The Feasibility of Monoculture and Polyculture of Striped Catfish and Nile Tilapia in Different Proportions and Their Effects on Growth Performance, Productivity, and Financial Revenue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Facilities
2.2. Experimental Design and Diets
2.3. Measured Parameters
2.3.1. Growth Performance and Feed Utilization Parameters
2.3.2. Financial Assessment
2.3.3. Diet and Whole-Body Proximate Chemical Compositions
2.3.4. Organs Somatic Indices
2.4. Statistical Analysis
3. Results
3.1. Growth Performance and Production
3.2. Feed Utilization and Somatic Indices
3.3. Financial Assessment
3.4. Whole-Body Proximate Chemical Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Ahmed, M.; Lorica, M.H. Improving developing country food security through aquaculture development-lessons from Asia. Food Policy 2002, 27, 125–141. [Google Scholar] [CrossRef]
- Pradeepkiran, J.A. Aquaculture role in global food security with nutritional value: A review. Transl. Anim. Sci. 2019, 3, 903–910. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.-F.M. Tilapia Culture; CABI Publishing: Willingford, Oxfordshire, UK, 2006. [Google Scholar]
- Behera, B.; Pradhan, P.; Swaminathan, T.; Sood, N.; Paria, P.; Das, A.; Verma, D.; Kumar, R.; Yadav, M.; Dev, A. Emergence of tilapia lake virus associated with mortalities of farmed Nile tilapia Oreochromis niloticus (Linnaeus 1758) in India. Aquaculture 2018, 484, 168–174. [Google Scholar] [CrossRef]
- Mehrim, A.; Refaey, M.; Khalil, F.; Shaban, Z.E. Impact of Mono-and Polyculture Systems on Growth Performance, Feed Utilization, and Economic Efficiency of Oreochromis niloticus, Mugil cephalus, and Mugil capito. J. Anim. Poult. Prod. 2018, 9, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Jayanthi, M.; Thirumurthy, S.; Samynathan, M.; Manimaran, K.; Duraisamy, M.; Muralidhar, M. Assessment of land and water ecosystems capability to support aquaculture expansion in climate-vulnerable regions using analytical hierarchy process based geospatial analysis. J. Environ. Manag. 2020, 270, 110952. [Google Scholar] [CrossRef]
- Allam, B.W.; Khalil, H.S.; Mansour, A.T.; Srour, T.M.; Omar, E.A.; Nour, A.A.M. Impact of substitution of fish meal by high protein distillers dried grains on growth performance, plasma protein and economic benefit of striped catfish (Pangasianodon hypophthalmus). Aquaculture 2020, 517, 734792. [Google Scholar] [CrossRef]
- Mahmud, S.; Ali, M.L.; Alam, M.A.; Rahman, M.M.; Jørgensen, N.O. Effect of probiotic and sand filtration treatments on water quality and growth of tilapia (Oreochromis niloticus) and pangas (Pangasianodon hypophthalmus) in earthen ponds of southern Bangladesh. J. Appl. Aquac. 2016, 28, 199–212. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, M.S. Optimization of stocking density of freshwater prawn Macrobrachium rosenbergii (de Man) in carp polyculture in Bangladesh. Aquac. Res. 2006, 37, 994–1000. [Google Scholar] [CrossRef]
- Phuong, N.; Oanh, D. Striped catfish aquaculture in Vietnam:a decade of unprecedented development. In Success Stories in Asian Aquaculture; De Silva, S., Davy, F., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 131–147. [Google Scholar]
- Offem, B.O.; Ikpi, G.U.; Ayotunde, E.O. Effect of stocking size of the predatory African catfish (Heterobranchus longifilis V.) on the growth performance of Nile Tilapia (Oreochromis niloticus L.) in pond culture. Int. J. Fish. Aquac. 2009, 1, 38–43. [Google Scholar]
- Shafiullah, M.; Siddique, M.A.B.; Rahman, M.S.; Mahalder, B.; Ali, A.; Rahmatullah, S. Effects of Different Stocking Ratios on the Production and Survival of Indigenous Carps and Pangas (Pangasius hypophthalmus) in a Pond System. Master’s Thesis, Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2003. [Google Scholar]
- Sarkar, M.; Khan, S.; Haque, M.; Haq, M. Evaluation of growth and water quality in pangasiid catfish (Pangasius hypophthalmus) monoculture and polyculture with silver carp (Hypophthalmichthys molitrix). J. Bangladesh Agric. Univ. 2006, 4, 339–346. [Google Scholar]
- Khan, S.; Hossain, M.; Haque, M. Effects of feeding schedule on growth, production and economics of pangasiid catfish (Pangasius hypophthalmus) and silver carp (Hypophthalmichthys molitrix) polyculture. J. Bangladesh Agric. Univ. 2009, 7, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Huq, K.A.; Rahman, M.A. Polyculture of Thai pangus (Pangasius hypophthalmus, Sauvage 1878) with carps and prawn: A new approach in polyculture technology regarding growth performance and economic return. Aquac. Res. 2008, 39, 1620–1627. [Google Scholar] [CrossRef]
- Husain, T.K.; Mulyo, J.H.; Jamhari, J. Analisis Perbandingan Keuntungan dan Risiko Usaha Perikanan Rakyat Sistem Monokultur dan Polikultur di Kabupaten Pangkep. Agro Ekon. 2016, 27, 136–149. [Google Scholar] [CrossRef]
- Sudirman, A.; Rahardjo, S.; Rukmono, D. Economical analysis of Polyculture of Catfish and Tilapia Fishi Biofloc System. Int. J. Eng. Sci. 2020, 9, 1–7. [Google Scholar]
- Ali, M.; Islam, M.; Begum, N.; Suravi, I.; Mia, M.; Kashem, M. Effect of Monoculture and Polyculture Systems on Growth and Production of Fishes in Seasonal Waterbodies of Haor Villages, Sunamganj District. J. Sci. Res. 2017, 9, 307–316. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2018. [Google Scholar]
- Azim, M.; Verdegem, M.; Mantingh, I.; Van Dam, A.; Beveridge, M. Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia, Oreochromis niloticus L. Aquac. Res. 2003, 34, 85–92. [Google Scholar] [CrossRef]
- Ali, H.; Haque, M.M.; Belton, B. Striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) aquaculture in Bangladesh: An overview. Aquac. Res. 2013, 44, 950–965. [Google Scholar] [CrossRef]
- Belton, B.; Van Asseldonk, I.J.M.; Bush, S.R. Domestic crop booms, livelihood pathways and nested transitions: Charting the implications of Bangladesh’s Pangasius boom. J. Agrar. Chang. 2017, 17, 694–714. [Google Scholar] [CrossRef]
- Haque, R.I.; Azam, M.R.; Ullah, M.A. Production of Stinging Catfish (Heteropneustes fossilis) in different stock-ing densities with GIFT (Oreochromis niloticus) and Thai Sharpunti (Bar). J. Fish. Life Sci. 2018, 3, 9–15. [Google Scholar]
- Tang, Q. Modification of the Ricker stock recruitment model to account for environmentally induced variation in recruitment with particular reference to the blue crab fishery in Chesapeake Bay. Fish. Res. 1985, 3, 13–21. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Khalil, H.S.; Mansour, A.T.; Goda, A.M.A.; Omar, E.A. Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture 2019, 501, 135–143. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. Off. Methods Anal. Assoc. Off. Anal. Chem. Gaithersburg MD USA 2000, 260–267. [Google Scholar]
- M’balaka, M.; Kassam, D.; Rusuwa, B. The effect of stocking density on the growth and survival of improved and unimproved strains of Oreochromis shiranus. Egypt. J. Aquat. Res. 2012, 38, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.; Rahman, M.; Rahman, Z. Polyculture of carp, tilapia and pangas using low cost inputs. Pak. J. Biol. Sci. 2004, 7, 11. [Google Scholar]
- Sarkar, M.; Khan, S.; Haque, M. Production and economic return in pangasiid catfish (Pangasius hypophthalmus) monoculture and polyculture with silver carp (Hypophthalmichthys molitrix) in farmers’ ponds. Bangladesh J. Fish. Res. 2005, 9, 111–120. [Google Scholar]
- Sayeed, M.; Hossain, G.; Mistry, S.; Huq, K. Growth performance of thai pangus (pangasius hypophthalmus) in polyculture system using different supplementary feeds. Univ. J. Zool. Rajshahi Univ. 2008, 27, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Haroon, A.; Shanta, M. Culture Feasibility Study of Pangasius Sutchi (Fowler) at a High Density in the Upazilla Parishad’s Pond; Bangladesh Fisheries Research Institute, Chandpur and Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2001; pp. 63–65.
- Limbu, S.M.; Shoko, A.P.; Lamtane, H.A.; Shirima, E.D.; Kishe-Machumu, M.A.; Mgana, H.F.; Mgaya, Y.D. Effect of initial stocking size of the predatory African sharptooth catfish (Clarias gariepinus) on recruits, growth performance, survival and yield of mixed-sex Nile tilapia (Oreochromis niloticus) in concrete tank culture system. Int. Aquat. Res. 2015, 7, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Asadujjaman, M.; Azad, M.A.K.; Ali, M.R.; Hossain, M.A. Optimization of stocking density for Azolla based carp polyculture pond. J. Fish. Aquac. Stud. 2016, 4, 273–279. [Google Scholar]
- Rahman, M.T.; Nielsen, R.; Khan, M.A. Agglomeration externalities and technical efficiency: An empirical application to the pond aquaculture of Pangas and Tilapia in Bangladesh. Aquac. Econ. Manag. 2019, 23, 158–187. [Google Scholar] [CrossRef]
- Setiadi, E.; Taufik, I. Polyculture of Giant Freshwater Prawn, Macrobrachium rosenbergii, and Nilem Carp, Osteochilus hasselti, Cultured in Recirculation System Using Biofiltration. In Proceedings of the E3S Web of Conferences, Purwokerto, Indonesia, 1 August 2018; Volume 47, p. 02005. [Google Scholar]
- Solomon, J.R.; Boro, S.G. Survival rate in polyculture of Catfish Heteroclarias/Tilapia (Oreochromis niloticus), fed 2% body weight. N. Y. Sci J. 2010, 3, 68–78. [Google Scholar]
- Uddin, M.S.; Rahman, S.S.; Azim, M.E.; Wahab, M.A.; Verdegem, M.J.; Verreth, J.A. Effects of stocking density on production and economics of Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) polyculture in periphyton-based systems. Aquac. Res. 2007, 38, 1759–1769. [Google Scholar] [CrossRef]
- Nelissen, M.H. Does body size affect the ranking of a cichild fish in a dominance hierarchy? J. Ethol. 1992, 10, 153–156. [Google Scholar] [CrossRef]
- Gonçalves-de-Freitas, E.; Teresa, F.B.; Gomes, F.S.; Giaquinto, P.C. Effect of water renewal on dominance hierarchy of juvenile Nile tilapia. Appl. Anim. Behav. Sci. 2008, 112, 187–195. [Google Scholar] [CrossRef]
- Haldar, G.; Jahan, D. Polyculture of Pangus with Carp at Low Density in a Farmer’s Pond; Bangladesh Fisheries Research Institute, Chandpur and Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2001; pp. 66–74.
- Azimuddin, K.; Hossain, M.; Wahab, M.; Noor, J. Effect of stocking density on the growth of Thai pangas, Pangasius sutchi (Fowler) in net cage fed on formulated diet. Bangladesh J. Fish. Res. 1999, 3, 173–180. [Google Scholar]
- Haroon, A.; Hossain, M. Studies on the Polyculture of Pangasius Sutchi (Fowler) in Cemented Cisterns; Bangladesh Fisheries Research Institute, Chandpur and Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2001; pp. 12–18.
- Gu, D.E.; Yu, F.D.; Hu, Y.C.; Wang, J.W.; Xu, M.; Mu, X.D.; Yang, Y.X.; Luo, D.; Wei, H.; Shen, Z.X. The species composition and distribution patterns of non-native fishes in the main rivers of South China. Sustainability 2020, 12, 4566. [Google Scholar] [CrossRef]
- Rosmawati, M.A. Survival and growth of African catfish (Clarias sp.) seed in recirculation systems with different densities. J. Pertan. 2011, 2, 36–47. [Google Scholar]
- Srrps, D.; Iswanto, B. Productivity and profitability of selection of catfish (Clarias gariepinus) aquaculture in rearing in soil ponds. Media Akuakultur. 2016, 11, 11–17. [Google Scholar]
- Ali, H.; Rahman, M.E.; Murshed-e-Jahan, K.; Dhar, G.C. Production economics of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) farming under polyculture system in Bangladesh. Aquaculture 2018, 491, 381–390. [Google Scholar] [CrossRef]
- Moray, J.C.; Saerang, D.P.E.R.T. Determination of the selling price with cost plus pricing uses the full costing approach on ud gladys bakery. J. EMBA 2014, 2, 1272–1283. [Google Scholar]
- Husain, T.K.; Mulyo, J.H.; Jamhari, J. Comparative analysis of the benefits and risks of smallholder monoculture and polyculture fisheries business in Pangkep Regency. Agro Ekon. 2016, 27, 136–149. [Google Scholar] [CrossRef]
- Thammapat, P.; Raviyan, P.; Siriamornpun, S. Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chem. 2010, 122, 223–227. [Google Scholar] [CrossRef]
- Monalisa, K.; Islam, M.; Khan, T.; Abdullah, A.; Hoque, M. Comparative study on nutrient contents of native and hybrid Koi (Anabas testudineus) and Pangas (Pangasius pangasius, Pangasius hypophthalmus) fish in Bangladesh. Int. Food Res. J. 2013, 20, 791–797. [Google Scholar]
- Haard, N.F. Control of chemical composition and food quality attributes of cultured fish. Food Res. Int. 1992, 25, 289–307. [Google Scholar] [CrossRef]
- Mansour, A.T.; Esteban, M.Á. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 64, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Omar, E.; Srour, T.; Yousef, M. Effect of three natural phytochemicals supplementation on growth performance, testosterone level and feed utilization of Nile tilapia (Oreochromis niloticus). Aquac. Nutr. 2018, 24, 408–415. [Google Scholar] [CrossRef]
- Khalila, H.; Fayed, W.; Mansour, A.; Srour, T.; Omar, E.; Darwish, S.; Nour, A. Dietary Supplementation of Spirulina, Arthrospira platensis, with Plant Protein Sources and their Effects on Growth, Feed Utilization and Histological Changes in Nile Tilapia, Oreochromis niloticus. J. Aquac. Res. Dev. 2018, 9, 2. [Google Scholar] [CrossRef]
Ingredients | g kg−1 Diet |
Fish meal (62% CP) | 150 |
Soybean meal (48% CP) | 300 |
Corn gluten meal (60% CP) | 100 |
Yellow corn meal | 250 |
Wheat bran | 110 |
Wheat flour | 50 |
Sunflower oil | 15 |
Dicalcium Phosphate | 5 |
Vitamins mixture 1 | 10 |
Minerals mixture 2 | 10 |
Proximate chemical analysis (g kg−1 dry matter) | |
Dry matter | 931.00 |
Crude protein (CP) | 307.80 |
Ether extract (EE) | 69.30 |
Crude fiber (CF) | 17.80 |
Ash | 65.90 |
Nitrogen free extract (NFE) 3 | 539.20 |
Gross energy (GE; kJ g−1) 4 | 19.27 |
Treat | Species/Proportions | Final Body Weight (g fish−1) | Weight Gain (g fish−1) | Specific Growth Rate (% day−1) | Length (cm) | Condition Factor | Survival (%) | Production (kg m−3) | Total Production (kg m−3) |
---|---|---|---|---|---|---|---|---|---|
T1 | P. 100% | 109.50 ± 5.92 a | 95.07 ± 5.84 a | 2.07 ± 0.05 a | 25.70 ± 0.23 a | 1.01 ± 0.03 b | 98.75 ± 1.25 a | 5.41 ± 0.23 a | 5.41 ± 0.23 a |
T2 | P. 25% | 47.01 ± 3.13 d | 32.31 ± 2.93 d | 1.19 ± 0.06 d | 17.50 ± 0.54 c | 0.77 ± 0.04 b | 80.00 ± 0.00 b | 0.47 ± 0.03 f | 2.59 ± 0.02 c |
O. 75% | 65.18 ± 1.97 bcd | 50.43 ± 1.75 bcd | 1.52 ± 0.02 cde | 17.10 ± 0.31 c | 1.72 ± 0.14 a | 86.67 ± 3.34 a | 2.12 ± 0.01 c | ||
T3 | P. 50% | 83.48 ± 1.74 b | 68.93 ± 1.69 b | 1.78 ± 0.02 bc | 23.55 ± 0.38 b | 0.80 ± 0.04 b | 80.00 ± 0.00 b | 1.67 ± 0.04 cd | 2.93 ± 0.00 c |
O. 50% | 59.44 ± 1.88 cd | 44.85 ± 1.82 cd | 1.43 ± 0.03 de | 16.50 ± 0.25 c | 1.97 ± 0.13 a | 85.00 ± 5.00 a | 1.27 ± 0.04 de | ||
T4 | P. 75% | 104.63 ± 2.85 a | 90.18 ± 2.97 a | 2.02 ± 0.04 ab | 25.73 ± 0.24 a | 0.98 ± 0.04 b | 86.67 ± 3.34 b | 3.40 ± 0.04 b | 4.19 ± 0.02 b |
O. 25% | 74.51 ± 2.02 bc | 59.86 ± 2.07 bc | 1.66 ± 0.03 cd | 16.50 ± 0.79 c | 1.69 ± 0.04 a | 85.00 ± 5.00 a | 0.80 ± 0.03 ef | ||
T5 | O. 100% | 63.32 ± 5.42 cd | 48.87 ± 5.45 cd | 1.50 ± 0.89 cde | 17.17 ± 0.48 c | 1.02 ± 0.08 bc | 91.25 ± 1.25 a | 2.88 ± 0.20 b | 2.88 ± 0.20 c |
Treat | Species/ Proportions | Feed Intake (g fish−1) | FCR | PER | Hepato-Somatic Index (%) | Vesral-Somatic Index (%) |
---|---|---|---|---|---|---|
T1 | P. 100% | 114.76 ± 0.08 cd | 1.22 ± 0.08 b | 2.69 ± 0.16 a | 2.23 ± 0.14 ab | 10.94 ± 0.85 |
T2 | P. 25% | 147.98 ± 9.65 bc | 1.79 ± 0.02 a | 1.11 ± 0.03 c | 2.85 ± 0.10 ab | 10.95 ± 0.64 |
O. 75% | 3.02 ± 0.35 ab | 9.91 ± 0.73 | ||||
T3 | P. 50% | 161.70 ± 10.11 b | 1.42 ± 0.05 ab | 0.90 ± 0.02 c | 1.73 ± 0.08 b | 9.30 ± 0.21 |
O. 50% | 3.28 ± 0.25 a | 10.28 ± 0.55 | ||||
T4 | P. 75% | 197.86 ± 1.99 a | 1.32 ± 0.02 ab | 0.99 ± 0.03 c | 2.32 ± 0.09 ab | 10.99 ± 0.91 |
O. 25% | 3.41 ± 0.58 a | 10.02 ± 1.24 | ||||
T5 | O. 100% | 85.43 ± 1.55 d | 1.76 ± 0.16 a | 1.85 ± 0.17 b | 2.25 ± 0.22 a | 10.64 ± 0.33 |
Treat | Species/Proportions | Gross Cost ($ m−3) | Gross Income ($ m−3) | Net Income ($ m−3) | Feed Cost kg−1 Gain | Feed Cost kg−1 Protein Gain |
---|---|---|---|---|---|---|
T1 | P. 100% | 4.17± 0.48 b | 10.45 ± 6.71 a | 6.21 ± 7.20 a | 0.55 ± 0.53 c | 1.22 ± 0.77 c |
T2 | P. 25, O. 75% | 4.45 ± 1.63 b | 5.00 ± 0.41 c | 0.46 ± 1.21 c | 0.81 ± 0.11 a | 2.41 ± 1.06 b |
T3 | P. 50, O. 50% | 4.63 ± 1.55 b | 5.58 ± 0.01 c | 0.95 ± 1.54 cd | 0.64 ± 0.33 bc | 3.02 ± 1.28 a |
T4 | P. 75, O. 25% | 5.48 ± 1.51 a | 7.97 ± 0.39 b | 2.25 ± 1.12 bc | 0.60 ± 0.16 bc | 2.54 ± 0.97 b |
T5 | O. 100% | 2.97 ± 0.05 c | 5.49 ± 0.40c | 2.52 ± 0.39 b | 0.80 ± 0.07 ab | 1.40 ± 0.11 c |
Treat | Species/Proportions | Dry Matter (%) | Crude Protein (%) | Ether Extract (%) | Ash (%) |
---|---|---|---|---|---|
T1 | P. 100% | 30.45 ± 1.40 ab | 45.05 ± 0.95 c | 38.35 ± 2.22 ab | 8.63 ± 0.48 d |
T2 | P. 25% | 27.23 ± 0.15 b | 49.89 ± 1.44 bc | 36.82 ± 0.36 ab | 9.94 ± 0.35 cd |
O. 75% | 28.92 ± 0.09 ab | 55.56 ± 0.15 ab | 29.29 ± 0.27 cd | 13.03 ± 0.95 b | |
T3 | P. 50% | 30.49 ± 0.02 ab | 50.98 ± 2.75 abc | 39.44 ± 1.87 a | 9.99 ± 0.47 cd |
O. 50% | 30.92 ± 0.61 ab | 54.47 ± 0.26 ab | 32.18 ± 1.57 abc | 12.66 ± 0.16 bc | |
T4 | P. 75% | 33.36 ± 1.84 a | 47.47 ± 0.26 bc | 35.96 ± 0.29 ab | 9.83 ± 0.51 cd |
O. 25% | 26.30 ± 0.68 b | 59.58 ± 2.91 a | 23.62 ± 2.92 d | 16.57 ± 0.26 a | |
T5 | O. 100% | 26.85 ± 0.29 b | 57.41 ± 0.86 ab | 28.31 ± 3.16 cd | 14.22 ± 1.56 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, A.T.; Allam, B.W.; Srour, T.M.; Omar, E.A.; Nour, A.A.M.; Khalil, H.S. The Feasibility of Monoculture and Polyculture of Striped Catfish and Nile Tilapia in Different Proportions and Their Effects on Growth Performance, Productivity, and Financial Revenue. J. Mar. Sci. Eng. 2021, 9, 586. https://doi.org/10.3390/jmse9060586
Mansour AT, Allam BW, Srour TM, Omar EA, Nour AAM, Khalil HS. The Feasibility of Monoculture and Polyculture of Striped Catfish and Nile Tilapia in Different Proportions and Their Effects on Growth Performance, Productivity, and Financial Revenue. Journal of Marine Science and Engineering. 2021; 9(6):586. https://doi.org/10.3390/jmse9060586
Chicago/Turabian StyleMansour, Abdallah Tageldein, Belal Wagih Allam, Tarek Mohamed Srour, Eglal Ali Omar, Abdel Aziz Mousa Nour, and Hala Saber Khalil. 2021. "The Feasibility of Monoculture and Polyculture of Striped Catfish and Nile Tilapia in Different Proportions and Their Effects on Growth Performance, Productivity, and Financial Revenue" Journal of Marine Science and Engineering 9, no. 6: 586. https://doi.org/10.3390/jmse9060586
APA StyleMansour, A. T., Allam, B. W., Srour, T. M., Omar, E. A., Nour, A. A. M., & Khalil, H. S. (2021). The Feasibility of Monoculture and Polyculture of Striped Catfish and Nile Tilapia in Different Proportions and Their Effects on Growth Performance, Productivity, and Financial Revenue. Journal of Marine Science and Engineering, 9(6), 586. https://doi.org/10.3390/jmse9060586