Sediment Characteristics and Intertidal Beach Slopes along the Jiangsu Coast, China
Abstract
:1. Introduction
2. Area Description
3. Material and Method
3.1. Data Source
3.2. Data Processing
4. Results
4.1. Cross-Shore Intertidal Beach Shape
4.2. Sediment Grain Size Distribution
4.3. Human Interventions
- Intertidal beach slopes are larger in the eroding north part of the Jiangsu Coast than in the accreting south part. Apart from some outliers that relate to rocky parts of the coastline, beach slopes show a southward flattening trend in both the north and south part of the coastline, albeit more obvious in the accreting south part.
- In the cross-shore direction, the bed surface sediment grain size decreases landward, and the sorting is getting better seaward. In the alongshore direction, the sediment grain size distribution pattern is more complex, with explicitly the following two features: In the eroding north part, both extremely fine sediment dominant profiles and coarse sands dominant profiles can be found. In the accreting south part, sediment grain size shows a southward increasing pattern.
- Human interventions continuously took place along the Jiangsu Coast. The most recent dykes in the northern Jiangsu Coast were built more than 20 years before the time of measurement. While in the south part, new dykes were built more recently, most within one year time before the measurement.
5. Discussion
5.1. Reliability of the Results
5.2. Extremely Fine or Coarse Sediment in the North Coast
5.3. Alongshore Variation of Intertidal Beach Slope and Sediment Grain Size
5.3.1. Hydrodynamics
5.3.2. Sediment Sources
5.3.3. Human Interventions
6. Conclusions
- Intertidal beach slopes are larger in the northern eroding part than in the accreting south part. A clear southward flattening pattern can be observed in the accreting south part.
- The bed surface sediment grain size decreases landward in the cross-shore direction. In the alongshore direction, sediment grain size shows a southward increasing pattern in the south part.
- Both extremely fine sediment dominant profiles and coarse sands dominant profiles can be found in the north part.
- Human intervention continuously took place along the Jiangsu Coast. However, its influence on the morphological and sedimentological characteristics of the Jiangsu Coast cannot be determined from this one-time investigation dataset, as it was collected too shortly after the implementation of large-scale land reclamation schemes. More field surveys are needed to further study the tidal flat response to human interventions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Muller, J.R.M.; Chan, Y.-C.; Piersma, T.; Chen, Y.-P.; Aarninkhof, S.G.J.; Hassell, C.J.; Tao, J.-F.; Gong, Z.; Wang, Z.B.; Van Maren, D.S. Building for nature: Preserving threatened bird habitat in port design. Water 2020, 12, 2134. [Google Scholar] [CrossRef]
- van der Spek, A.J.; Elias, E.P. Half a century of morphological change in the Haringvliet and Grevelingen ebb-tidal deltas (SW Netherlands)—Impacts of large-scale engineering 1964–2015. Mar. Geol. 2021, 432, 106404. [Google Scholar] [CrossRef]
- Dean, R.G. Equilibrium beach profiles: Characteristics and applications. J. Coast. Res. 1991, 7, 53–84. [Google Scholar]
- Work, P.A.; Dean, R.G. Effect of varying sediment size on equilibrium beach profiles. In Coastal Sediments; ASCE: Reston, VA, USA, 1992; pp. 890–904. [Google Scholar]
- Medina, R.; Losada, M.; Losada, I.; Vidal, C. Temporal and spatial relationship between sediment grain size and beach profile. Mar. Geol. 1994, 118, 195–206. [Google Scholar] [CrossRef]
- Karunarathna, H.; Horrillo-Caraballo, J.; Kuriyama, Y.; Mase, H.; Ranasinghe, R.; Reeve, D.E. Linkages between sediment composition, wave climate and beach profile variability at multiple time-scales. Mar. Geol. 2016, 381, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Firoozfar, A.; Neshaei, M.A.L.; Dykes, A.P. Beach profiles and sediments, a case of Caspian Sea. Int. J. Mar. Sci. 2014, 4. [Google Scholar] [CrossRef]
- Bujan, N.; Cox, R.; Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar. Geol. 2019, 417, 106012. [Google Scholar] [CrossRef]
- Lee, S.C.; Mehta, A.J. Problems in characterizing dynamics of mud shore profiles. J. Hydraul. Eng. 1997, 123, 351–361. [Google Scholar] [CrossRef]
- Kirby, R. Practical implications of tidal flat shape. Cont. Shelf Res. 2000, 20, 1061–1077. [Google Scholar] [CrossRef]
- Zhou, Z.; Coco, G.; van der Wegen, M.; Gong, Z.; Zhang, C.; Townend, I. Modelling sorting dy-namics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves. Cont. Shelf Res. 2015, 104, 76–91. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, Z.B.; Stive, M.J.F.; Zhang, C.; Chu, A. Process-Based Morphodynamic Modeling of a Schematized Mudflat Dominated by a Long-Shore Tidal Current at the Central Jiangsu Coast, China. J. Coast. Res. 2012, 285, 1381–1392. [Google Scholar] [CrossRef]
- Mariotti, G.; Fagherazzi, S. Channels-tidal flat sediment exchange: The channel spillover mechanism. J. Geophys. Res. Ocean. 2012, 117, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Carling, P.; Williams, J.; Croudace, I.; Amos, C. Formation of mud ridge and runnels in the intertidal zone of the Severn Estuary, UK. Cont. Shelf Res. 2009, 29, 1913–1926. [Google Scholar] [CrossRef]
- Kleinhans, M.G.; Schuurman, F.; Bakx, W.; Markies, H. Meandering channel dynamics in highly cohesive sediment on an intertidal mud flat in the Westerschelde estuary, the Netherlands. Geomorphology 2009, 105, 261–276. [Google Scholar] [CrossRef]
- Soulsby, R.L. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford Publications: London, UK, 1997. [Google Scholar]
- Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, Part1; Aqua Publications: Amsterdam, The Netherlands, 1993; Volume 100. [Google Scholar]
- Winterwerp, J.C.; van Kesteren, W.G. Introduction to the Physics of Cohesive Sediment in the Marine Environment; Elsevier Science Limited: Amsterdam, The Netherlands, 2004; Volume 56. [Google Scholar]
- Coco, G.; Zhou, Z.; Van Maanen, B.; Olabarrieta, M.; Tinoco, R.; Townend, I. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 2013, 346, 1–16. [Google Scholar] [CrossRef]
- Ren, M.E. Comprehensive Investigation of the Coastal Zone and Tidal Land Resources of Jiangsu Province; Ocean Press: Beijing, China, 1986. [Google Scholar]
- Wang, X.; Ke, X. Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China. Sediment. Geol. 1997, 112, 105–122. [Google Scholar] [CrossRef]
- Ren, M.E. Modern Sedimentation in the Coastal and Nearshore Zones of China; Springer: New York, NY, USA, 1986. [Google Scholar]
- Xu, F.; Tao, J.; Zhou, Z.; Coco, G.; Zhang, C. Mechanisms underlying the regional morphological differences between the northern and southern radial sand ridges along the Jiangsu Coast, China. Mar. Geol. 2016, 371, 1–17. [Google Scholar] [CrossRef]
- Su, M.; Yao, P.; Wang, Z.B.; Zhang, C.K.; Stive, M.J.F. Exploratory morphodynamic modelling of the evolution of the Jiangsu Coast, China, since 1855: Contributions of old Yellow River-derived sediment. Mar. Geol. 2017, 390, 306–320. [Google Scholar] [CrossRef]
- Gao, S. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China. Cont. Shelf Res. 2009, 29, 1927–1936. [Google Scholar] [CrossRef]
- Li, C.X.; Zhang, J.Q.; Du Fan, D.; Deng, B. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, east China. Mar. Geol. 2001, 173, 97–120. [Google Scholar] [CrossRef]
- Zhang, R.S. Land-forming history of the Huanghe River delta and coastal plain of North Jiangsu. Acta Geogr. Sin. 1984, 39, 173–184. [Google Scholar]
- Wang, Y.; Zhu, D.; You, K.; Pan, S.; Zhu, X.; Zou, X.; Zhang, Y. Evolution of radiative sand ridge field of the South Yellow Sea and its sedimentary characteristics. Sci. China Ser. D Earth Sci. 1999, 42, 97–112. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, J.; Saito, Y.; Zhang, Z.; Chu, H.; Hu, G. Coastal erosion as a major sediment supplier to continental shelves: Example from the abandoned Old Huanghe (Yellow River) delta. Cont. Shelf Res. 2014, 82, 43–59. [Google Scholar] [CrossRef]
- Zhang, R.S.; Lu, L.Y.; Wang, Y.H. The mechanism and trend of coastal erosion of Jiangsu Province in China. Geogr. Res. 2002, 21, 469–478. [Google Scholar]
- Milliman, J.D.; Huang-Ting, S.; Zuo-Sheng, Y.; Mead, R.H. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont. Shelf Res. 1985, 4, 37–45. [Google Scholar] [CrossRef]
- Zhang, R.S. Suspended sediment transport processes on tidal mud flat in Jiangsu Province, China. Estuar. Coast. Shelf Sci. 1992, 35, 225–233. [Google Scholar]
- Xing, F.; Wang, Y.P.; Wang, H.V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Mar. Geol. 2012, 291, 192–210. [Google Scholar] [CrossRef]
- Yao, P. Tidal and Sediment Dynamics in a Fine-Grained Coastal Region: A Case Study of the Jiangsu Coast. Ph.D. Thesis, Technology University of Delft, Delft, The Netherlands, 2016. [Google Scholar]
- Wang, Y.; Zhang, Y.; Zou, X.; Zhu, D.; Piper, D. The sand ridge field of the South Yellow Sea: Origin by river–sea interaction. Mar. Geol. 2012, 291, 132–146. [Google Scholar] [CrossRef]
- Zhang, C.K. The Comprehensive Survey and Evaluation Report on Coastal Zone of Jiangsu Province; Science Press: Beijing, China, 2012. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River bar (Texas); a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Shepard, F.P. Nomenclature based on sand-silt-clay ratios. J. Sediment. Res. 1954, 24, 151–158. [Google Scholar] [CrossRef]
- Le Hir, P.; Roberts, W.; Cazaillet, O.; Christie, M.; Bassoullet, P.; Bacher, C. Characterization of intertidal flat hydrodynamics. Cont. Shelf Res. 2000, 20, 1433–1459. [Google Scholar] [CrossRef] [Green Version]
- Bearman, J.A.; Friedrichs, C.T.; Jaffe, B.E.; Foxgrover, A.C. Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay. J. Coast. Res. 2010, 262, 342–349. [Google Scholar] [CrossRef]
- Whitehouse, R.; Soulsby, R.; Roberts, W.; Mitchener, H. Dynamics of Estuarine Muds; Thomas Telford Ltd.: London, UK, 2000. [Google Scholar]
- Ren, M.; Zhang, R.; Yang, J. Sedimentation on tidal mud flat in Wanggang area, Jiangsu province, China. Mar. Sci. Bull. 1984, 3, 41–54. [Google Scholar]
- Allen, J. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 2000, 19, 1155–1231. [Google Scholar] [CrossRef]
- Wang., Y.; Zhu, D. Tidal flats in China. In Oceanology of China Seas; Springer: Dordrecht, The Netherlands, 1994; pp. 445–456. [Google Scholar]
- Wang, Y.; Wang, Y.P.; Yu, Q.; Du, Z.; Wang, Z.B.; Gao, S. Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents. J. Geophys. Res. Oceans 2019, 124, 3818–3836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.S. Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province. Oceanol. Limnol. 1986, 17, 235–245. [Google Scholar]
- Yang, B.; Feng, W.-B.; Zhang, Y. Wave characteristics at the south part of the radial sand ridges of the Southern Yellow Sea. China Ocean Eng. 2014, 28, 317–330. [Google Scholar] [CrossRef]
- Prodger, S.; Russell, P.; Davidson, M. Grain-size distributions on high-energy sandy beaches and their relation to wave dissipation. Sedimentology 2017, 64, 1289–1302. [Google Scholar] [CrossRef] [Green Version]
- Gunaratna, T.; Suzuki, T.; Yanagishima, S. Cross-shore grain size and sorting patterns for the bed profile variation at a dissipative beach: Hasaki Coast, Japan. Mar. Geol. 2019, 407, 111–120. [Google Scholar] [CrossRef]
- Fu, M.; Zhu, D. The sediment sources of the offshore submarine sand ridge field of the coast of Jiangsu Province. J. Nanjing Univ. (Nat. Sci.) 1986, 22, 536–544. [Google Scholar]
- Zhang, C.; Yang, Y.; Tao, J.; Chen, Y.; Yao, P.; Su, M. Suspended sediment fluxes in the radial sand ridge field of South Yellow Sea. J. Coast. Res. 2013, 65, 624–629. [Google Scholar] [CrossRef]
- Liu, X.J.; Gao, S.; Wang, Y.P. Modeling profile shape evolution for accreting tidal flats composed of mud and sand: A case study of the central Jiangsu coast, China. Cont. Shelf Res. 2011, 31, 1750–1760. [Google Scholar] [CrossRef]
- van Ledden, M.; van Kesteren, W.; Winterwerp, J. A conceptual framework for the erosion behaviour of sand–mud mixtures. Cont. Shelf Res. 2004, 24, 1–11. [Google Scholar] [CrossRef]
- Yang, S.; Li, C.; Jung, H.; Lee, H. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Mar. Geol. 2002, 186, 229–241. [Google Scholar] [CrossRef]
- Wang, L.; Hu, S.; Yu, G.; Ma, M.; Liao, M. Comparative study on magnetic minerals of tidal flat deposits from different sediment sources in Jiangsu coast, Eastern China. Stud. Geophys. et Geod. 2017, 61, 754–771. [Google Scholar] [CrossRef]
- Zhou, Z.; Coco, G.; Townend, I.; Olabarrieta, M.; Van Der Wegen, M.; Gong, Z.; Zhang, C. Is “morphodynamic equilibrium” an oxymoron? Earth Sci. Rev. 2017, 165, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.P.; Gao, S.; Jia, J.; Thompson, C.E.L.; Gao, J.; Yang, Y. Sediment transport over an accretionary intertidal flat with influences of reclamation, Jiangsu Coast, China. Mar. Geol. 2012, 291, 147–161. [Google Scholar] [CrossRef]
Sorting Verbal Scale | |
---|---|
<0.350 | very well sorted |
0.35 ~ 0.500 | well sorted |
0.5 ~ 0.710 | moderately well sorted |
0.71 ~ 1.00 | moderately sorted |
1.00 ~ 2.00 | poorly sorted |
2.00 ~ 4.00 | very poorly sorted |
>4.00 | extremely poorly sorted |
Skewness Verbal Scale | Graphically Skewed to | |
---|---|---|
−1.00 ~ −0.30 | strongly negative skewed | strong coarse tail |
−0.30 ~ −0.10 | negative skewed | coarse tail |
−0.10 ~ 0.10 | near symmetrical | symmetrical |
0.10 ~ 0.30 | positive skewed | fine tail |
0.30 ~ 1.00 | strongly positive skewed | Strong fine tail |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuai, Y.; Tao, J.; Zhou, Z.; Aarninkhof, S.; Wang, Z.B. Sediment Characteristics and Intertidal Beach Slopes along the Jiangsu Coast, China. J. Mar. Sci. Eng. 2021, 9, 347. https://doi.org/10.3390/jmse9030347
Kuai Y, Tao J, Zhou Z, Aarninkhof S, Wang ZB. Sediment Characteristics and Intertidal Beach Slopes along the Jiangsu Coast, China. Journal of Marine Science and Engineering. 2021; 9(3):347. https://doi.org/10.3390/jmse9030347
Chicago/Turabian StyleKuai, Yu, Jianfeng Tao, Zaiyang Zhou, Stefan Aarninkhof, and Zheng Bing Wang. 2021. "Sediment Characteristics and Intertidal Beach Slopes along the Jiangsu Coast, China" Journal of Marine Science and Engineering 9, no. 3: 347. https://doi.org/10.3390/jmse9030347
APA StyleKuai, Y., Tao, J., Zhou, Z., Aarninkhof, S., & Wang, Z. B. (2021). Sediment Characteristics and Intertidal Beach Slopes along the Jiangsu Coast, China. Journal of Marine Science and Engineering, 9(3), 347. https://doi.org/10.3390/jmse9030347