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Abstract: A wave forecast numerical simulation was performed for Typhoon Lingling around the
Korean Peninsula and in the East Asia region using sea winds from 24 members produced by the
Ensemble Prediction System for Global (EPSG) of Korea Meteorological Administration (KMA).
Significant wave height was observed by the ocean data buoys used to verify data of the ensemble
wave model, and the results of the ensemble members were analyzed through probability verification.
The forecast performance for the significant wave height improved by approximately 18% in the root
mean square error in the three-day lead time compared to that of the deterministic model, and the
difference in performance was particularly distinct towards mid-to-late lead times. The ensemble
spread was relatively appropriate, even in the longer lead time, and each ensemble model runs were
all stable. As a result of the probability verification, information on the uncertainty that could not be
provided in the deterministic model could be obtained. It was found that all the Relative Operating
Characteristic (ROC) curves were 0.9 or above, demonstrating good predictive performance, and the
ensemble wave model is expected to be useful in identifying and determining hazardous weather
conditions.

Keywords: Ensemble Prediction System for Global (EPSG); ensemble wave model; Lingling;
probability verification; ensemble spread; Relative Operating Characteristic (ROC)

1. Introduction

The ensemble prediction technique is widely used to compensate for the limitations
of deterministic prediction of a deterministic forecast model, which has prediction errors
due to the initial conditions of the numerical model and the uncertainty of the prediction
model [1–3]. This technique performs probabilistic prediction by considering the possi-
bilities for various initial conditions, physical processes, and boundary conditions and
includes both the prediction information and information on forecast uncertainty provided
by the conventional deterministic forecast model [4–6]. Therefore, it has better predictive
performance than the deterministic forecast model and is extremely useful for determin-
ing various hazardous weather conditions, since it is based on possible marine weather
scenarios. Recently, studies to improve the prediction accuracy of ensemble models using
machine learning, etc., have been conducted [7,8]. However, the economic aspects and
computational efficiency need to be considered when using the ensemble model, and a
high-performance supercomputer capable of computing a large amount of data is required.
In addition, the prediction results may have a large deviation, depending on the numerical
model, since there is a large amount of prediction data, and it may be difficult to obtain the
probability analysis data. However, it is a prediction technique that is extremely useful, as
it can identify the uncertainty in prediction and information on various hazardous weather
conditions.

The wave forecast model to which the ensemble technique is applied provides pre-
diction information through a field operation and is used for probabilistic wave forecast
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research for hazardous weather [9–12]. In the forecast model, although prediction uncer-
tainty is affected by physical processes, initial conditions, and boundary conditions, it is
known that the wave model results are directly affected by the prediction accuracy of sea
surface winds by atmospheric models the most [13–15]. Although the result of the wave
forecast model differs depending on the accuracy of the input sea surface wind, the predic-
tion uncertainty cannot be determined by the deterministic forecast model, even though
there is uncertainty in predicting the actual event, since the information is limited. On the
other hand, the ensemble model can identify the uncertainty of prediction, as various sea
surface wind scenarios are composed of each ensemble member, and a prediction model is
performed [16].

Verification indices of the probabilistic forecast performance of the ensemble model in-
clude the Brier score (BS), Brier skill score (BSS), reliability diagram, and Relative Operating
Characteristic (ROC), which are verification indices that can be generally used to determine
the accuracy of the probabilistic forecast and uncertainty in prediction [17–19]. In addition,
the ensemble spread is the standard deviation of each member of the ensemble mean. It
is a representative verification index to diagnose the prediction results of the ensemble
model [20–22]. This is an important diagnostic tool that can determine the accuracy of the
prediction results of each member and the performance of numerical simulations for an
actual event, which is used to verify the probabilistic prediction of the ensemble model.

In this study, numerical simulation of wave prediction was performed on Typhoon
Lingling, which caused great damage to the Korean Peninsula in September 2019, using
the sea surface wind data produced by Ensemble Prediction System for Global (EPSG) of
Korea Meteorological Administration (KMA) based on the ensemble prediction technique,
and the third-generation wave model WAVEWATCH III was identified by applying the
probabilistic prediction verification method. In addition, the prediction accuracy of the
ensemble model for rapidly changing marine weather due to hazardous weather was
evaluated by comparing it with the prediction results of the deterministic forecast model,
and the prediction uncertainty was analyzed.

2. Methodology
2.1. Ensemble Wave Model Setup

The Northeast Asian region with the latitude of 20–50◦ N and longitude of 115–150◦

E is the computational domain of the ensemble wave model as the regional wave model
operated by KMA. The bathymetry data was established, as shown in Figure 1, based on
ETOPO1 and the global self-consistent hierarchical high-resolution shoreline (GSHHS)
coastline data provided by the National Geophysical Data Center (NGDC). The spherical
coordinate system was used as the coordinate system of the model, and the resolution of
the model is approximately 8 km at 1/12◦.

The best track of Typhoon Lingling provided through the Joint Typhoon Warning
Center (JTWC), is shown in Figure 1. Lingling formed at 9 a.m. on 2 September 2019, on
the sea about 560 km east of Manila, Philippines. At 3 p.m. on 5 September, it developed to
a central air pressure of 940 hPa, maximum wind speed of 46 m/s, and wind radius of 390
km (east radius) about 320 km southwest of Okinawa, Japan. Then, it moved north from
the East China Sea and passed the southern coast of the Korean Peninsula at 6 a.m. on 7
September 2019. It weakened as it moved north to northeast at a rapid pace on the western
coast of the Korean Peninsula and transformed into an extratropical cyclone of 985 hPa
from the land around 160 km northwest of Vladivostok, Russia at 9 a.m. on 8 September.
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Figure 1. Ensemble wave model computational domain and Typhoon Lingling best track.

The ensemble wave forecast model was applied with the wave energy physical pack-
age proposed by Ardhuin et al. [23] based on the WAVEWATCH III developed by the U.S.
National Weather Service, and a version with improved accuracy through the optimization
process for the physical variables of the wave model was used [24–26]. For the wind
forcing, 10 m high sea wind data of a total of 24 ensemble members produced by EPSG
of KMA was used. The prediction results of the model performed 12 h in advance by
each ensemble member were used for the initial field, and the boundary data for the same
computational domain of the regional wave model, a deterministic forecast model, was
used for the boundary field. The ensemble wave model was performed twice a day (00
UTC, 12 UTC), which predicted up to 120 h from the start time of the model. In this study,
the analysis was performed by setting the lead time for predicting performance verification
up to 120 h at 3-h intervals (Table 1).

Table 1. Description of ensemble wave forecast model.

Model WAVEWATCH III Ver. 4.18
Coordinate Spherical coordinate

Domain 115◦ E–150◦ E, 20◦ N–50◦ N
Resolution 1/12◦ × 1/12◦ (421 × 361)

Forecast Time +120 h (3 h of time-interval)
Initial Condition 12 h forecast from the previous run

Boundary Condition From the regional wave model
Wind Forcing Data EPSG (UM N400 L70 M49) 10 m sea winds

Model Cycle 2/day (00 UTC, 12 UTC)
Ensemble Member 24

The overall operation diagram of the EPSG and ensemble wave forecast system is
as shown in Figure 2, and the operation of the EPSG produced the sea surface wind of
11 members predicted 6 h in advance and the sea surface wind of 13 members predicted
while the model was executed, including the control member by introducing the time-lag
technique to prevent overloading of computing resources. The prediction was performed
up to 240 h at 3-h intervals by using the produced sea wind prediction data of a total of 24
members as input data for the wave model.
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Figure 2. Operation diagram of forecast system for EPSG and ensemble wave model (EPSG 24
ensemble members sea winds consist of 13 members with control member at same time of wave
model runs (00 UTC, 12 UTC) and 11 members performed 6 h prior to wave model runs (18 UTC,
06 UTC)).

2.2. Numerical Method

In this study, the ensemble wave model was used to perform numerical simulations
for the Typhoon Lingling that passed near the Korean Peninsula in September 2019. The
model was executed using a total of 24 members, including control members at 00 UTC
and 12 UTC, and the analysis period was from 00 UTC on 1 September 2019, to 12 UTC on
9 September 2019. To verify the predictive performance of the model, the predicted results
of up to 120 h from the time the wave model was executed at 3-h intervals were used, and
the prediction results were classified and analyzed by the lead time based on the time the
model was executed.

The significant wave height data observed at 17 ocean data buoys around the Korean
Peninsula operated by KMA (Table 2) was used for the probabilistic prediction verification
of the ensemble wave model, and the probabilistic predictive analysis was performed,
excluding cases in which data was lost due to the influence of typhoons during the verifi-
cation process. In addition, the prediction performance of the ensemble wave model was
compared using the prediction results of the deterministic forecast model. The prediction
results of the regional wave model performed in the same computational domain as the
ensemble model were used for the deterministic forecast model. The regional wave model
was also performed twice a day at 00 UTC and 12 UTC as the ensemble wave model, and
the prediction was performed up to 120 h at 3-h intervals.

Table 2. Location information of ocean data buoys (KMA).

No. Buoy ID Location Longitude (Deg.) Latitude (Deg.)

1 22104 Geojedo 128.90 34.77
2 22106 Pohang 129.78 36.35
3 22188 Tongyeong 128.23 34.39
4 22189 Ulsan 129.84 35.35
5 22101 Deokjeokdo 126.02 37.23
6 22108 Oeyeondo 125.75 36.25
7 22185 Incheon 125.43 37.09
8 22105 Donghae 130.00 37.53
9 21229 Ulleungdo 131.11 37.46

10 22190 Uljin 129.87 36.91
11 22102 Chilbaldo 125.77 34.80
12 22103 Geomundo 127.50 34.00
13 22184 Chujado 126.14 33.79
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Table 2. Cont.

No. Buoy ID Location Longitude (Deg.) Latitude (Deg.)

14 22183 Shinan 126.24 34.73
15 22186 Buan 125.81 35.66
16 22187 Seogwipo 127.02 33.13
17 22107 Marado 126.03 33.08

The proper distribution of the model prediction results and the performance of en-
semble members in implementing the actual event were first diagnosed through the rank
histogram and spread-skill graph based on the comparison between the prediction results
of each member of the ensemble model and the results observed by the ocean data buoys
as a method of verifying the wave model, and the probabilistic wave model’s prediction
accuracy and prediction uncertainty in hazardous weather conditions were evaluated
through the probabilistic prediction verification indices of the BS and ROC.

3. Results
3.1. Sea Wind Prediction Results of 24 Ensemble Members

The initial field of 23 members is produced through a perturbation process using the
ensemble transformation Kalman filter (ETKF) when the initial field of the atmospheric
model is produced. The control member that performed the model without adding pertur-
bation and the perturbation member that added the analysis field by ETKF to the initial
field were determined, and 24 different sea wind prediction results were obtained. The
sea wind prediction results of three random members out of 24 members performed at 00
UTC on September 5, 2019, are as shown in Figure 3. The results of the sea surface wind
with forecast lead time of control member of +00 h, +24 h, +48 h are shown in Figure 3a–c.
The results by forecast lead time of the 13th member are as shown in Figure 3d–f, and the
prediction results of the 24th member are as shown in Figure 3g–i. The prediction result
of each member was slightly different than that of the control member, and the predic-
tion deviation increased as the lead time increased. This increasing prediction deviation
indicates the uncertainty of the prediction model, and it was found that there may be
a large prediction error at the final lead time when predicting through a deterministic
forecast model.

3.2. Ensemble Wave Model Forecasting Results

The wave model was run for 5 days before the typhoon moved north, using the
sea wind data of 24 members. This was to simulate a realistic numerical simulation by
implementing a state in which waves are sufficiently developed by the wind. The spaghetti
contours of 3 m and 5 m significant wave heights, which were predicted at 00 UTC on
3 September 2019, are shown in Figures 4 and 5, respectively. The spaghetti contours,
according to the threshold significant wave height, are shown by forecast lead times 00 h,
24 h, 48 h, and 72 h, respectively. Overall, a high significant wave height was predicted
around the eye of the typhoon along the moving path of the typhoon, and the difference
between the ensemble mean and the predicted significant wave height for each of 24
members was found. In addition, although the results of the deterministic forecast model
tended to be similar to those of the ensemble model, the prediction result does not reflect
the prediction uncertainty of the ensemble model, because the model was performed under
an individual condition; thus, it has limitations for use in probabilistic forecasting.
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Figure 3. Simulated wind vectors and speeds (m/s) of the lead time +00 h, +24 h, and +48 h on the
EPSG ((a–c): control member, (d–f): 13th member, and (g–i): 24th member).

Figure 4. Comparison of the results of each ensemble model member with a significant wave height
of 3 m, the result of the ensemble mean, and the result of a deterministic forecast model (forecast lead
times of (a) +00 h, (b) +24 h, (c) +48 h, and (d) +72 h).
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Figure 5. Comparison of the results of each ensemble model member with a significant wave height
of 5 m, the result of the ensemble mean, and the result of a deterministic forecast model (forecast lead
times of (a) +00 h, (b) +24 h, (c) +48 h, and (d) +72 h).

The prediction results for each member were compared with the observation results.
The predicted significant wave heights for each ensemble member were compared with
the observed significant wave height, and the appropriateness of the spread of the ensem-
ble wave model was diagnosed through the histogram for all buoy locations. The rank
histogram is a representative diagnostic tool for evaluating the ensemble spread, which is
generated by observed values from an ensemble sorted from lowest to highest [17]. A left-
or right-skewed rank histogram means that there is a deviation in the ensemble spread; the
U-shaped rank histogram means that the ensemble spread is either low and high biases,
and a concave rank histogram means that the ensemble spread is narrow. Lastly, flat rank
histograms indicate that the probability of the observed values belonging to each interval
of the ensemble spread is similar and that the ensemble spread is relatively appropriate.

The rank histograms of lead times 00 h, 24 h, 48 h, and 72 h, respectively, are as shown
in Figure 6a–d. The rank histogram up to a lead time of 24 h shows a U-shape with bias on
the left and right, indicating that the ensemble does not spread out enough. After 24 h, it
can be determined that the spread of the ensemble members is appropriate, because there
was no bias with a flat shape, and that the range predicted by the model is reliable. The
ensemble mean and spread were compared to determine whether the ensemble members
could represent the actual event. The ensemble mean and the root-mean-square error
(RMSE) of the observed data were calculated, and spread, which is the standard deviation
of the members to the ensemble mean, was calculated through Equation (1) [27].

SPREAD =

√√√√ 1
M

M

∑
m=1

(
fm − f

)2
(1)

where M denotes the size of the ensemble, fm denotes the predicted value of the m member,
and f denotes the ensemble mean. In general, it is known that there is a high correlation
between RMSE and spread at the beginning of the forecast lead time, and the correlation
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decreases as the forecast continues [20]. It means that the ensemble spread simulates the
actual event well when it is closer to the diagonal line of the graph. The relationship
between the spread and the RMSE for the significant wave height over all buoy observation
locations is as shown in Figure 7, and the spread frequency in the ensemble spread interval
is as shown in the histogram. The 72 h forecast result tended to deviate slightly from the
diagonal line than the beginning of the lead time, while it matched well with the diagonal
line up to approximately 1 m. It was found that there was no significant correlation
depending on the lead time, as this was a result of verifying a short-term probabilistic
prediction for the typhoon period, and it was generally consistent with the diagonal line,
indicating that the ensemble spread represents the actual event well.

Figure 6. Rank histogram to determine the suitability of ensemble spread for all observation points
with forecasting lead times of (a) +00 h, (b) +24 h, (c) +48 h, and (d) +72 h.

Figure 7. Spread skill relationship for significant wave height for forecast lead times of (a) +00 h and
(b) +72 h.
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3.3. Ensemble Wave Model Forecast Performance and Probabilistic Verification Result

The prediction results of the deterministic forecast model and the predicted result of
the ensemble mean were compared with the observed significant wave height, and the bias
and RMSE for each lead time were calculated through Equations (2) and (3).

bias =
1
n

n

∑
i=1

(Fi − Ai) (2)

RMSE =

√
1
n

n

∑
i=1

(Fi − Ai)
2 (3)

where, Fi is the predicted value, Ai is the observed value, and n is the sample size. The
results predicted up to 120 h at 3-h intervals in which the model was executed were compared
with the significant wave heights observed in 17 ocean data buoys. In order to compare
with the deterministic model result, averaged bias and RMSE values are calculated over all
buoy observation points for each ensemble. As the result, both ensemble model and the
deterministic model showed a tendency to over-estimation for the typhoon. The prediction
error tended to increase when the lead time increased in both the ensemble model and the
deterministic forecast model, as shown in Figure 8. The prediction error of the deterministic
forecast model was particularly larger than that of the ensemble model, and the model tended
to overestimate after 3 days of lead time. The ensemble wave model forecast performance
for the significant wave height improved by approximately 18% in the RMSE in the 3-day
lead time compared to the deterministic forecast model. In addition, it was confirmed that
the typhoon intensity declined after 96 h of the forecast lead time, and the positive bias had
decreased at the same forecast lead time. The time series of the observed significant wave
height and the predicted data by both models at all buoy observation points were compared
to determine the variations of bias and RMSE values, as seen in Figure 8. There are differences
that were found in the prediction results of the wave model performed before and after the
typhoon passed the buoy observation points. Overall, the model results predicted before the
typhoon passed the observation points predicted that the maximum significant wave would
occur earlier than the buoy observation, indicating that the positive bias and RMSE variations
would occur later in the forecast lead time. Forecasting of waves conducted from the time
the typhoon passed did not show significant differences between the predicted and observed
values over the entire forecast lead time, and this difference seems to have reduced positive
bias and forecast errors.

The BS and ROC were used to verify the probabilistic prediction performance of the
ensemble wave model. The BS is a representative probabilistic forecast verification index
that determines the probabilistic prediction accuracy of the ensemble model. It consists of
a total of three terms, as shown in Equation (4) [28].

BS =
1
N

K

∑
k=1

nk( fk − ok)
2 − 1

N

K

∑
k=1

nk(ok − o)2 + o(1 − o) (4)

where N is the number of forecasts for the actual event, fk and ok are the predicted
probability and the mean of the observation frequencies in probability interval k, nk is the
number of samples of the forecast, and o is the mean of the total observation frequencies.
The first term represents reliability, which means how close the predicted probability is to
the actual probability of occurrence. A reliability value of 0 indicates a perfect prediction.
The second term represents resolution, which means how far the actual probability of
occurrence is from the mean of the observed frequencies in different probability intervals.
Finally, the third term is uncertainty, which means the uncertainty included in the actual
phenomenon. It has no relation to the accuracy of the prediction probability, since it
represents the difficulty of the prediction situation. The BS consists of these three terms
and indicates that the accuracy of probabilistic prediction is high if the sum is close to 0.
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The total BS and element-specific values of the ensemble wave model calculated using
Equation (4) is shown in Figure 9. The BS increased as the lead time increased, and
although the occurrence probability decreased when the predicted significant wave height
was large, the accuracy of the ensemble prediction was higher than that of the case where
the predicted significant wave height was small.

Figure 8. (a) bias and (b) RMSE for significant wave heights of ensemble model and deterministic model
by forecast lead time (Analysis period: 00 UTC 1 September 2019, to 12 UTC 9 September 2019).

Figure 9. Comparison of the Brier score of forecast lead time according to threshold for significant
wave heights of (a) 2 m or above and (b) 4 m or above.
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ROC is a method of evaluating the predictive performance of a binary classification
system, which is a graph of the true- and false-positive rates for events above a certain
threshold [29,30]. In general, the x-axis of the graph is the false-positive rate, and the y-axis
is the true-positive rate. It indicates that the forecast is perfect when the area of the ROC
graph is close to 1, while it indicates that the forecast value is not large if the area is below
0.5. The ROC graph, when the threshold was above 2 m of significant wave height, is
shown in Figure 10. Overall, although the accuracy of the forecast was relatively high, since
the area of the graph was close to 1, the accuracy of the forecast tended to decrease slightly
as the forecasting lead time increased. This trend was also found in the ROC graph with a
significant wave height above the threshold of 4 m, as shown in Figure 11, and although
the frequency of observation decreased as the threshold for the significant wave height
increased, the predictive performance for the probability of wave tended to increase.

Figure 10. ROC with significant wave height of 2 m or above with forecasting lead times of (a) +00 h,
(b) +24 h, (c) +48 h, and (d) +72 h.
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Figure 11. ROC with significant wave height of 4 m or above with forecasting lead times of (a) +00 h,
(b) +24 h, (c) +48 h, and (d) +72 h.

4. Conclusions

In this study, a numerical simulation of wave forecast at the time of Typhoon Lingling
moving north was performed using the sea wind forecast field of EPSG, and the forecast
performance of the ensemble wave model was verified using the significant wave height
observed from the ocean data buoy around the Korean Peninsula.

As the results of the probability verification, the appropriateness of the distribution of
the ensemble spread was diagnosed through the rank histogram, and it was found that
the spread was appropriate without bias after 24 h of lead time. As a result of determining
the accuracy of probabilistic prediction using the BS verification index, the prediction
accuracy for the prediction of the ensemble model decreased as the lead time increased,
and the BS was close to 0 when the significant wave height threshold increased. Even
in ROC with a significant wave height of 2 m or above, it was found that the area under
the curve gradually decreased to nearly 1 as the lead time increased, and the same trend
was observed in ROC with a significant wave height of 4 m or above. This means that the
accuracy of probabilistic prediction decreased along with the lead time, and although the
observation frequency decreased as the threshold for the significant wave height increased,
the forecast performance tended to increase compared to the high observation frequency.

The averaged RMSE of the ensemble members became smaller than the RMSE of the
deterministic forecast model performed during the same period as the lead time increased,
and it was particularly distinct after 3 days of lead time. The relatively stable forecast
performance of the ensemble model was confirmed, despite the rapid changes in the sea
wind due to the typhoon. Furthermore, the simulation result with the ensemble forecast
model includes the uncertainty information. The prediction uncertainty is reflected in the
wave model through the ensemble technique, which shows improved accuracy and forecast
performance compared to the prediction result of a deterministic forecast model. Although
the ensemble model necessitates a greater amount of computational time compared to that
of the deterministic model, the ensemble model has greater prediction accuracy. It has been
determined that the probabilistic forecast performance was secured, even though it was the
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result of short-term verification performed during the typhoon period. It will be useful in
the field of probabilistic forecast with more improved accuracy of probabilistic prediction
based on sufficient verification data.
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