple Graphical Methods for the Interpretation of Relationships between Trophic State Variables. Lake Reserv. Manag. 2005, 21, 107–118. [Google Scholar] [CrossRef]
- Marco-Barba, J.; Burjachs, F.; Reed, J.M.; Santisteban, C.; Usera, J.M.; Alberola, C.; Miracle, M.R. Mid-Holocene and historical palaeoecology of the Albufera de València coastal lagoon. Limnetica 2019, 38, 353–389. [Google Scholar] [CrossRef]
- Wheeler, D.; Wilkinson, C. From calm to storm: The origins of the Beaufort wind scale. Mariner’s Mirror 2004, 90, 187–201. [Google Scholar] [CrossRef]
- Joannis, C.; Ruban, G.; Gromaire, M.C.; Bertrand-Krajewski, J.L.; Chebbo, G. Reproducibility and uncertainty of wastewater turbidity measurements. Water Sci. Technol. 2008, 57, 1667–1673. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- So, S.; Khare, Y.; Park, K.; Mehta, A. Critical wind and turbidity rise in a shallow Florida lake. WIT Trans. Ecol. Environ. 2013, 169, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Jalil, A.; Li, Y.; Zhang, K.; Gao, X.; Wang, W.; Khan, H.O.S.; Pan, B.; Ali, S.; Acharya, K. Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. Int. J. Sediment Res. 2019, 34, 205–215. [Google Scholar] [CrossRef]
- Cózar, A.; Gálvez, J.A.; Hull, V.; García, C.M.; Loiselle, S.A. Sediment resuspension by wind in a shallow lake of Esteros del Ibera (Argentina): A model based on turbidimetry. Ecol. Model. 2005, 186, 63–76. [Google Scholar] [CrossRef]
- Ouni, H.; Kawachi, A.; Irie, M.; M’Barek, N.B.; Hariga-Tlatli, N.; Tarhouni, J. Development of water turbidity index (WTI) and seasonal characteristics of total suspended matter (TSM) spatial distribution in Ichkeul Lake, a shallow brackish wetland, Northern-East Tunisia. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140, 365–377. [Google Scholar] [CrossRef]
Beaufort Scale | Wind Speed (km h−1) | Designation |
---|---|---|
1 | 0–4 | Light air |
2 | 4–11 | Light breeze |
3 | 11–18 | Gentle breeze |
4 | 18–25 | Moderate breeze |
5 | 25–32 | Fresh breeze |
6 | 32–40 | Strong breeze |
Date | Wind km h−1 | Direction | TSM mg L−1 | CHL mg m−3 | KD_z90max m−1 |
---|---|---|---|---|---|
16/01/2017 | 27.5 | WSW | 161.62 | 35.19 | 0.34 |
05/02/2017 | 27.5 | WSW | 333.80 | 89.99 | 0.11 |
25/02/2017 | 6.9 | ESE | 56.70 | 16.74 | 0.72 |
17/12/2017 | 12.1 | W | 50.75 | 30.26 | 0.50 |
11/01/2018 | 18.5 | WSW | 217.77 | 78.13 | 0.24 |
25/02/2018 | 9.3 | VAR | 63.65 | 84.66 | 0.55 |
07/03/2018 | 20.9 | WSW | 143.13 | 43.43 | 0.32 |
12/03/2018 | 22.6 | WSW | 315.43 | 35.72 | 0.12 |
20/06/2018 | 8.6 | ESE | 63.97 | 56.14 | 0.38 |
05/07/2018 | 8.9 | NE | 64.99 | 40.75 | 0.41 |
20/07/2018 | 8.5 | VAR | 57.09 | 34.66 | 0.46 |
04/08/2018 | 6.8 | ESE | 54.85 | 27.79 | 0.50 |
09/08/2018 | 12.4 | ESE | 51.53 | 28.87 | 0.50 |
29/08/2018 | 9.6 | ESE | 61.47 | 27.35 | 0.45 |
13/09/2018 | 8.4 | WNW | 53.80 | 37.45 | 0.45 |
03/10/2018 | 7.1 | WNW | 54.80 | 46.42 | 0.39 |
27/11/2018 | 16.9 | WSW | 163.92 | 63.25 | 0.27 |
12/12/2018 | 8.1 | WSW | 75.90 | 46.27 | 0.35 |
17/12/2018 | 18.7 | WSW | 111.28 | 67.32 | 0.24 |
01/01/2019 | 6.0 | SW | 84.78 | 49.05 | 0.25 |
06/01/2019 | 7.7 | SW | 76.69 | 39.27 | 0.28 |
16/01/2019 | 6.6 | SW | 64.45 | 39.16 | 0.40 |
20/02/2019 | 7.5 | E | 62.95 | 45.88 | 0.45 |
25/02/2019 | 8.0 | W | 54.89 | 31.50 | 0.55 |
17/03/2019 | 10.2 | W | 72.10 | 24.85 | 0.53 |
11/04/2019 | 16.8 | W | 65.87 | 46.89 | 0.39 |
26/04/2019 | 18.3 | WSW | 96.22 | 71.21 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria, J.; Jover, M.; Domínguez-Gómez, J.A. Influence of Wind on Suspended Matter in the Water of the Albufera of Valencia (Spain). J. Mar. Sci. Eng. 2021, 9, 343. https://doi.org/10.3390/jmse9030343
Soria J, Jover M, Domínguez-Gómez JA. Influence of Wind on Suspended Matter in the Water of the Albufera of Valencia (Spain). Journal of Marine Science and Engineering. 2021; 9(3):343. https://doi.org/10.3390/jmse9030343
Chicago/Turabian StyleSoria, Juan, Miguel Jover, and José Antonio Domínguez-Gómez. 2021. "Influence of Wind on Suspended Matter in the Water of the Albufera of Valencia (Spain)" Journal of Marine Science and Engineering 9, no. 3: 343. https://doi.org/10.3390/jmse9030343
APA StyleSoria, J., Jover, M., & Domínguez-Gómez, J. A. (2021). Influence of Wind on Suspended Matter in the Water of the Albufera of Valencia (Spain). Journal of Marine Science and Engineering, 9(3), 343. https://doi.org/10.3390/jmse9030343