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Abstract: In this paper, a tool able to support the sailing yacht designer during the early stage of the
design process has been developed. Cubic Rational Bézier curves have been selected to describe the
main curves defining the hull of a sailing yacht. The adopted approach is based upon the definition of
a set of parameters, say the length of waterline, the beam of the waterline, canoe body draft and some
dimensionless coefficients according to the traditional way of the yacht designer. Some geometrical
constraints imposed on the curves (e.g., continuity, endpoint angles, curvature) have been conceived
aimed to avoid unreasonable shapes. These curves can be imported into any commercial Computer
Aided Design (CAD) software and used as a frame to fit with a surface. The resistance of the hull can
be calculated and plotted in order to have a real time estimation of the performances. The algorithm
and the related Graphical User Interface (GUI) have been written in Visual Basic for Excel. To test the
usability and the precision of the tool, two existing sailboats with different characteristics have been
successfully replicated and a new design, taking advantages of both the hulls, has been developed.
The new design shows good performances in terms of resistance values in a wide range of Froude
numbers with respect to the original hulls.

Keywords: sailing yacht design; rational Bézier curves; VBA; excel; CAD; VPP

1. Introduction

In the work of an engineer, the design is often the central and more important part
of the entire process. In a wide range of industries, such as automobile, aircraft, and
shipbuilding [1], the first step of the process consists of finding an existing well-designed
geometry to be used as a benchmark for the new model. In this work, the interest of the
authors is related to maritime applications. It is interesting to notice that, in this field, the
design approach is mostly based on the traditional design techniques of trial-and-error.
Consequently, the obtained results are highly dependent on the designer experience and
knowledge [2,3]. To facilitate the design of hulls, naval engineers are investigating the
possibility to define the so-called hull equation [4]. This equation should be able to describe,
from a mathematical point of view, the hull of a sailboat, a motorboat, or a ship. Although
an intensive effort in this sense, nowadays is not possible to describe the hull with one
equation because the geometry of a hull depends on several parameters and most of them
are related one each other [5]. Several works can be found in the literature where authors
present methods to generate a quick but detailed preliminary design or, on the other hand,
approaches to optimize the geometry. For instance, in [6] a design tool is developed using
cubic polynomial expressions to define the control curves of a hull. In [7] cubic Bézier
curves and the curve-plane intersection method are selected to properly design a submarine
hull. Also, ref. [8] proposes a new design framework to generate the parametric design and
modification of yacht hulls. In particular, the hull is split into three regions to assure better
design flexibility. Splitting the whole hull domain into sub-domains is a common practice as
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can be observed in [9] where the hull has two domains, one below the chine and one above
the chine. Other authors were more focused on the optimization phase as in [10] where a
novel simultaneous engineering design approach has been proposed or in [2] where an
interactive design approach for hull forms optimization is developed. Concerning the
evaluation of the performances of a given design, there are several tools that can be used
to estimate the resistance generated by the hull. Velocity Prediction Programs (VPPs) are
commonly used in the nautical field. These programs can calculate speed, heel, trim, forces
of sails and of course the resistance of the hull among other important characteristics of a
sailboat [5]. One of the most popular methods used to define a VPP is presented in [11]
and an updated version in [12]. Both are based on the experimental campaign conducted
at the Delft Ship Hydromechanics Laboratory of the Delft University of Technology; in
these formulations the resistance of the hull is linked to its coefficients and parameters
such as the prismatic coefficient, the length of the waterline, the beam of the waterline, the
displacement and so on. In [11] the allowable range in terms of Froude number to estimate
the value of the resistance of a sailboat is between 0.10 and 0.60; while in the updated
version [12] the Froude number ranges between 0.15 and 0.75. Another popular approach
is presented in [13], the focus of the authors in this study is related to the evaluation of the
resistance for planing hulls in smooth and rough water. However, VPPs are not the only
way to estimate the performances of a sailboat. There are more sophisticated softwares
allowing the designer to learn more about his design like Computational Fluid Dynamics
(CFD) software that is a method where Navier-Stokes equations are solved. CFD models
are very powerful tools although more expensive and time consuming and need a rigorous
process of verification and validation (V&V) [14,15]. In [16] the Least Square Root method
(LSR) to define the validation uncertainty of the numerical model is described. Once the
numerical model is verified and validated, the designer can explore different designs to
investigate their performances as in [17] where planing hulls are studied. Other examples
can be found in [18] where CFD is used to study the influence of the trim angle.

The design tool proposed in this paper, written in Visual Basic Application for Excel,
is intended as a Computer Aided Design (CAD) software guiding the designer in creating
an hull form according to the classical naval design methodology which is mostly based
on shape coefficients and non-dimensional ratios. The user enters information in terms of
control points coordinates, angles and weights; however, these data are strictly related to
dimensions (e.g., length of waterline, maximum beam, draft), to tangency (e.g., deadrise,
hard-chine, round bilge) and to shape (e.g., fullness, continuity). Since one of the most
important aspects when developing a tool for a designer is to strongly link it to the experi-
ence, the developed software works with the most important coefficients and parameters
of a sailboat by using specific properties of the rational Bézier curves. In Section 2, these
curves are presented in terms of equations and properties, while in Section 3, an approach
to estimate the resistance curve of a sailboat is presented. In Section 4, the applied approach
to replicate and design a sailboat used in this work is showed. In Section 5 the method
presented is validated replicating an existing sailboat and, finally, in Section 6 a new design
is compared with two existing ones.

2. Rational Bézier Curves

The rational Bézier curves are a particular family of the Bézier curves as presented
in [19]. They can be described with the following Equation (1).

C(t) =
∑n

i=0 wiBi,n(t)Pi

∑n
i=0 wiBi,n(t)

, t = 0, . . . , 1 (1)

where n is the order of the curve, Pi and wi are the control points and the weights respec-
tively, while Bi,n(t) are the Bernstein polynomials defined over the parametric abscissa t
and described by the following Equation (2).
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Bi,n(t) =
n!

i!(n− i)!
ti(1− t)n−i, i = 0, 1, . . . , n, (2)

The principal difference between a rational Bézier curve and a classic one consists
in the possibility of modifying the shape of a given curve without moving the control
points. This is possible thanks to the weights assigned to each control point. In this way
the designer can manipulate the shape of the curve and maintain the order of continuity in
the ending points in terms of tangency and curvature. Being these curves tangent to the
control polygon at the endpoints, the designer can have direct control on the initial and
final angle of tangency of the curve. An example of this property is shown in Figure 1.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 3 of 17 

 

where n is the order of the curve, Pi and wi are the control points and the weights respec-
tively, while Bi,n(t) are the Bernstein polynomials defined over the parametric abscissa t 
and described by the following Eq.(2). 

The principal difference between a rational Bézier curve and a classic one consists in the 
possibility of modifying the shape of a given curve without moving the control points. 
This is possible thanks to the weights assigned to each control point. In this way the de-
signer can manipulate the shape of the curve and maintain the order of continuity in the 
ending points in terms of tangency and curvature. Being these curves tangent to the con-
trol polygon at the endpoints, the designer can have direct control on the initial and final 
angle of tangency of the curve. An example of this property is shown in Figure 1. 

 
Figure 1. Tangency at the end points of a Bézier curve. 

Regarding the control of the curvature (𝒌) at the ending points there is another im-
portant property of the rational Bézier curves that allows the designer to link the position 
and weights of the control points to the value of the curvature. This relation is presented 
in the next Equation (3). 𝑘(𝑡) = ௪బ௪మ௪భమ ିଵ మ, (3) 

where n is the order of the curve, wi are the weights of the control points while a and h are 
defined in Figure 2. 

 
Figure 2. Curvature at the end points of a rational Bézier curve. 

A practical application of these two properties can be seen in the following example. 
In Figure 3 two rational Bézier curves sharing the common point B are plotted. 

𝐵,(𝑡) = !!(ି)! 𝑡(1 െ 𝑡)ି     ,     𝑖 = 0,1, … , 𝑛, (2) 

Figure 1. Tangency at the end points of a Bézier curve.

Regarding the control of the curvature (k) at the ending points there is another
important property of the rational Bézier curves that allows the designer to link the position
and weights of the control points to the value of the curvature. This relation is presented in
the next Equation (3).

k(t0) =
w0w2

w2
1

n− 1
n

h
a2 , (3)

where n is the order of the curve, wi are the weights of the control points while a and h are
defined in Figure 2.
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A practical application of these two properties can be seen in the following example.
In Figure 3 two rational Bézier curves sharing the common point B are plotted.
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The curve resulting from the union of these two curves presents a continuity of the
second order. As it is possible to observe in Figure 3, the ending point of the blue curve is
coincident with the starting point of the green curve (G0 = C0 continuity) and points AB2,
B and BC1 are all aligned (G1 continuity). Regarding the curvature (G2 continuity), the
designer can apply Equation (3) to establish that the curvature of the green curve is the
same as the curvature of the blue curve calculated in point B (or vice-versa). To achieve
this condition the designer can first calculate the value of the curvature in point B of the
blue curve using Equation (3), then with the following Equation (4) calculate the value to
assign to the weight of the control point BC1 to match the same value of the curvature of
the blue curve and the green curve in their common point.

wBC1 =

√
2
3

wBwBC2

k(B)
h
a2 . (4)

Another interesting property of the rational Bézier curves consists of the possibility
of increasing the degree of the curve without modifying the shape of the curve itself. In
Figure 4 is shown an example of this property.
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The original (quadratic) curve is defined by three points A, AB and B. To obtain the
corresponding cubic curve the designer can apply the following procedure:

XA
∗ = XA

YA
∗ = YA

XAB1
∗ = XA

3+ 2
3 XAB

YAB1
∗ = YA

3+ 2
3 YAB

XAB2
∗ = 2

3 XAB + XB
3

YAB2
∗ = 2

3 YAB + YB
3

XB
∗ = XB

YB
∗ = YB,

(5)

where the coordinates marked with * are representative of the new curve. The new curve is
defined with four control points, A, AB1, AB2 and B, resulting in a higher degree curve
compared to the starting one.

3. Estimation of Resistance for a Sailboat

Since 1975, researchers interested in sailing have been developing regression curves
based on polynomial expressions with the aim of estimating the resistance of the hull
of a sailboat. Nowadays there are several approaches to evaluate the resistance curve
of a sailboat; one of the most common is the formulation proposed by [11] and the up-
dated version presented in [12]. Both the formulations are based on the experimental
campaign conducted at the Delft Ship Hydromechanics Laboratory of the Delft University
of Technology. For the purpose of this work the older formulation has been preferred
since in [12] typical coefficients concerning maxi yachts and higher Froude number are
taken into account. Equation (6) shows the regression formulation for the estimation of the
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residuary resistance, Rrh, of the bare hull whose applicability ranges between Fr 0.10 and
0.60 stepped by 0.05.

Rrh
∇c·ρ·g = a0 +

(
a1·

LCB f pp
Lwl + a2·Cp + a3·∇c

2
3

Aw + a4· Bwl
Lwl

)
·∇c

1
3

Lwl +

+

(
a5·∇c

2
3

SW
+ a6·

LCB f pp
LCFf pp

+ a7·
( LCB f pp

Lwl

)2
+ a8·Cp2

)
·∇c

1
3

Lwl .
(6)

The coefficient ai In Equation (6), can be found in reference [11], while in the Nomencla-
ture section the meaning of the parameters are defined. To obtain the total hull resistance it
is also necessary to compute the component of the resistance due to friction. In Equation (7)
there is one of the possible empirical formulation widely used by the researchers [5] to
define the friction coefficient.

c f =
0.075

(log(Re)− 2)2 . (7)

Consequently, the friction resistance can be expressed with the well-known equation:

R f =
1
2

ρv2Swc f . (8)

The sum of the resistances estimated in Equations (6) and (8) permits to obtain the
total resistance of the bare hull of a sailboat, as shown in Equation (9).

R = Rrh + R f . (9)

4. Design Approach

In this work, quadratic and cubic rational Bézier curves, whose formulation has been
presented in Section 2, are used to design a sailboat. The shape of the hull is defined by
three sections (fore, mid and aft), three longitudinal curves (sheer, chine and keel) and
the right ahead. In this way, the whole domain is divided into three parts, as can be seen
in Figure 5 where the red circles represent the intersection of the curves. In this way, the
design variables of the problem are the Cartesian coordinates of the control points (the red
circles) and the tangency of the curves at their ends.
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Sections are defined with rational Bézier curves of second or third-degree depending
on the type of the boat, respectively hard-chine or round-bilge. Each section is composed
of two curves—one starting from the keel ending to the chine and the second one starting
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from the chine ending to the sheer. In this way, it is possible to generate a wide range of
shapes. In Figure 6 the structure of the sections of a round-bilge hull is presented.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 17 

 

 
Figure 5. Curves frame used to define the hull surface. 

Sections are defined with rational Bézier curves of second or third-degree depending 
on the type of the boat, respectively hard-chine or round-bilge. Each section is composed 
of two curves—one starting from the keel ending to the chine and the second one starting 
from the chine ending to the sheer. In this way, it is possible to generate a wide range of 
shapes. In Figure 6 the structure of the sections of a round-bilge hull is presented. 

 
Figure 6. Structure of the curve of a section of the hull. 

To properly define the shape of all the curves of Figure 5, the designer can insert the 
values of the coordinates of the control points of the curves with the help of a user-inter-
face as shown in the following Figures 7 and 8. The definition of the curves by means of 
the rational Bézier formulation is particularly suitable for the design of the hull of a sail-
boat. In fact, once the main dimensions have been defined (e.g. max beam, max draught, 
length of water line), the designer can adjust the fullness of each curve without modifying 
the control polygon but just acting on the weights of the control points or the tangency at 
their ends. 

Figure 6. Structure of the curve of a section of the hull.

To properly define the shape of all the curves of Figure 5, the designer can insert the
values of the coordinates of the control points of the curves with the help of a user-interface
as shown in the following Figures 7 and 8. The definition of the curves by means of the
rational Bézier formulation is particularly suitable for the design of the hull of a sailboat.
In fact, once the main dimensions have been defined (e.g., max beam, max draught, length
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To assure G0 continuity of the section, the position of the control points of the two
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Figure 9. Control polygon of a G1 second-degree rational Bézier curve.

As can be seen the control points AB, B and BC are all lying in the same line so the
angle at the end of the first curve is the same as the starting angle of the second curve
and G1 continuity is respected. To assure the G2 continuity, the second-degree curve is
not sufficient so, as presented in Section 2, the curve is automatically modified to obtain a
third-degree curve using Equation (5), then Equations (3) and (4) are applied to impose
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the same curvature at the common point of the two curves (point B). In Figure 10 the new
control polygon assuring G2 continuity of a section is shown.
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Once all the curves have been defined, the Visual Basic for Application (VBA) tool
prints several exchange files with the information of each curve following two different
strategies. In the first one each curve is sampled in a fixed number of points and their
coordinates (in ASCII format) can be imported in several CAD software that re-creates the
curves by interpolating these points. In the second format, each curve is defined with the
syntax form of an IGES file [20] preserving, in this way, its mathematics. According to the
latter method, a macro has been set up in the parametric software CREO 4.0 from PTC
aimed to import all the curves and automatically generate the sweep surface of the whole
hull. Figure 11 shows the surface of a round-bilge sailboat.
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Figure 11. Surface model of a sailboat designed in CREO 4.0 with the information from the VBA tool.

Now the designer can have a closer look to the curves and surface using all the feature
of a commercial CAD software. For instance, Figure 12 shows a screenshot of the gaussian
curvature of a hard-chine hull.
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Still inside CREO 4.0 the coefficients used in Equation (6), whose definition is given in
the Nomenclature section, are automatically calculated. The VBA tool grasps these infor-
mation and evaluates the resistance curve of the specific hull vs. the Froude number [11],
plotting the results as shown in Figure 13.
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5. Design an Existing Sailboat

In this section two existing sailboats are replicated to validate the method presented
in Section 4. The type of sailboat selected are the so called SKIFF (Sail Keep It Flat and Fast)
shown in Figure 14 that take part to the international annual regatta 1001Velacup®held in
Italy every year in September.
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These two boats, although quite similar in terms of displacement, length and main
parameters, are characterized by a different hull shape. LED is a classical round-bilge,
designed to sail at a low Froude number while TryAgain is a hard-chine hull, mainly
designed for sail at a higher Froude number. In Figure 15 the designs of both the hulls are
shown (LED on the top and TryAgain on the bottom).
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Figure 15. Hull design of LED (top) and TryAgain (bottom).

Applying the method presented in Section 4, the two hulls were replicated. In particu-
lar, Figure 16 shows the overlap of the original and rebuilt curves, while Figure 17 shows
the cut-off of the rebuilt surfaces modelled as previously said in CREO 4.0 with transversal
planes to show the sections (red curves), with horizontal planes to show the waterlines
(blue curves) and with longitudinal planes to show the buttocks (green curves). A well
faired curves frame has been obtained without undesired changes in slope or curvature
confirming the goodness of the proposed approach.
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Once the geometry of the hulls has been defined, the main characteristics of the two
sailboats are automatically calculated. Table 1 shows the comparison of the main hull
characteristics whose definitions can be found in [5].

Table 1. Coefficients of the original and rebuild hulls.

Entity Symbol Unit
LED TryAgain

Original Rebuilt Original Rebuilt

Displacement ∇ m3 0.257 0.258 0.262 0.263
Length Overall LOA m 4.60 4.60 4.60 4.60

Length Water Line LWL m 4.46 4.46 4.49 4.49
Max Beam Water

Line BWL m 1.05 1.05 0.95 0.95

Wetted Surface SW m2 3.49 3.48 3.46 3.50
Water Plane Area AW m2 3.21 3.20 3.10 3.14
Max Transversal

Area AX m2 0.107 0.107 0.094 0.093

Long. Centre of
Buoyancy LCB m 2.48 2.52 2.25 2.26

Long. Centre of
Flotation LCF m 2.69 2.70 2.60 2.60

Max Draught Tc m 0.14 0.14 0.17 0.17
Prismatic Coefficient Cp 0.539 0.540 0.621 0.629

Midship Section
Coefficient Cm 0.728 0.728 0.582 0.576

As can be seen in the previous table, also the differences in terms of coefficients are
very narrow so the method results effectively to replicate a sailboat. In addition, the
resistance curves have been calculated with the procedure presented in Section 3 and
in Figure 18 the original and rebuilt hulls are compared. It is evident that the rebuild
process does not affect the performance prediction: the resistance curves of both the hulls
are completely overlapped, and no appreciable differences can be observed. Some basic
comments about this plot can be done as follows: differences between the two hulls can
be appreciated in the range Fr = [0.25–0.4] where LED has lower resistance than TryAgain
and in the range Fr = [0.4–0.55] where the opposite happens. This is mainly due to the
performance characteristic of the round bilge (LED) and of the hard chine (TryAgain): at
low speed, faired streamlines are favored by the smoothness of the round bilge reducing
the friction resistance; at higher speed, lifting forces generated by the hard chine enhance
pre-planing phenomena and, as a consequence, a reduced wave resistance [5].
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6. Design of a New Sailboat

As can be seen in Figure 18, depending on the sailing conditions, LED or TryAgain is
better than the other one. To understand the reasons for these differences in terms of the
resistance of the two hulls, an investigation on the effect of the coefficients on the computed
resistance was carried on. In Table 2 the coefficients of LED and TryAgain are compared to
see which one is the most different. The last column reports the difference (CoeffTryAgain −
CoeffLED)/CoeffLED.

Table 2. Comparison between the coefficients of LED and TryAgain.

Coeff. LED TryAgain Diff. (%)

VC 0.258 0.263 +1.90
LCB 2.47 2.26 −9.29
SW 3.48 3.50 +0.57

LWL 4.46 4.49 +0.67
BWL 1.05 0.95 −10.53
AW 3.20 3.14 −1.91
LCF 2.70 2.60 −3.85
TC 0.14 0.17 +17.65
AX 0.107 0.093 −15.05
CP 0.540 0.629 +14.15
CM 0.728 0.576 −26.39

As can be seen in the previous table, the largest differences in terms of coefficients of
the two sailboats are the Longitudinal Centre of Buoyancy (LCB), the Beam of the Water
Line (Bwl), the Max Draught (Tc) and the Max Transversal Area (Ax).

VPP is very sensitive to slight changes of the coefficients. In particular, there are
appreciable differences in terms of resistance starting from Froude 0.4, since for lower
ranges of Froude number the biggest quote to the resistance is related to friction. Reducing
the value of LCB causes better performances for medium speeds, reducing BWL generates
a sailboat that performs in a better way at high Froude numbers, reducing TC and AX have
a not optimal resistance trend for low values of Froude numbers but on the other hand
good one for high Froude numbers.

The goal is to obtain a new shape that has the advantages of the two hulls LED and
TryAgain. To reach this objective the new hull should have a low BWL and a low CP in
order to preserve the performances of LED at a low Froude number; at the same time, this
new hull should need a hard-chine to preserve the performances of TryAgain at higher
Froude number. As a matter of course, reducing the value of BWL will lead to having a
higher TC to match the total displacement of the sailboat.

With all this information, the authors started an intensive campaign to obtain a new
sailboat. The approach can be considered heuristic and knowledge-based with the goal
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of obtaining a new hull design as similar as possible to LED, with good performances at
low values of Froude numbers, but with a chine to take advantage of its positive effect at
high values of Froude numbers. After several attempts using the approach here presented
a new design was defined and the obtained lines are shown in Figure 19 while in Table 3
the coefficients of the three sailboats are compared.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 14 of 17 

 

obtaining a new hull design as similar as possible to LED, with good performances at low 
values of Froude numbers, but with a chine to take advantage of its positive effect at high 
values of Froude numbers. After several attempts using the approach here presented a 
new design was defined and the obtained lines are shown in Figure 19 while in Table 3 
the coefficients of the three sailboats are compared. 

 
Figure 19. The lines of the new design. 

Table 3. Comparison of the coefficients of LED, TryAgain and LED_UP_06. 

Coeff. LED TryAgain LED_UP_06 
VC 0.258 0.263 0.259 

LCB 2.47 2.26 2.48 
SW 3.48 3.50 3.39 
LWL 4.46 4.49 4.48 
BWL 1.05 0.95 0.995 
AW 3.20 3.14 3.08 

LCF 2.70 2.60 2.71 
TC 0.14 0.17 0.16 
AX 0.107 0.093 0.107 
CP 0.540 0.629 0.540 
CM 0.728 0.576 0.689 

In Figure 20 the surface of the new hull is generated and cut off with transversal 
planes to show the sections (red curves), with horizontal planes to show the waterlines 
(blue curves) and with longitudinal planes to show the buttocks (green curves). 

 
Figure 20. Surface of LED_UP_06. 

Finally, applying the method presented in Section 3, the resistance curves of the three 
hulls are compared and the result plotted in Figure 21. 

Figure 19. The lines of the new design.

Table 3. Comparison of the coefficients of LED, TryAgain and LED_UP_06.

Coeff. LED TryAgain LED_UP_06

VC 0.258 0.263 0.259
LCB 2.47 2.26 2.48
SW 3.48 3.50 3.39

LWL 4.46 4.49 4.48
BWL 1.05 0.95 0.995
AW 3.20 3.14 3.08
LCF 2.70 2.60 2.71
TC 0.14 0.17 0.16
AX 0.107 0.093 0.107
CP 0.540 0.629 0.540
CM 0.728 0.576 0.689

In Figure 20 the surface of the new hull is generated and cut off with transversal
planes to show the sections (red curves), with horizontal planes to show the waterlines
(blue curves) and with longitudinal planes to show the buttocks (green curves).
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Finally, applying the method presented in Section 3, the resistance curves of the three
hulls are compared and the result plotted in Figure 21.
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Figure 21. Comparison between the resistance curves of LED, TryAgain and LED_UP_06.

As can be seen in the previous figure, the VPP indicates that LED_UP_06 is the best
hull in light wind condition (low Froude number), then TryAgain gains advantage for
medium ranges of speed, followed by LED_UP_06.

To resume, in Figure 22, the resistances calculated for LED and TryAgain have been
compared to the ones calculated for LED_UP_06. The blue areas indicate where and how
much LED_UP_06 is better than the original hulls, while the red areas indicate the opposite.
The green line compares LED with LED_UP_06 and the area below this line is always blue
in the analyzed Fr range. This means that the new hull guarantees better performances
with respect to LED at any Fr. The red line compares TryAgain with LED_UP_06 and the
areas below this line are red or blue depending on the value of Fr. Basically, LED_UP_06
behaves better than TryAgain in the range Fr = [0.21–0.4] and the improvements arrive at
the 9% of the resistance. TryAgain has lower values of resistance for medium-high values
of Froude number (Fr > 0.4), which is a consolidated result in literature since a higher
value of CP leads to better performances in this range of speeds. Nevertheless, the better
performance due to the pre-planing attitude shown by TryAgain at high Fr can become
significant in the choice between the two hulls only when high speed is assumed during
regattas. Usually these competitions are held in light breeze conditions and rarely boats are
fully planing. Moreover, frequent restarts of the boat due to maneuvering require a boat
able to quickly accelerate and in this sense, the low resistance shown by LED_UP_06 at
medium Fr range could be of great importance.
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7. Conclusions

In this work, a tool and the relative methodology to design and evaluate the perfor-
mances of hulls of sailing boats is presented. The algorithm and the related Graphical
User Interface (GUI) have been written in Visual Basic for Excel. A total of seven rational
Bézier curves of the third-degree are selected to define the geometry of the hull. To prove
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the validity of the tool and the applied approach, two existing sailboat hulls have been
successfully replicated and a new design of a sailboat is presented.

This procedure has been used to rapidly design a new hull that includes benefits given
by a round bilge and a hard chine hull. It has been demonstrated that a hybrid solution
between these two opposite shapes ensures better performance especially in the mid-range
of Fr, before lifting effects on the hull due to dynamic pressure prevail.

In future works the new hull will be investigated by means of CFD simulations, in a
wider range of real sailing conditions in terms of Froude number, trim and leeway angles,
allowing the designer to understand in a deeper way why the hulls present differences in
terms of performances.
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Nomenclature

Rrh Residuary Resistance N
∇c Displacement m3

ρ Density of Water kg/m3

g Gravity Acceleration m/s2

LOA Length Overall m
SW Wetted Surface m2

AX Max Transversal Area m2

Lwl Length of Water Line m
Bwl Beam of Water Line m
Tc Canoe Body Draft m
LCBfpp Center of Buoyancy m
LCFfpp Center of Flotation m
Cp Prismatic Coefficient (CP = ∇c/LWL Ax) -
Aw Water Plane Area m2

ai Coefficients -
Pi Coordinate of control points m
wi Weight of control points -
Bi,n Bernstein polynomials -
Re Reynolds number -
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