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Abstract: In this article, a distributed cooperative path-maneuvering control approach is developed
for the region-searching of multiple autonomous underwater vehicles under both dynamic uncertain-
ties and ocean currents. Salient contributions are as follows: (1) by virtue of boustrophedon motions
and trigonometric functions, the coverage path-planning design is first proposed to generate multiple
parameterized paths, which can guarantee that the region-searching is successfully completed by
one trial; (2) combining with sliding mode and adaptive technique, distributed maneuvering control
laws for surge and yaw motions are employed to drive vehicles to track the assigned paths, thereby
contributing to the cooperative maneuvering performance with high accuracy; (3) by the aid of
graph theory, the distributed signal observer-based consensus protocols are developed for path
parameter synchronization, and successfully apply to maintain the desired formation configuration.
The globally asymptotical stability of the closed-loop signals is analyzed via the direct Lyapunov
approach, and simulation studies on WL-II are conducted to illustrate the remarkable performance
of the proposed path-maneuvering control approach.

Keywords: autonomous underwater vehicles; region-searching; distributed path-maneuvering
control; adaptive sliding mode; consensus protocols

1. Introduction

Autonomous underwater vehicles (AUVs), characterized by small size, autonomy
and intelligence [1,2], have become an indispensable platform in various engineering
applications, such as demining, searching sunken ships and resources [3,4]. In particular,
the path-maneuvering control of AUVs has received widespread attention in both marine
engineering and control community [5–7]. However, AUVs in practice inevitably suffer
from dynamic uncertainties and/or ocean currents. As an effective remedy of this problem,
the robust control is extensively investigated such as adaptive dynamic surface control [8,9],
sliding mode control [10–12], and finite-time control [13,14]. Besides, to reconstruct and
compensate dynamic uncertainties, neural network- [15,16] and fuzzy logic system- [17,18]
based state observers have also received increasing attention.

The individual vehicle system inevitably poses a threat to large-range and long-time
engineering applications due to its restricted payloads and communications. In this context,
the cooperative path-maneuvering control (CPMC) approaches of multiple vehicles have
been significantly developed, such as the leader follower [19,20], the consensus [21,22],
and others [23,24]. Obviously, the cooperative system stimulates agents to collaborate
with their neighbors and thus completes the assigned mission, which can provide higher
efficiency and effectiveness than the individual system [25–27]. By virtue of information
interactions, the cooperative path-maneuvering is expected to drive multi-vehicles along
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predesigned paths with a predefined formation configuration [28,29]. In [30], a decentral-
ized path-maneuvering control approach using Lyapunov technique and graph theory was
proposed for multiple vehicles in the presence of discrete-time periodic communications.
In [31], the proper interaction laws consisting of collision avoidance, velocity matching
and flocking centering are employed using potential functions, where multiple vehicles are
recognized as an integral whole. Taking environment disturbances into consideration, a
robust cooperative path-maneuvering controller is employed by combining with adaptive
neural network and dynamic surface control [32]. In [33], a decentralized speed adaptive
technique for cooperative path-maneuvering of AUVs was developed, where minimized
communication variables are designed. It should be noted that this approach depends on
the assumption that the desired speed signal is available for each AUV and thus enhances
system communication burden. Fortunately, a consensus-based adaptive maneuvering con-
trol law within a bidirectional communication topology is developed to identify the orbital
speed signal [34], thereby removing the restriction in [33]. However, the abovementioned
paths must be constructed by a set of convex and closed orbits, thereby partly limiting the
maneuverability and flexibility of AUVs.

Another problem related to the CPMC is the path-planning design. By virtue of
artificial potential functions [35], genetic algorithms [36], and particle swarm optimiza-
tion [37], fruitful path-planning approaches have been developed whereby vehicles can
autonomously perform various missions. In [38], a multiple sub-target artificial potential
function field is presented where the global optimal path is generated using a heuris-
tic A* algorithm. In [39], a smooth Bezier path is generated in the presence of the end
point constraints. In [40], a multilayer path planner with collision avoidance and path
correction is proposed by utilizing the B-Spline and Poisson distribution. However, the
path-planning problem associated with cooperative region-searching of multiple AUVs is
still largely open.

In this article, we focus on the unresolved problem of cooperative region-searching
for multiple under-actuated AUVs. A distributed cooperative path-maneuvering control
(DCPMC) approach including coverage path-planning (CPP) design, individual path-
maneuvering control (IPMC) design, and path parameter synchronization (PPS) design is
developed for AUVs under dynamic uncertainties and ocean currents. To ensure complete
coverage for the special region, a novel CPP method is proposed where multiple smooth
paths are exclusively generated by combining with boustrophedon motions and trigono-
metric functions. Within the IPMC design, distributed adaptive sliding control laws are
developed for AUVs to track the assigned paths despite the existence of dynamic uncer-
tainties and ocean currents. Within the PPS design, the neighbor states-based consensus
protocol is developed to synchronize path parameters. Besides, a distributed signal ob-
server is designed using graph theory and thus relaxes the condition requiring the known
speed in [34]. Moreover, via theoretical derivation and the Lyapunov direct approach-based
stability analysis, we show that the resulting closed-loop signals are globally asymptotically
stable (GAS).

The remainder of this article is organized in sections. Section 2 describes the AUV
model and the problem of cooperative path-maneuvering. Section 3 presents the DCPMC
approach and provides the stability analysis. Section 4 gives simulation studies for illustra-
tions. Finally, in Section 5, the conclusions of this article are reviewed.

2. Problem Statement
2.1. AUV Model

As shown in Figure 1, two types of reference frames, namely, the body-fixed frame and
the earth-fixed frame, are widely used to describe AUV motions. Consider a cooperative
system consisting of N under-actuated AUVs. Following the reference [41], the 3 degree-of-
freedom (DOF) kinematics of the ith AUV is written as

.
ηi = R(ψi)vi, (1)
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in which ηi ∈ R3 is a position state vector of coordinate (xi, yi) and heading angle ψi of the
ith AUV in the earth-fixed frame; vi ∈ R3 is a velocity vector of surge velocity ui, sway
velocity vi, and yaw angular velocity ri in the body-fixed frame; R(ψi) is a 3-DOF rotation
matrix defined as

R(ψi) =

 cos ψi − sin ψi 0
sin ψi cos ψi 0

0 0 1

 (2)

with properties as follows: RT(ψi)R(ψi) = I, ‖R(ψi)‖ = 1, and
.
R(ψi) = R(ψi)S(ri), where

S(ri) =

 0 −ri 0
ri 0 0
0 0 0

. (3)

Under complex uncertainties including dynamic uncertainties and time-varying ocean
currents, the dynamics is given by(

M̂i + M̃i

) .
vi = −

(
Ĉi(vi) + C̃i(vi)

)
vi −

(
D̂i(vi) + D̃i(vi)

)
vi + τi + di, (4)

in which τi = [τui, 0, τri]
T ∈ R3 is the control input vector, and di = [dui, dvi, dri]

T ∈ R3

denotes ocean currents. The inertia matrix M̂i ∈ R3×3, the coriolis matrix Ĉi(vi) ∈ R3×3,
and the damping matrix D̂i(vi) ∈ R3×3 are given by

M̂i =

 m̂11 0 0
0 m̂22 0
0 0 m̂33

,Ĉi(vi) =

 0 0 −m̂22vi
0 0 m̂11ui

m̂22vi −m̂11ui 0

, (5a)

D̂i(vi) =

 d̂u + d̂uu|ui| 0 0
0 d̂v + d̂vv|vi| 0
0 0 d̂r + d̂rr|ri|

, (5b)

in which M̂i, Ĉi and D̂i are the nominal values, and the corresponding parameter perturba-
tions are defined as M̃i =Mi − M̂i, C̃i = Ci − Ĉi, D̃i = Di − D̂i.
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Figure 1. Cooperative path-maneuvering geometry of autonomous underwater vehicles (AUVs). 
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Figure 1. Cooperative path-maneuvering geometry of autonomous underwater vehicles (AUVs).

2.2. Problem Formualtion

Given a parameterized curved path without temporal constraints, a “virtual vehicle”
(xdi(vi), ydi(vi)) is regarded as the tracking target for the ith AUV. As depicted in Figure 1,
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a path reference frame is established where the axes are parallel to the surge velocity and
sway velocity of the AUV. For an AUV located at the point (xi, yi), the maneuvering errors
between (xi, yi) and (xdi(vi), ydi(vi)) in the path reference frame are[

xei
yei

]
=

[
cos ψi − sin ψi
sin ψi cos ψi

]T[ xdi(vi)− xi
ydi(vi)− yi

]
, (6)

in which xei and yei represent the along-maneuvering error and cross-maneuvering error,
respectively. Taking time derivatives of xei and yei along (1), we get[ .

xei.
yei

]
=

[
cos(ψdi − ψi) 0

0 sin(ψdi − ψi)

][
udi
udi

]
−
[

ui
vi

]
+

[
0

.
ψi

−
.
ψi 0

][
xei
yei

]
, (7)

in which ψdi= atan2
( .
ydi,

.
xdi
)
; And udi > 0 is the virtual vehicle’s speed along the desired

path, which can be expressed by

udi =
.

vi

√
.
x2

di +
.
y2

di. (8)

By combining with (4) and (7), the path-maneuvering error dynamics is rewritten as

.
xei = yei

.
ψi − ui + udi

.
vi cos(ψdi − ψi),

.
yei = −xei

.
ψi − vi + udi

.
vi sin(ψdi − ψi),.

ψi = ri,
m11

.
ui = m22viri − (du + duu|ui|)ui + dui + τui,

m22
.
vi = −m11uiri − (dv + dvv|vi|)vi + dvi + 0,

m33
.
ri = (m11 −m22)uivi − (dr + drr|ri|)ri + dri + τri,

(9)

in which udi =
√

.
x2

di +
.
y2

di.
The maneuvering control objective is to propose a DCPMC approach for multiple

AUVs with the dynamics (4) such that the assigned multiple parameterized paths can be
synchronously tracked. Specifically, the objective is written as{

lim
t→∞
|xei| → 0,

lim
t→∞
|yei| → 0,

(10)

and
lim
t→∞

∣∣vi −vj
∣∣→ 0, (11)

in which i = 1, . . . , N, j = 1, . . . , N, and i 6= j.

3. Distributed Cooperative Path-Maneuvering Control
3.1. Coverage Path-Planning Design

To ensure the complete coverage for one region, a boustrophedon motion-based CPP
is proposed and generates multiple desired paths. As shown in Figure 2, consider a search
region a× b, together with the sensed area 2R of an AUV, where a and b denote the area
length and the area width, respectively. Our goal is to construct continuous curve paths
and achieve complete coverage for this region.

Boustrophedon paths are firstly proposed for the CPP, where Boustrophedon means
“the trajectory of the ox”. As an ox drags a plow in one region, it crosses the full length of
the region in a straight line, turns around, and then traces a new straight line path adjacent
to previous one. By repeating the aforementioned procedure, the ox achieves complete
coverage for this region [42,43].
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Figure 2. Boustrophedon paths.

Remark 1. Due to the vehicle maneuverability and minimum gyration radius constraints, boustro-
phedon paths mentioned above cannot be tracked directly. To this end, smooth boustrophedon paths
are designed using trigonometric functions and deployed in Figure 3.
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Figure 3. Illustration of the coverage path-planning (CPP) design.

In what follows, the smooth paths are parameterized by time-dependent variables
v1, v2, and v3. Besides, each continuous curve path is composed of sub-path and has
periodicity, where path variable starts at “the circle point” and ends at “the star point”.

By virtue of boustrophedon paths and trigonometric functions, the desired multiple
paths for region-searching are expressed as

Pd1(v1) = Pd11(v1) ∪ Pd12(v1) . . . ∪ Pd18(v1),
Pd2(v2) = Pd21(v2) ∪ Pd22(v2) . . . ∪ Pd29(v2),
Pd3(v3) = Pd31(v3) ∪ Pd32(v3) . . . ∪ Pd39(v3),

(12)

in which Pdi
denotes the parameterized curved path and composed of Pdii

. To be specific,
the complete paths can be described as
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

Pd11 = (−2R, v1), v1 ∈ (−∞, v11];
Pd12 =

(
−R− R cos

(
(v1 −v11)R−1), v11+ R sin

(
(v1 −v11)R−1)), v1 ∈ (v11, v12];

Pd13 = (v1 −v12 − R, α11b), v1 ∈ (v12, v13];
Pd14 =

(
7R + R sin

(
(v1 −v13)R−1), α12b + R cos

(
(v1 −v13)R−1)), v1 ∈ (v13, v14];

Pd15 = (8R, v14 −v1 + α13b), v1 ∈ (v14, v15];
Pd16 =

(
8.5R− 0.5R cos

(
(v1 −v15)πω−1

1

)
, −0.5R sin

(
(v1 −v15)πω−1

1

))
, v1 ∈ (v15, v16];

Pd17 = (v1 −v16 + 8.5R,−α14b), v1 ∈ (v16, v17];
Pd18 =

(
9.5R + 0.5R sin

(
(v1 −v17)πω−1

1

)
, −0.5R cos

(
(v1 −v17)πω−1

1

))
, v1 ∈ (v17, v18];

(13)



Pd21 = (0, v2), v2 ∈ (−∞, v21];
Pd22 =

(
R− R cos

(
(v2 −v21)πω−1

2

)
, v21 + R sin

(
(v2 −v21)πω−1

2

))
, v2 ∈ (v21, v22];

Pd23 = (v2 −v22 + R, α21b), v2 ∈ (v22, v23];
Pd24 =

(
5R + R sin

(
(v2 −v23)πω−1

2

)
, α22b− R cos

(
(v2 −v23)πω−1

2

))
, v2 ∈ (v23, v24];

Pd25 = (6R, v24 −v2 + α23b), v2 ∈ (v24, v25];
Pd26 =

(
7R− R cos

(
(v2 −v25)πω−1

2

)
, −α24b− R sin

(
(v2 −v25)πω−1

2

))
, v2 ∈ (v25, v26];

Pd27 = (v2 −v26 + 7R,−α25b), v2 ∈ (v26, v27];
Pd28 =

(
11R + R sin

(
(v2 −v27)πω−1

1

)
, −α26b− R cos

(
(v2 −v27)πω−1

1

))
, v2 ∈ (v27, v28];

Pd29 = (12R, v2 −v28 − α27b), v2 ∈ (v28, v29];

(14)

and

Pd31 = (2R, v3), v3 ∈ (−∞, v31];
Pd32 =

(
2.5R− 0.5R cos

(
(v3 −v31)πω−1

3

)
, v31 + 0.5R sin

(
(v3 −v31)πω−1

3

))
, v3 ∈ (v31, v32];

Pd33 = (v3 −v32 + 2.5R, α31b), v3 ∈ (v32, v33];
Pd34 =

(
3.5R + 0.5R sin

(
(v3 −v33)πω−1

3

)
, α32b− 0.5R cos

(
(v3 −v33)πω−1

3

))
, v3 ∈ (v33, v34];

Pd35 = (4R, v34 −v3 + α33b), v3 ∈ (v34, v35];
Pd36 =

(
5R− R cos

(
(v3 −v35)R−1), −α34b− R sin

(
(v3 −v35)R−1)), v3 ∈ (v35, v36];

Pd37 = (v3 −v36 + 5R,−α35b), v3 ∈ (v36, v37];
Pd38 =

(
13R− R sin

(
(v3 −v37)R−1), −α36b− R cos

(
(v3 −v37)R−1)), v3 ∈ (v37, v38];

Pd39 = (14R, v3 −v38 − α37b), v3 ∈ (v38, v39];

(15)

in which v1i, v2i, and v3i are sub-path variables. α1i, α2i, and α3i are design pa-
rameters with respect to the special region. ω1, ω2, and ω3 are path parameters without
temporal constraints.

Remark 2. Based on the practical considerations, three AUVs are widely applied to varieties of
missions, and because of this, three boustrophedon paths are constructed and tracked in this article.

3.2. Individual Path-Maneuvering Control Design

In practice, dynamic uncertainties and/or ocean currents have an adverse impact on
path-maneuvering performance. It is highly desirable to develop robust control laws for
under-actuated AUVs. To this end, the dynamics (4) can be rewritten as

m̂11
.
ui = m̂22viri − ϕT

1iζ1i + δ1i + τui,
m̂22

.
vi = −m̂11uiri − ϕT

2iζ2i + δ2i + 0,
m̂33

.
ri = (m̂11 − m̂22)uivi − ϕT

3iζ3i + δ3i + τri,
(16)

in which δ1i, δ2i, and δ3i denote nonlinear dynamics determined by
δ1i = dui − m̃11

.
ui + m̃22viri,

δ2i = dvi − m̃22
.
vi − m̃11uiri,

δ3i = dri − m̃33
.
ri + (m̃11 − m̃22)uivi,

(17)
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with ϕ1i = [ui|ui|, ui]
T , ϕ2i = [vi|vi|, vi]

T , ϕ3i = [ri|ri|, ri]
T , ζ1i = [duu, du]

T , ζ2i = [dvv, dv]
T ,

and ζ3i = [drr, dr]
T .

In order to achieve (10), virtual control laws are designed at the kinematic hierarchy,
and then adaptive sliding controllers are designed at the dynamic hierarchy. In the follow-
ing, we define uei = ui − αui, rei = ri − αri, ψei = ψdi − ψi,

.
vi = vsi(vi)− υi, ζ̃1i = ζ̂1i − ζ1i,

and ζ̃3i = ζ̂3i − ζ3i, in which αui and αri are virtual control variables; vsi is a distributed
speed assignment and υi is a consensus protocol variable to accomplish synchronized
motions; ζ̂1i and ζ̂3i are the estimations for uncertainties.

In this context, the path-maneuvering error dynamics for kinematics is reformulated by
.
xei = yei

.
ψi − ui + udi(vsi − υi) cos ψei,

.
yei = −xei

.
ψi − vi + udi(vsi − υi) sin ψei,.

ψei =
.
ψdi − ri.

(18)

Consider the following Lyapunov candidate function

V1 = k1(1− cos ψei) +
1
2

(
x2

ei + y2
ei

)
, (19)

in which k1 > 0.
Differentiating V1 along the error dynamics (18) yields

.
V1 =xei

(
yei

.
ψi − ui + udi(vsi − υi) cos ψei

)
+ yei

(
−xei

.
ψi

−vi + udi(vsi − υi) sin ψei)− k1 sin ψei

( .
ψdi − ri

)
=xei(udi(vsi − υi) cos ψei − ui)− yeivi + sin ψei(udi

(vsi − υi)yei − k1

( .
ψdi − ri

))
.

(20)

Then, choosing the virtual control laws αui and αri as{
αui = udi

.
vi cos ψei + k2xei + udiυi,

αri =
.
ψdi +

1
k2

udi
.

viyei + k1udi
.

vi sin ψei,
(21)

in which k2 > 0.
Submitting (21) into (20), there is

.
V1 = −k2

1udi
.

vi sin2 ψei − k2x2
ei + udiυixei − ueixei − k1rei sin ψei − viyei. (22)

Note that αui and αri could not be directly applied in practice. In this context, consider
the Lyapunov candidate function

V2 = V1 +
1
2

(
u2

ei + r2
ei

)
. (23)

Differentiating V2 along uei and rei, we have

.
V2 = −k2

1udi
.

vi sin2 ψei − k2x2
ei + udiυixei − k1rei sin ψei

−ueixei − viyei + uei
( .
ui −

.
udi
)
+ rei

( .
ri −

.
rdi
)
.

(24)

By combining with sliding mode and adaptive technique, we design the maneuvering
control laws for surge and yaw motions as follows{

τui = m̂11
( .
αui − k3uei + xei − η1sgn(uei)

)
+ ϕT

1i ζ̂1i − m̂22viri,
τri = m̂33

( .
αri − k4rei + k1 sin ψei − xei − η2sgn(rei)

)
+ ϕT

3i ζ̂3i − (m̂11 − m̂22)uivi,
(25)
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with update laws 
.
ζ̂1i = −λ1uei ϕ1i,.
ζ̂3i = −λ3rei ϕ3i,

(26)

in which k3, k4, η1, η2, λ1, and λ3 are positive constants, and sgn(uei) is the switching
function given by

sgn(uei) =


1, uei > 0;
0, uei = 0;
−1, uei < 0.

(27)

In addition, sgn(rei) has the similar structure with (27).

Remark 3. To overcome chattering of the discontinuous switch function, a saturation function is
employed by

sat(uei; µ, σ) =

{
sgn(uei), |uei| > µ;
sigσ(uei)

µσ , |uei| ≤ µ;
(28)

with µ > 0 and 0 < σ < 1.

Substituting the control laws (25) into (24), and using dynamics (16), we have
.

V2 = −k2
1udi

.
vi sin2 ψei − k2x2

ei + udiυixei − ueixei − k1rei sin ψei − viyei + uei(δ1i/m̂11
+xei − η1sgn(uei)− ϕT

1iζ1i/m̂11 + ϕT
1i ζ̂1i/m̂11−k4uei) + rei(δ3i/m̂33 − k5rei

+k1 sin ψei−η2sgn(rei)− ϕT
3iζ3i/m̂33 + ϕT

3i ζ̂3i/m̂33
)

= −k2
1udi

.
vi sin2 ψei − k2x2

ei + udiυixei − k3u2
ei − k4r2

ei − viyei + uei(δ1i/m̂11

−η1sgn(uei) + ϕT
1i ζ̃1i/m̂11

)
+ rei

(
δ3i/m̂33 − η2sgn(rei) + ϕT

3i ζ̃3i/m̂33

)
.

(29)

The key result on individual path-following control is summarized as follows.

Theorem 1. Consider the dynamics (9) and the control laws (25) with (26). Then, error signals uei,
rei, ψei, xei, and yei asymptotically converge to zero.

Proof of Theorem 1. Consider the Lyapunov candidate function

V3 = V2 +
1

2λ1m̂11
ζ̃T

1i ζ̃1i +
1

2λ3m̂33
ζ̃T

3i ζ̃3i, (30)

whose time derivative is
.

V3 = −k2
1udi

.
vi sin2 ψei − k2x2

ei + udiυixei − k3u2
ei − k4r2

ei + uei(δ1i/m̂11 − η1sgn(uei))− viyei

+rei(δ3i/m̂33 − η2sgn(rei)) + uei ϕ
T
1i ζ̃1i/m̂11 + rei ϕ

T
3i ζ̃3i/m̂33 +

.
ζ̃1i ζ̃1i/λ1m̂11 +

.
ζ̃3i ζ̃3i/λ3m̂33.

(31)

Using the fact that viyei = εviyei + (1− ε)viyei and the update laws (26), (31) becomes
.

V3 = −k2
1udi

.
vi sin2 ψei − k2x2

ei + udiυixei − k3u2
ei − k4r2

ei + uei(δ1i/m̂11 − εviyei/uei
−η1sgn(uei)) + rei(δ3i/m̂33 − η2sgn(rei)−(1− ε)viyei/rei),

(32)

in which 0 < ε < 1.
By the aid of the boundedness of the sway velocity vi, i.e., |vi(t)| ≤ 2ϑ/dv + |vi(t0)|

e−0.5dv(t−t0) mentioned in [17], we have the following inequality{
|δ1i/m̂11 − εviyei/uei| ≤ η1,
|δ3i/m̂33 − (1− ε)viyei/rei| ≤ η2.

(33)
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Note that synchronization variable υi is zero since path parameter synchronization is
not considered in the IPMC design. Then, substituting (33) into (32), there is

.
V3 < 0, ∀‖[uei, rei, ψei, ζ̃1i, ζ̃3i, xei, yei]

T‖ 6= 0, (34)

which implies that error signals uei, rei, ψei, xei, and yei asymptotically converge to zero.
Thus, the proof is completed. �

3.3. Path Parameter Synchronization Design

Consider the communication topology described by a graph G = (, ε) with the set
of nodes = {n1, . . . , nN} and the set of edges ε =

{(
ni, nj

)
∈ ×

}
. In this graph, a node

represents an AUV and the element
(
ni, nj

)
describes information interactions from one

node to another. A(G) =
[
aij
]
∈ RN×N denotes an adjacency matrix, where aij = 1

if
(
ni, nj

)
∈ ε; Otherwise, aij = 0, and the Laplacian matrix L(G) =

[
lij
]
∈ RN×N is

introduced with

lij =


−aij, if i 6= j and j ∈ Ni;
∑

j∈Ni

aij, if i = j;

0, otherwise

(35)

It is worth noting that L(G) in the connected graph is symmetric and positive semi-
definite. In addition, the corresponding eigenvector with minimum eigenvalue of zero is
I = [1, . . . , 1]T , thus resulting in L(G) I = 0N .

Consider that parts of the nodes are able to obtain the speed assignment. The acces-
sorial matrix D(G) = diag{d1, . . . , dN} is proposed, where di = 1 represents that the node
can get information from the speed assignment and di = 0 represents that it cannot. In
addition, the symmetric and positive definite matrix H(G) = L(G) + D(G) is satisfied for the
undirected connected graph.

The key result on the distributed signal observer is collected as follows.

Theorem 2. Consider that only the parts of AUVs receive the speed assignment and the distributed
signal observer given by

.
v̂si = −

N

∑
j=0

aij
(
v̂si − v̂sj

)
, (36)

in which v̂s0 = vs0 is a desired speed assignment and satisfies
.
vs0 = 0. Then, lim

t→∞
|v̂si| → vs0,

can be guaranteed.

Proof of Theorem 2. Define observation error as

ṽsi = v̂si − vs0. (37)

Taking time derivatives along (36) yields

.
ṽsi =

.
v̂si −

.
vs0

= −
N
∑

j=0
aij
[
(v̂si − v̂s)−

(
v̂sj − v̂s

)]
= −

N
∑

j=0
aij
(
ṽsi − ṽsj

)
.

(38)

Defining ṽs = [ṽsi] ∈ RN×1, we have

.
ṽs = −

(
H(G) ⊗ I

)
ṽs. (39)
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Consider the Lyapunov candidate function Vs = 1/2ṽT
s ṽs and differentiating Vs

along (39) yields
.

Vs = −ṽT
s

(
H(G) ⊗ I

)
ṽs ≤ 0, (40)

which implies that observation error ṽsi can converge to zero. This proof is complete. �

Furthermore, based on neighbors’ parameter information, we define the following
coordination errors

ei =
Ni

∑
j=1

aij
(
vi −vj

)
, (41)

and design the consensus protocol as

υi = ξiei − ξiudixei, (42)

in which ξi > 0.
In vector form, (42) can be presented as{ .

v = v̂s(v)− υ,
e = L(G)v,

(43)

here v = [vi] ∈ RN×1, v̂s = [v̂si] ∈ RN×1, υ = [υi] ∈ RN×1, and e = [ei] ∈ RN×1.
Computing the time derivative of e and using L(G) I = 0N , we obtain

.
e =

.
L(G)v + L(G)(v̂s(v)− υ)

= −L(G)υ.
(44)

Eventually, the path-maneuvering error dynamics (9) is rewritten as

.
xei = yei

.
ψi − ui + udi(vs − υi) cos ψei,

.
yei = −xei

.
ψi − vi + udi(vs − υi) sin ψei,.

ψei =
.
ψdi − ri,

m11
.
ui = m22viri − (du + duu|ui|)ui + dui + τui,

m22
.
vi = −m11uiri − (dv + dvv|vi|)vi + dvi + 0,

m33
.
ri = (m11 −m22)uivi − (dr + drr|ri|)ri + dri + τri,.

e = −L(G)υ.

(45)

3.4. Stability Analysis

The following theorem exhibits the stability result of the proposed DCPMC approach.

Theorem 3. Consider a cluster of AUVs with dynamics (4), the control laws (25), and the consensus
protocol (42). Then, all error signals in the closed-loop system are GAS.

Proof of Theorem 3. Consider the following Lyapunov candidate function

V =
N

∑
i=1

{
1
2

(
x2

ei + y2
ei + u2

ei + r2
ei

)
+ k2(1− cos ψei) +

1
2λ1m̂11

ζ̃T
1 ζ̃1 +

1
2λ3m̂33

ζ̃T
3 ζ̃3

}
+

1
2

eT Pe. (46)

Using Lemma 1 in [39] yields that vT L(G)v = eT Pe, where P is a positive definite
matrix. In this context, (46) becomes

V =
N

∑
i=1

{
1
2

(
x2

ei + y2
ei + u2

ei + r2
ei

)
+ k2(1− cos ψei) +

1
2λ1m̂11

ζ̃T
1 ζ̃1 +

1
2λ3m̂33

ζ̃T
3 ζ̃3

}
+

1
2

vT L(G)v, (47)
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whose derivative along (45) is

.
V =

N
∑

i=1

{
−k2

1udi
.

vi sin2 ψei − k2x2
ei − k3u2

ei − k4r2
ei + uei(δ1i/m̂11 − εviyei/uei

+ rei(δ3i/m̂33 − η2sgn(rei)−(1− ε)viyei/rei)}+
N
∑

i=1

{
udiυixei −vT

i L(G)υi

}
≤

N
∑

i=1

{
−k2

1udi
.

vi sin2 ψei − k2x2
ei − k3u2

ei − k4r2
ei

}
− λmin(ξ)‖γ‖2,

(48)

in which ξ = diag{ξ1, . . . , ξN}, γ = −e + udxe, xe = [xei] ∈ RN×1, and ud = diag
{ud1, . . . , udN}. By straightforward derivation [44], one can conclude that all error signals
are GAS. This concludes the proof. �

Remark 4. By virtue of the inequality xTSym
(

L(G)

)
x ≥ ξs

(
Sym

(
L(G)

))
‖x−1N1T

N x/N‖2

and Sym
(

L(G)

)
=
(

L(G) + LT
(G)

)
/2 in [45], one can conclude that eTPe ≥ ξs‖v−∑N

i=1 vi/N‖2

and lim
t→∞

∣∣vi −vj
∣∣→ 0 .

4. Simulation Studies

To evaluate the proposed DCPMC approach, simulation studies are given in this
section. The weight of the AUV called WL-II is 45 kg and the length is 1.46 m. Besides,
model parameters are illustrated in Table 1 [46].

Table 1. Model parameters of WL-II.

Para. Value Para. Value Para. Value

m̂11 47.52 d̂uu −6.44 d̂u −13.5
m̂22 104.05 d̂vv −194.77 d̂v −44.96
m̂33 13.38 d̂rr −4.90 d̂r −27.20

Let the information topology among the three AUVs be described by Figure 4, where
only AUV 2 can receive the speed signal. Consider the special region with a = 180m,
b = 300m, and the sensed area of an AUV with R = 10m. The desired coverage paths are
generated by (13), (14) and (15), where path parameters are illustrated in Table 2.
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For the sake of simulation setup, dynamic uncertainties and ocean currents are
assumed as follows: m̃11 = −0.1m̂11, m̃22 =−0.1m̂22, m̃33 = −0.15m̂33, dui = ϑ1κ1,
dvi = ϑ2κ2, and dri= ϑ3κ3, where κi > 0 are constants and ϑi are zero-mean Gaussian
white noise processes [47,48]. The initial conditions of three AUVs are set as
follows: η1(0) = [−30,−55, π/6]T , η2(0) = [−5,−50, π/3]T , η3(0) = [25,−48, π/2]T ,
v1(0) = [0, 0, 0]T , v2(0) =[0, 0, 0]T , and v3(0) = [0, 0, 0]T .

As shown in Figure 5, three AUVs converge to the desired paths generated by the CPP
design and keep a synchronized formation simultaneously. Besides, taking readability into
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consideration, Figure 6 shows the snapshots of three AUVs in different time periods. From
Figures 7 and 8, it is observed that along-maneuvering and cross-maneuvering errors can
converge to the origin in a short time. The small chattering existing in tracking errors is
caused by the switching of the straight line and the curve. The path parameter variables of
three AUVs are given in Figure 9 and almost synchronized. Figures 10 and 11 show the
AUV heading angles, surge and yaw angular velocities, respectively. Note that the desired
paths are designed using piecewise function, thereby leading to slight chattering for control
inputs in Figure 12. The observation results on speed signals are given in Figure 13, which
can exhibit excellent observation performance. Furthermore, comparisons on maneuvering
errors and velocity signals of individual AUV are given in Figure 14. It is apparent that
the proposed approach has better maneuvering performance than the backsteeping-based
approach (ηi = 0, i = 1, 2), thus contributing to less abrasion of actuators.

Table 2. Path parameters and control parameters.

Index Items

Multiple paths

s11 = 105, s12 = 105 + 5π, s13 = 185 + 5π, s14 = 185 + 10π, s15 = 290 + 10π,
s16 = 360 + 15π, s17 = 370 + 15π, s17 = 440 + 20π, ω1 = 140 + 10π,
s21 = 85, s22 = 125 + 5π, s23 = 165 + 5π, s24 = 205 + 10π, s25 = 305 + 10π,
s26 = 345 + 15π, s27 = 385 + 15π, s28 = 425 + 20π, s29 = 440 + 20π,
s31 = 70, s32 = 140 + 5π, s33 = 150 + 5π, s34 = 220 + 10π, s35 = 325 + 10π,
s36 = 325 + 15π, s37 = 405 + 15π, s38 = 405 + 20π, s39 = 440 + 20π,
α11 = 25/36, α12 = 7/12, α13 = 7/12, α14 = 1/36, α21 = 19/36,
α22 = 17/36, α23 = 17/36, α24 = 1/12, α25 = 5/36, α26 = 1/12, α27 = 1/12,
α31 = 5/12, α32 = 14/36, α33 = 14/36, α35 = 1/4, α36 = 7/36, α37 = 7/36,
ω2 = 80 + 10π, ω3 = 140 + 10π.

Control laws k1 = 0.5, k2 = 0.5, k3 = 5, k4 = 3, η1 = 4, η2 = 4, λ1 = 10, λ2 = 5, µ = 6,
σ = 0.5, ξi = 0.1, vs0 = 0.5.
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5. Conclusions

In this article, a DCPMC approach was developed for a cluster of under-actuated
AUVs under undirected communication topology. By the aid of smooth boustrophedon
paths, the CPP is designed for the region-searching, where multiple parameterized paths
are generated and used to be tracked. Within the dynamics controllers, adaptive sliding
mode techniques are used to design maneuvering control laws, which can drive vehicles to
track the assigned paths despite the existence of dynamic uncertainties and ocean currents.
Besides, the consensus protocol with distributed signal observer is developed for path
parameter synchronization, thus contributing to the desired formation configuration. Rig-
orous theoretical derivation and proof have exhibited that the resulting closed-loop signals
are GAS, and simulation results have illustrated the effectiveness of the DCPMC approach.
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