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Abstract: Ascidians are marine sessile chordates that comprise one of the major benthic animal groups
in marine ecosystems. They sometimes cause biofouling problems on artificial structures underwater,
and non-indigenous, invasive ascidian species can potentially and seriously alter native faunal
communities. Ascidian larvae are usually tadpole-shaped, negatively phototactic, and adhere on
substrates by secreting a glue from their adhesive organs. Although larvae often prefer hydrophobic
surfaces, such as a silicone rubber, for settlement, hydrophobic materials are often used to reduce
occurrence of fouling organisms on artificial structures. This inconsistency may indicate that an
attractive surface for larvae is not always suitable for settlement. Micro-scale structures or roughness
may enhance the settlement of ascidian larvae, but settlement is significantly reduced by a nano-scale
nipple array (or moth-eye structure), suggesting functional properties of similar structures found
on the body surfaces of various invertebrates. The substrate preferences of larvae should be one of
the important bases in considering measures against biofouling, and this review also discusses the
potential uses of materials to safely reduce the impacts of invasive species.

Keywords: biofouling; larval settlement; substrate preference; water wettability; moth-eye structure;
MOSMITETM; silicone paradox

1. Introduction

In nature, sessile organisms are usually distributed unevenly on substrates, suggesting
the occurrence of selection. We can consider two selection processes; pre-settlement
selection and post-settlement selection. The former is substrate selection for settlement by
the mobile phase of settlers, such as larvae. The larvae may carefully select the microhabitat
and the substrate material for settlement to have better conditions for survival, using their
sensory systems. The present review mainly focuses on this pre-settlement selection.
When a larva settles on an unfavorable site, post-settlement selection brings about death
or ejection of the settlers from the site. This post-settlement selection is induced by not
only physical and chemical factors but also via biological interactions such as inter- and
intra-specific competitions.

Substrate selection by larvae has been assessed by both field and laboratory experi-
ments. In field experiments, test substrata are immersed in the field and the amounts of
settlers are compared among the substrata under different conditions [1,2]. Results include
both pre-settlement selection and post-settlement selection. Laboratory experiments are
mainly carried out to examine particular factor(s), such as texture, wettability, or color
of substrata, on pre-settlement selection, but as results do not always reflect the natural
settlement process, care should be taken in interpreting these results. These experiments
can be subdivided into single-choice [3–6], dual-choice [7,8], and multi-choice tests [9–11].
In an example single-choice test, the inner wall of a container was entirely coated with a
test substrate and the rate of metamorphosis/settlement of larvae was compared among
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substrate types. Therefore, larval preferences among the substrates are not directly as-
sessed in this method. In dual- and multi-choice tests, two or more substrates are placed
in a container, and the number of settlers or selection indices are compared among the
substrates. However, it is difficult to assess the larval preferences for substrates, as larvae
often select the inner wall(s) of a container, and thus, the substrate may not be the only
assay. We can prevent larval settlement on a container wall by coating with a less preferred
material. For instance, ascidian larvae rarely settle on substrates coated with 1.5% agar [12].

The substrate preference of larvae is an important key for controlling larval settle-
ment and for better understanding of evolutionary adaptations in pre-settlement selection.
Management of biofouling has been paid great attention, particularly with regards to
aquaculture facilities and ship hulls, because of the serious economic losses caused by
fouling [13]. Although anti-fouling compounds have been developed and used in coatings
to reduce biofouling [14], the massive use of bioactive compounds for settlers may carry a
risk of pollution to aquatic ecosystems [15]. The physical properties of a substrate surface,
such as structure and wettability, also affect the substrate preferences of settlers. In contrast
to chemical approaches, countermeasures based on physical properties may be less effective
for settlers but more eco-friendly. To develop such physical approaches against biofouling,
it is necessary to elucidate the larval preference(s) of the physical properties of substrates
for settlement. This review focuses on wettability and nano-structures of substrate surfaces
for the substrate selection of ascidian larvae, while other factors of microhabitat influenc-
ing the pre-settlement selection were examined, such as the orientation of the substrate
(i.e., vertical or horizontal) [2], nutrient contaminants in water [16], and textures of the
substrate [9].

2. Ascidians and Their Larvae

Ascidians are the only sessile group among the extant chordates. They are one of the
major benthic animal groups and are suspension feeders in marine ecosystems [17]. Some
ascidians are solitary in form throughout their life, and some form colonies following asex-
ual budding. Ascidian species comprise the class Ascidiacea belonging to the subphylum
Tunicata (or Urochordata). One of the unique characters of tunicates is biosynthesis of
cellulose, and the tunic in ascidians is the cellulosic matrix entirely covering the epidermis
and forming an integumentary matrix [18]. Therefore, ascidians always adhere to the
substrate via the tunic.

The morphology of ascidians and their larvae were described in detail by Burighel and
Cloney [19]. Briefly, ascidian larvae are usually tadpole-shaped and composed of a tail and
trunk; the tail has a notochord and muscles that produce swimming force, and the trunk
has rudimentary juvenile organs, a sensory vesicle containing a pigmented otolith and/or
photolith, and adhesive organs (Figure 1). The larval body is entirely covered by the tunic.
Whereas some species produce tail-less larvae through direct development, phylogenetic
analyses have shown that this is an apomorphic character [20]. The larva is supposed
to sense gravity and light with the otolith and photolith, respectively. By means of laser
ablation of the otolith and photolith, Tsuda et al. [21] demonstrated that upward swimming
occurs due to negative geotaxis in the initial period of the larval stage, and then, negative
phototaxis occurs in the latter period. This upward swimming probably aids in the dispersal
of drifting larvae, and negative phototaxis results in larval settlement in shaded sites.
Ascidians, particularly juveniles, are vulnerable to ultraviolet (UV) radiation [22], and thus,
the light sensitivity of larvae has an important role in selecting the habitat environment in
species inhabiting shallow waters. Ascidian larvae usually have three adhesive organs at
the apical end of the trunk (arrowheads in Figure 1a), and adhesive compounds containing
glycoprotein, sugar residues, and catechol residues are secreted from the collocytes [10].
The adhesive organs also perform a sensory function, and some collocytes are supposed
to be evolutionarily derived from neurosecretory cells [23]. Therefore, this organ should
play an important part in substrate selection for settlement, sensing surface structures,
wettability, and other properties. Following adhesion to the substrate by adhesive secretion,
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metamorphosing larvae absorb the tail into the trunk (Figure 1b), and extend epidermal
ampullae to hold fast to the substrate (arrows in Figure 1c).
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Figure 1. Swimming larva (a) and the settlement (b,c) of Phallusia philippinensis (lateral view). (a) A swimming larva with a
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ampullae onto the substrate (arrows). All scale bars indicate 100 µm.

Natural chemical cues for settlement are known in various marine organisms,
and many studies have reported on various natural products that affect the settlement and
metamorphosis of larvae [24]. In the ascidian Halocynthia roretzi, a metamorphosis-inducing
substance was isolated from the larvae, the larval-conditioned seawater, and the adult
tunic [25], although the working mechanism of this substance is still uncertain. In the
colonial ascidian Botryllus schlosseri, larvae may recognize their kin and aggregately settle
with genetically related individuals [26].

3. Water Wettability
3.1. Measurement of Wettability

Water wettability is generally quantified as the contact angle of a water droplet on the
surface. The angle is smaller on more hydrophilic surfaces and larger on more hydrophobic
surfaces (Figure 2a). Whereas the contact angle is usually measured in the air, water
wettability can be measured in the water as the contact angle of an air bubble (Figure 2b). In
this case, the contact angle of a bubble is smaller on more hydrophobic surfaces. To evaluate
the surface wettability of substrates, the contact angle of a bubble in seawater is better than
the contact angle of a water droplet in the air, as the settlement of marine organisms usually
occurs in the seawater. In the same manner, oil wettability (lipophilicity/lipophobicity) can
be measured as the contact angle of an oil droplet (Figure 2c). High water wettability means
low air wettability, and thus, air bubbles are rarely attached on hydrophilic substrates in
water. Accordingly, when we find an object on which many bubbles are attached in shallow
water, it likely has a hydrophobic surface.
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Figure 2. Contact angles (red lines) of a water droplet (a), air bubbles (b), and oil droplets (c) on a glass plate (cover slip).

However, natural objects with many bubbles are rarely encountered in shallow waters,
indicating that many natural objects in the water usually have hydrophilic surfaces or a
hydrophilic coating, such as a biofilm. The attachment of air bubbles is often a nuisance
for marine organisms, because such bubbles cause unfavorable buoyancy and form an
obstructive barrier against transport of water-soluble molecules. Figure 3 shows the water-
wettability and oil-wettability of some seagrasses and seaweeds inhabiting in the intertidal
zone. While a glass (cover slip) without any coatings is a moderately hydrophilic material,
the seagrass and seaweeds are also hydrophilic and lipophobic. In some species, mucus
exuded from organisms may enhance their hydrophilicity and lipophobicity.
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3.2. Substrate Preference in Wettability

Several studies have reported the substrate preferences of larvae in terms of wettability
based on single-choice or multiple-choice tests. The settlement rate of ascidian larvae was
shown to be greater on more hydrophobic surfaces than on less hydrophobic surfaces
in Phallusia nigra (single-choice test) [4] and more larvae attached on more hydrophobic
substrates in Ciona intestinalis (multi-choice test) [10]. Similarly, larval settlement rates
were greater on hydrophobic substrates in the bryozoan Bugula neritina [3,4,27], and more
zoospores attached on more hydrophobic substrates in the green alga Ulva linza [28].
In contrast, settlement rates of pediveligers of the bivalve Mytilus galloprovicialis were
greater on hydrophilic substrates [6]. Preferences regarding wettability are different in
barnacle species; cyprid larvae of Balanus amphitrite settled in higher percentages on
more hydrophilic surfaces [3,4], although cyprids of Balanus improvisus settled in higher
percentages on more hydrophobic surfaces [5]. It may be difficult to compare these results
simply, because the experimental procedures were different in each study. However,
these studies still indicate that larvae or spores of various organisms have settlement
preferences in terms of wettability. Comprehensive surveys with a standardized assay are
required to clarify the preferences of various species or taxa.
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We carried out quadruple-choice tests for substrate selection of the ascidian larvae
of Phallusia philippinensis using nine commercially available materials as substrates with
different water- and oil-wettability [11]. We tested seven combinations of substrates in the
quadruple-choice test, and, in each test, Manly’s resource selection index was calculated
from the number of juveniles that settled on each of four substrates. Multiple comparisons
of the selection indices showed significant difference in preference among the substrates.
The rank of preference was determined for each of the nine substrates by integrating the
test results; the ascidian larvae tended to select more hydrophobic/oleophilic substrates for
settlement (Figure 4). We suppose that nine (or more) substrates are more than necessary
in order to grasp the substrate preferences regarding wettability and propose a simplified
quadruple-choice test using silicone rubber, polyvinyl chloride, glass, and SH2CLHF (3M)
as a candidate for a standard assay.
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water- and oil-wettability (modified from [11]). The numbers indicate the rank of preference with the
rank of 2 and 2′ being tied. 1, polytetrafluoroethylene; 2, silicone rubber; 2′, polyvinylidene chloride;
4, polychlorotrifluoroethylene; 5, Parafilm (Amcor Ltd.); 6, polyvinyl chloride; 7, glass; 8, 1.5% agar;
9, SH2CLHF (SH: 3M).

Ascidian larvae can detect a small hydrophobic area and settle there. SH2CLHF is
a super-hydrophilic material and no larvae settled on the surface. When the SH2CLHF
film was slightly cut with a fine surgical knife, a more hydrophobic base film made of
polyester was exposed at the cut of less than 50 µm in width. On this film, P. philippinensis
larvae exclusively attached along the cut line and metamorphosed there (Figure 5). Before
settlement, ascidian larvae crawled about on the substrate, with their sensory adhesive
organs touching the substrate [23]. It is possible that the larvae sensed the properties of the
substrate surface with their adhesive organs and carefully selected the site for settlement.

3.3. “Silicone Paradox”

The larvae of ascidians and bryozoans select hydrophobic substrates for settlement,
as mentioned above. However, this preference appears inconsistent with the fact that
hydrophobic materials, such as silicones, are often used for antifouling on ship hulls
and fishing nets. Although silicone rubber ranks second in Figure 4, silicones are also
regarded as effective compounds to reduce fouling [29–32]. Zhang et al. [1] reported that
superhydrophobic surfaces showed fouling repellency for a few weeks but subsequently
lost anti-fouling properties in months. Moreover, the adhesion strength of barnacles on
silicone was significantly smaller than that on epoxy resin as a control [33]. In another
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study, more sporelings of the green alga Ulva were detached from hydrophobic surfaces,
while diatom Navicula cells were more easily detached from hydrophilic surfaces [34]. Thus,
some larvae clearly select hydrophobic surfaces that generally show fouling repellency,
and this is called the “silicone paradox.”
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Considering the low adhesion strength on hydrophobic surfaces, the fouling repellency
of silicone probably results from post-settlement selection. On the other hand, the larval
preference to hydrophobic surfaces as shown in laboratory experiments is pre-settlement
selection of substrate. Therefore, pre-settlement selection favors hydrophobic surfaces,
but the settlers have larger risks to be eliminated on more hydrophobic substrates by post-
settlement selection. The preference to hydrophobic surfaces appears to be less adaptive
for survival, and thus, it is difficult to explain why this preference occurs from an adaptive
evolutionary viewpoint.

We think that the preference to hydrophobic surfaces in ascidians does not result from
the adaptation to find better sites for settlement, but from a physicochemical mechanism
such as an affinity with adhesive compounds secreted from the adhesive organs. In the
initial phase of adhesion to a substrate, the larvae touch the substrate with the tips of
the adhesive organs. When the larva is detached from the substrate, secreted material
remains on the substrate surface in the manner of footprints [10]. If the adhesion strength
of the secreted material is higher on hydrophobic surfaces, more larvae will settle on
hydrophobic surfaces. After settlement, ascidian juveniles adhere to the substrate via the
tunic, but the adhesion strength of the tunic might be lower on hydrophobic surfaces. In
an aquatic environment, natural surfaces are usually hydrophilic (e.g., Figure 3), and thus,
larvae settle on moderately hydrophilic substrates. For marine organisms, hydrophobic
substrates may be almost an unexperienced surface in their evolutionary history, and thus,
they have not yet adapted to hydrophobic surfaces even if such a surface is not suitable
for post-settlement selection. It will be important to investigate the adhesion mechanism
between substrates and the glue secreted from the adhesive organs for proving an answer
to this paradox.

4. Surface Structures
4.1. Preference in Surface Structure

Natural substrates often have uneven surfaces, and even artificial, flat substrates may
have some roughness at the microscopic level. Several studies have indicated that larval
preference depends on the size of the structure. The 400-µm texture on a hydrophobic
substrate much enhanced the settlement of Mytilus pediveligers [6], and ascidian larvae
of C. intestinalis and Botrylloides violaceus prefer rougher surfaces [9]. In contrast to these
micro-scale structures, nano-scale roughness on hydrophobic materials generates a super-
hydrophobic surface that show anti-fouling properties against a broad spectrum of settlers
including algal cells, algal spores, bryozoans, and barnacles [7]. For a better understanding
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of effective structures to prevent biofouling, surface structures of marine organisms have
recently been focused on as biomimetic models for fouling control [35].

4.2. Nano-Scale Nipple Array

The moth-eye structure, or nano-scale nipple array, was originally discovered on
the cornea of the compound eye in nocturnal moths [36]. This structure is an array of
nipple-shaped protuberances of about 100 nm or less in height, and is well known to
reduce light reflection on the surface, i.e., the moth-eye effect, by forming a gradient of
refractivity [36,37]. This lower reflection simultaneously indicates higher transmission of
light into the eyes. This is also an advantage in low-light conditions, and comparative
studies of nocturnal and diurnal lepidopterans have suggested that greater transmission
of UV light from the moth-eye structure may be important for lepidopterans and cause
attraction to UV lights [38]. Moreover, some other functions have been demonstrated for
this structure. The nipple array of some insects reduces adhesion and water wettability,
and this property prevents dust and dew from adhering to the surface [39,40]. A bacterici-
dal property was shown in the nipple array of black silicon, a synthetic material, as well as
those on cicada and dragonfly wings [41,42]. Thus, the nipple array can be regarded as a
multifunctional structure.

The nipple array has been also found from body surfaces of marine invertebrates
belonging to various taxa, such as ascidians [43–45], salps [46–48], endoparasitic cope-
pods [49], echinoderms [50,51], annelids [52], and entoprocts [53]. The histological bases of
these nano-structures are different among taxa; the nipple-like protuberances are formed
with cellulosic, integumentary matrix (tunic) in tunicates, chitinous exoskeleton in cope-
pods, and microvilli in entoprocts, indicating the functional importance of this structure
and its convergent occurrence in the evolutionary history of metazoans. On the other hand,
a nipple array does not always occur within some taxa. For instance, nipple arrays were
found in the species of some ascidian families (e.g., Polyclinidae and Styelidae) but not in
other families (e.g., Didemnidae and Ascidiidae) [45], and, in salps, the nano-structure has
only been reported in species that occur at shallow depths in daytime [47]. This suggests
that the importance of this functional structure depends on the habitat and lifestyle of
the species.

An anti-reflection effect in water certainly exists but is not as great as what was found
in the air, as the reflectance of animal body surfaces is naturally small in water due to
the small differences of refractive indices between seawater and animal tissue [47,54,55].
Furthermore, synthetic materials mimicking the nipple array have enabled us to evaluate
potential functions other than anti-reflection in aquatic conditions; hydrophilic, nano-scale
nipple arrays significantly reduce the attachment of air bubbles [56] and suppress cell
attachment and phagocytic activity on the structure [57,58]. Thus, the nipple array seems
to be a multifunctional structure in water, and may have a significant effect on the fouling
of animal body surfaces.

4.3. Settlement Test on Synthetic Nipple Array

MOSMITETM is a synthetic film for anti-reflection that namely mimics the moth-eye
structure [59], with a nano-structure made of acrylic resin coating a base film made of
polyethylene terephthalate. To evaluate whether the nipple array affects the substrate
preference of ascidian larvae, we performed a dual-choice test with P. philippinensis larvae
using MOSMITETM and a flat film made of the same material, i.e., the base film coated
with acrylic resin, as control [8]. The ascidian larvae significantly preferred the flat surface
to MOSMITETM for settlement. One of the reasons for this preference is the difference
in wettability; MOSMITETM is more hydrophilic than the flat surface. On the sheets of
the same dimension, the surface area of MOSMITETM is much larger than that of the flat
sheet, due to the nano-structures. Under a homogeneous wetting regime, i.e., Wentzel
state, a larger surface area enhances the water wettability on a hydrophilic material [60].
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Accordingly, MOSMITETM is more hydrophilic than the flat sheet, even though the surface
material is the same in both sheets.

At the beginning of ascidian settlement, the adhesive organs secrete adhesive com-
pounds to attach to the substrate surface [61,62]. On MOSMITETM, the adhesive compound
penetrates into the nipple array layer and fills the space among the nipple-like protuber-
ances, whereas the compound simply spread over the flat surface (Figure 6a,b). The adhe-
sion strength on MOSMITETM is, thus, likely greater than the strength on the flat surface,
due to the larger surface area for adhesion. This appears inconsistent with the substrate
preference for flat surfaces to MOSMITETM. Following metamorphosis, juveniles extend
the epidermal ampullae and hold fast to the substrate via tunic (Figures 1c and 5), and the
tunic surface is always overlaid with a cuticular, electron-dense layer. On MOSMITETM,
the tunic cuticle adheres to the tip of the nipples only, with the space in the nipple array
layer remaining vacant (blue area in Figure 6c), whereas the cuticle covers the flat sur-
face entirely (Figure 6d). Therefore, the settlers on MOSMITETM would be more easily
detached from the substrate than settlers on the flat surface in post-settlement selection.
From the viewpoint of evolutionary adaptation, the larvae may have a mechanism to avoid
settlement on nano-scale nipple arrays. How can larvae sense nano-structures on substrate
surfaces? As mentioned above, natural substrata in an aquatic environment are generally
hydrophilic, and, on a hydrophilic material, surfaces with nano-structures are more hy-
drophilic than flat surfaces. If ascidian larvae select less hydrophilic sites for settlement,
they may be able to avoid settlement on nano-structures. This idea can be one of possible
explanations for the preference for hydrophobic surfaces causing the silicone paradox.
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5. Flypapers May Mitigate Invasive Fouling

Humanity has built, left, or abandoned various artificial structures in the water, includ-
ing aquaculture facilities and ship hulls as well as ports and seawalls. Artificial structures
provide huge areas of a novel microenvironment which marine organisms had never expe-
rienced, and some ‘winner’ species may thrive on these structures. The winner is often a
non-indigenous species, causing serious ecological and economic problems, and artificial
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structures are also a base for the dispersal for non-native, invasive species [63–65]. Many
studies have focused on anti-fouling properties, i.e., which substrates are comparatively
less fouled and what compounds suppress biofouling. Larval preferences of substrata
should also be important to gain a better understanding of the biological processes of
settlement, and preference data can be useful in controlling fouling.

Settlers are very often nuisances in aquaculture. They are competitors against the
cultured organisms, such as shellfish, for space and food resources, and they often fill up
the opening of cages and nets. Moreover, workers have to remove settlers on cultured
organisms at harvest. Chemical approaches, i.e., anti-fouling compounds, potentially cause
environmental pollution and damage native biota [66–71]. Physical approaches provide
less effective but safer countermeasures against fouling of non-indigenous species. Hand
elimination of a particular species is the most eco-friendly method but requires a large
labor force. We hypothetically propose the use of hydrophobic substrates as a ‘flypaper’ for
settlers. As discussed in this review, the larvae of ascidians and some other invertebrates
significantly select more hydrophobic substrates for settlement. If hydrophobic substrates,
such as ropes or belts of silicone, are hung nearby aquaculture facilities in the settlement
seasons of target species, many larvae can be expected to settle on these hydrophobic
substrates. Subsequently, the hydrophobic substrates can be removed from the water and
dried/washed to remove settlers. Then, the substrates can be placed in the water again. Of
course, this method is effective for the settlers preferring hydrophobic substrates, such as
ascidians, and does not radically eliminate the settlers but probably will mitigate the impact
of biofouling with a need for less of a labor force than hand elimination. Some settlers
would be spontaneously detached from the substrate in post-settlement selection due to
weak adhesive strength on hydrophobic surfaces. These detached settlers likely would die
on the sea bottom, as they cannot swim after metamorphosis. Moreover, nano-structures
on hydrophobic surfaces are expected to enhance the flypaper effect, i.e., attraction and
spontaneous detachment of settlers. Theoretically, nano-structures on hydrophobic surfaces
reduce water-wettability, and the adhesion strengths are also much reduced due to the
smaller adhesion area for settlers, as found in Figure 6c. Even if such a physical approach
cannot show enough effect practically, its use combined with chemical approaches may
reduce the effective concentrations of antifouling compounds. Currently, this is no more
than a plan on paper but it indicates the importance of studies on the mechanisms of
substrate selection in fouling organisms.
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