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Abstract: Detecting and classifying the plankton in situ to analyze the population diversity and abun-
dance is fundamental for the understanding of marine planktonic ecosystem. However, the features
of plankton are subtle, and the distribution of different plankton taxa is extremely imbalanced in the
real marine environment, both of which limit the detection and classification performance of them
while implementing the advanced recognition models, especially for the rare taxa. In this paper, a
novel plankton detection strategy is proposed combining with a cycle-consistent adversarial network
and a densely connected YOLOV3 model, which not only solves the class imbalanced distribution
problem of plankton by augmenting data volume for the rare taxa but also reduces the loss of the
features in the plankton detection neural network. The mAP of the proposed plankton detection
strategy achieved 97.21% and 97.14%, respectively, under two experimental datasets with a difference
in the number of rare taxa, which demonstrated the superior performance of plankton detection
comparing with other state-of-the-art models. Especially for the rare taxa, the detection accuracy
for each rare taxa is improved by about 4.02% on average under the two experimental datasets.
Furthermore, the proposed strategy may have the potential to be deployed into an autonomous
underwater vehicle for mobile plankton ecosystem observation.

Keywords: plankton detection; class imbalanced distribution; data augmentation; deep learning;
adversarial learning

1. Introduction

As a main component of the marine ecosystem, plankton plays an important role in
both the global marine carbon cycle and early warning ahead of natural disasters [1,2]. In
addition, the plankton with a high-density distribution will also affect the performance of
the detecting sensors such as sonar since the acoustic transmission is impeded. Therefore,
the research on the comprehensive understanding of the distribution and abundance of the
plankton in the marine environment is a focus issue for both ecologists and engineers.

In the past decades and even now, the core ways of plankton sampling are mainly
employing traditional tools such as filters, pumps and nets. Furthermore, the collected
samples are investigated manually employing expert knowledge in the laboratory environ-
ment. It is evident that there are numerous shortcomings. On one hand, the samples are
easy to be destroyed during the sampling and investigation, especially for the fragile gelati-
nous plankton organisms, which would result in a wrong conclusion. On the other hand,
this way of plankton sampling and investigation is labor-intensive and time-consuming.
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To overcome these shortcomings, the in situ plankton recorder equipment and detection
strategy with high accuracy is an urgent demand.

It was not until the late 1970s, the first computing systems with the capability of
automatically measuring the planktonic particles within images were introduced [3–5].
After that, especially in the past 20 years, the types of equipment used to record plankton
images in situ and analyze them in the laboratory were rapidly developed, such as Video
Plankton Recorder [6], FlowCytobot [7], FlowCam [8] and ZooProcess [9]. With the help
of these types of equipment, the image data volume of plankton is accumulated rapidly.
Simultaneously, to achieve the in situ plankton detection, a number of studies focus
on utilizing the image processing technologies to mine from the immense amounts of
collected data [9–12]. Following the rapid development of machine learning and computing
hardware, deep neural networks are widely implemented in the field of plankton detection
because of their superior capability of feature extraction compared with the traditional
methods [13,14]. Inspired by AlexNet and VGGNet, Dai J et al. proposed a convolutional
neural network (CNN) named ZooplanktoNet consisted of 11 layers and achieved 93.7%
accuracy performance on zooplankton detection [13]. Li X et al. and Py O et al. employed a
deep residual network (ResNet) and a deep CNN with a multi-size image sensing module
for plankton classification, respectively [15,16]. Shi Z employed an improved YOLOV2
(You Only Look Once V2) model to detect the zooplankton in the holographic image
data [17]. Pedraza et al. used CNN for the first time in automatic diatom classification and
compared the performance between two state-of-the-art models RCNN (Region CNN) and
YOLO [18,19]. Kerr T et al. proposed collaborative deep learning models to detect plankton
from collected FlowCam image data to solve the problem of class imbalance [20]. Lee
et al. incorporate transfer learning by pre-training CNN with class-normalized data and
fine-tuning with original data on an open dataset named WHOI-Plankton, the classification
accuracy is increased but there remains a significant problem on the prediction quality
in rare taxa [21,22]. Lumini A et al. worked on the fine-tuning and the transfer learning
of several renowned deep learning models (AlexNet, GoogleNet, VGG, et al.) to design
an ensemble of classifiers for plankton, the performance of their approach outperformed
other models, and the accuracy baseline achieved about 95.3% accuracy under the WHOI-
Plankton dataset [23].

Usually, there are two ways to improve the accuracy of the plankton detection and
classification, one is to enrich the amount of the features and the other is to optimize the
detection and classification model to reduce the feature loss. Most studies focus on aug-
menting the volume of the training dataset by rotating the original image data, changing
the brightness and other operations [13–20]. Cheng et al. enriched the features of plankton
by combining the features under both Cartesian and Polar coordinate systems, and then
employed CNN and support vector machines (SVMs) to train the classification model and
classify the taxa of plankton [14]. These data augmentation operations are usually for all
taxa data, which means the amount of data for all taxa are augmented proportionally, there-
fore, these augmentation operations do not solve the problems caused by class imbalanced
data. Moreover, the learning capability of the detection and classification model is limited
for the features of the rare taxa data if the amount of rare taxa data is relatively small. On
the other hand, the structure of the DenseNet model [24] with the advantage of the feature
reuse ability was fused into other detection models, such as YOLOV3, which reduced the
feature loss in the deep neural network model and was proved effective for subtle feature
retention [25,26].

To the best of our knowledge, there are two challenges for plankton detection and
classification using a deep neural network. First, the plankton is class imbalanced dis-
tributed in the spatiotemporal marine environment, this phenomenon limits the detection
performance since the neural network is prone to overfitting during model training [27–29].
Second, a large number of the subtle features of plankton are lost during the features
transmitting in the neural network because of the convolution and down-sampling opera-
tions, which also limits the capability of detection and classification. Therefore, this paper
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aims at these two challenges and proposes a novel detection and classification strategy for
imbalanced distributed plankton. The main contributions of this paper are summarized as
follows. On one hand, an adversarial neural network named CycleGAN is implemented at
the pre-processing stage to generate an amount of fake image data to augment the data
volume of the rare taxa, which would improve the learning capability of the neural network
to the features of the rare taxa [30]. On the other hand, a densely connected YOLOV3 model
is proposed to detect and classify the plankton by adding some dense blocks to replace the
down-sampling operations of perception layers, which ensure all the features of plankton
could transmit in the neural network during model training [31].

The rest of this paper is organized as follows. In Section 2, the data augmentation
method based on the CycleGAN model is introduced after reviewing the original dataset.
Furthermore, the basis of the original YOLOV3 model and the proposed densely connected
model based on it for plankton detection is addressed in Section 2. Subsequently, The
performance evaluation metrics are listed in Section 2, while the experimental results are
discussed in Section 3. The conclusions for this paper are provided at last in Section 4.

2. Materials and Methods
2.1. Dataset Description and Augmentation
2.1.1. Dataset Description

A large scale and fine-grained dataset for plankton named WHOI-Plankton are used
in this work, which is provided by Woods Hole Oceanographic Institution with an Imaging
FlowCytobot (IFCB) to imaging plankton since 2006 [21]. The WHOI-Plankton dataset
comprises over 3.4 million expert-labeled images covering 100 taxa. However, the data
distribution for each taxa is extremely imbalanced by reviewing the WHOI-Plankton
dataset, the most volume of the dataset is concentrated in six rare taxa including Detridus,
Leptocylindrus, Dino30, Cylindrotheca, Rhizosolenia and Chaetoceros, the total percentage
is up to 85% of the whole dataset. This proves the existence of the phenomenon that the
plankton taxa are imbalanced distributed in the actual marine environment on one aspect.

Considering that the CycleGAN network needs a certain amount of data to train before
expanding the dataset, the taxa with too little data volume will lead to under-fitting of
training and affect the quality of the generated data. Therefore, the rare taxa are randomly
selected among the taxa with data volumes between 100 and 200 in the WHOI-plankton
dataset. The dominant taxa are randomly selected among the taxa with data volume greater
than 400. Several taxa are randomly selected and illustrated as shown in Figure 1.
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Figure 1. Illustration of the taxa data in this work.

2.1.2. Dataset Augmentation

To improve the learning ability of the detection model to the rare taxa and avoid
overfitting during model training, the data volume of the rare taxa is augmented roughly
as the same as the dominant taxa before model training. In this paper, a generative
adversarial network named CycleGAN is implemented to produce a certain amount of
fake data from the unpaired original data to augment the data volume of the rare taxa.
The principle of the CycleGAN is shown in Figure 2. The goal is to learn two mapping
functions between the domain X and Y ( G : X → Y and F : Y → X ), and the mapping
functions are parameterized by neural networks to fool adversarial discriminators DY and
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DX , respectively. These two mapping functions are cycle-consistent, the image x from the
domain X should be brought back to the original image by the image transition cycle. Thus,
the characteristics of the reconstructed fake images are similar to the original images. The
loss function of CycleGAN is formulated as follows:

L(G, F, DX , DY) = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) + λLcyc(G, F) (1)

where, LGAN(G, DY, X, Y) and LGAN(F, DX , Y, X) are the adversarial loss, Lcyc(G, F) is the
cycle consistency loss, and λ is a parameter to control the relative importance between
marginal matching and cycle consistency. The expectation of CycleGAN is as follows:

G∗, F∗ = arg min
G,F

max
DX ,DY

L(G, F, DX , DY) (2)

The detailed mathematical description of CycleGAN also can be found in other litera-
ture [29].
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2.2. Plankton Detection Algorithm
2.2.1. Basic of YOLOV3 Model

As a typical one-stage detection model, the YOLO was proposed by Redmon et al. in
2016 [32]. The significant advantage of the YOLO model over the two-stage model based
on the region like R-CNN is that it greatly reduces the time consumption of detecting one
image [30], which is good for detecting targets in the in situ plankton observation. The
basic principle of target detection based on the YOLO model is as follows: the input image
is divided into grids. If the center point of the object falls into a grid, the grid is responsible
for predicting the object. The prediction bounding box contains five information values:
x, y, width, height and prediction confidence. The confidence of the predicted target is
defined as follows:

Con f idence = pr(Object)× IoUtruth
pred , pr(Object) ∈ {0, 1} (3)

where, the IoU is the overlap ratio between the ground truth bounding box and the
predicted bounding box. pr(Object) = 1 means the plankton target falls into the grid, and
otherwise pr(Object)= 0. Then the dimension of the predicted tensor is as follows:

S× S× (B ∗ 5 + C) (4)

where, S× S is the number of grids in the image. B is the number of prediction scales. C is
the number of taxa of plankton.

YOLOV3 was first proposed in 2018, which is a classic version of the YOLO series [31].
There are three different prediction scales in the YOLOV3 model with the Darknet-53
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structure as a backbone network, which is one of the innovations compared with the
previous versions. Therefore, the dimension of the tensor becomes as follows:

S× S× (3 ∗ (4 + 1 + C)) (5)

The loss function of YOLOV3 is composed of coordinate prediction error, IoU error
and classification error as follows:

Loss = ∑S2

i=1 Errcoord + ErrIoU + Errcls (6)

where, S2 is the number of grids in the image.
The coordinate prediction error is defined as follows:

Errcoord = λcoord∑S2

i=1 ∑B
j=1 Iobj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+λcoord∑S2

i=1 ∑B
j=1 Iobj

ij

[
(wi − ŵi)

2 +
(

hi − ĥi

)2
] (7)

where, λcoord is the weight of Errcoord. Iobj
ij = 1 means the target falls into the jth bounding

box of the grid i, and otherwise Iobj
ij = 0. The four values denote the center coordinates,

height and width of the bounding box in (xi, yi, wi, hi) and
(

x̂i, ŷi, ŵi, ĥi

)
, which means the

ground-truth value and the predicted value of the plankton target, respectively.
The IoU error is defined as follows:

ErrIoU = ∑S2

i=1 ∑B
j=1 Iobj

ij
(
Ci − Ĉi

)2
+ λnoobj∑S2

i=1 ∑B
j=1 Inoobj

ij
(
Ci − Ĉi

)2 (8)

where, λnoobj is the weight of ErrIoU , Ci and Ĉi are the true confidence and the predictive
confidence of plankton target, respectively.

The classification error is defined as follows:

Errcls = ∑S2

i=1 ∑B
j=1 Iobj

ij ∑c∈classes[ p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))] (9)

where, c is the class of the detected target, pi(c) and p̂i(c) are the real probability and the
prediction probability of the target belonging to the class c in the grid i, respectively.

2.2.2. Densely Connected Structure

Analysis of the distribution and abundance of rare plankton is a significant part of
the investigation of plankton diversity. In order to achieve the purpose, the real-time and
accurate identification and classification of plankton become particularly important. This
is even more critical in the case of employing mobile underwater vehicles.

Even though the YOLOV3 model has superiority in saving analysis time during
detecting plankton targets, the subtle features of plankton are easy to be lost in the process
of deepening the neural network layers, which leads to the reduction of the accuracy of
plankton identification and classification. The DenseNet was proposed in 2017 with the
advantages of promoting feature reuse and reducing gradient disappearance [24], and its
structure is shown in Figure 3. In this paper, an improved YOLOV3 model was proposed
and it introduced the structure of DenseNet by adding the dense block and transition layer
to replace the down-sampling layers of YOLOV3. Therefore, the proposed model ensures
the integrity of the feature information in the process of deep neural network propagation.
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2.2.3. Proposed Plankton Detection Structure

In this paper, the DenseNet structure was integrated into the YOLOV3 model named
YOLOV3-dense model proposed to detect the plankton. The purpose of the proposed
model is to serve them in situ observation of plankton and mainly based on two advantages
as follows. First, the proposed model keeps the lower time cost of the YOLOV3 model
and ensures the real-time in situ observation of plankton. Second, the proposed model can
better extract the subtle features of plankton and improve detection accuracy. The backbone
network structure and the complete network structure of the proposed YOLOV3-dense
model are shown in Figures 4 and 5, respectively.
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In Figures 4 and 5, the input plankton image size is adjusted to 416 × 416 in prior,
and replace the two down-sampling layers (26 × 26 and 13 × 13) in YOLOV3 with the
DenseNet to avoid the feature loss. The DenseNet structure is composed of the dense-block
and the transition layer. The transfer function of the dense block contains three parts,
which are Batch Normalization (BN), Rectifying Linear Element (ReLU) and Convolution
(Conv), used for nonlinear conversion between x0, x1, . . . , xl−1 layers. In the 26 × 26 down-
sampling layer, the input layer x0 first applies BN-ReLU-Conv (1 × 1) operation, then
applies BN-ReLU-Conv (3× 3) operation and output x1, x0 and x1 splicing as the new input
[x0, x1] and [x0, x1] repeats the above operation output x2. Then the new input becomes
[x0, x1, x2], and so on. The transition-layer containing BN-ReLU-Conv (1 × 1)-average
pooling is used to connect adjacent dense blocks. The 13 × 13 down-sampling layer is
the same. Finally, the size of the extracted feature map are 26 × 26 × 512 and 13 × 13 ×
1024, respectively, and the feature extraction network outputs three scales feature maps for
prediction: 52 × 52, 26 × 26 and 13 × 13.

2.3. Performance Evaluation Metrics

The reasonable index is the favorable basis to evaluate the proposed model. It usually
includes detection accuracy and average time cost aspects. For the detection accuracy,
precision and recall analysis are utilized to measure it [25,33]. The precision and recall are
defined as follows:

Precision =
True Positives

True Positives + False Positives
(10)

Recall =
True Positives

True Positives + False Negatives
(11)

where, True Positives is the number of targets correctly identified, False Positives is the
number of non-targets identified as targets and False Negatives is the number of non-
targets identified as non-targets. Therefore, the high precision value means the detection
results contain a high percentage of useful information and a low percentage of false alarms.
Meanwhile, the higher the recall value is, the larger the proportion of correctly detected
targets is.
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The average precision (AP) is the integral over the precision-recall curve. In addition,
the mean average precision (mAP) is the average precision of all taxa of plankton. These
two indexes are defined as follows:

AP =
∫ 1

0
Precision− Recall(Recall)dRecall (12)

mAP =
1
C

N

∑
i=1

APi (13)

where, C is the number of taxa of plankton.
Furthermore, the average time cost of plankton detection is another important index

to evaluate the quality of the proposed model and other comparison models. The lower
the average time cost is, the better the real-time performance of the model is and the more
practical it is in practical engineering applications.

3. Experiments and Discussions

In order to verify the performance of plankton detection, several well-known and
widely used state-of-the-art detection models YOLOV3-tiny, YOLOV3 and Faster RCNN
are selected to compare with the proposed YOLOV3-dense model. Table 1 lists some
parameters of the proposed model and other comparison models. The proposed detection
model and the comparison models in the experiments are performed on a computing
server under a Linux environment, which is equipped with Intel XEON Gold 5217 CPU
and NVIDIA RTX TITAN GPU cards. A brief flowchart of the experiments is shown in
Figure 6.

Table 1. The parameters of proposed model and other comparison models.

Model Backbone Input Size Boxes Parameters × 106

YOLOV3-tiny Conv-MaxPooling 416 × 416 2535 8.69
YOLOV3 Darknet-53 416 × 416 10,647 61.56

YOLOV3-dense Darknet-dense 416 × 416 10,647 61.94
Faster-RCNN ResNet-101 416 × 416 300 67.66
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3.1. Experimental Dataset Production and Components

Both of the original data and the augmented data with the CycleGAN model are
labeled manually before training the plankton detection model with a graphical image
annotation tool named LabelImg by drawing bounding boxes. Furthermore, the annotated
values of plankton are saved as XML files in PASCAL VOC format.

In order to evaluate the performance of the proposed plankton detection strategy to
the problem of class imbalanced distribution, one and two taxa are randomly selected as
rare taxa to augment the dataset with the CycleGAN model, respectively. The produced
fake images of the rare taxa with different training steps are illustrated in Figure 7. It can
be seen that the features of the plankton are well learned under the knowledge of humans
after training 20,000 steps, and the latter weights achieved are used to produce the fake
images and augment them to the training dataset. The components of the dataset with data
augmentation for one and two rare taxa are listed in Tables 2 and 3, respectively.
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Table 2. Components of the dataset with data augmentation for one rare taxa.

Taxonomic Group Training Dataset Testing Dataset Total
Original Augmentation

Cerataulina 300 0 100 400
Cylindrotheca 379 0 100 479

Dino30 411 0 100 511
Guinardia_delicatula 450 0 100 550

Guinardia_striata 300 0 100 400
Prorocentrum 60 390 100 550

Total 1900 390 600 2890

Table 3. Components of the dataset with data augmentation for two rare taxa.

Taxonomic Group Training Dataset Testing Dataset Total
Original Augmentation

Cerataulina 300 0 100 400
Cylindrotheca 379 0 100 479

Dino30 411 0 100 511
Dinobryon 348 0 100 448

Guinardia_delicatula 450 0 100 550
Guinardia_striata 300 0 100 400

Pennate 58 362 100 520
Prorocentrum 60 390 100 550

Total 2306 752 800 3858
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In Table 2 the taxon “Prorocentrum” is randomly selected as the rare taxa for instance,
and the augmented data are produced using different weights of CycleGAN. The data
volume of the rare taxon is increased from 60 to 390 after data augmentation which is
roughly the same as the volume of the other taxa. The case in Table 3 with data aug-
mentation for two rare taxa is similar. To evaluate the performance of more taxa, other 2
plankton taxa are randomly selected into the experiment and the number of plankton taxa
is increased to 8, and another rare taxon “Pennate” with little data volume in the original
WHOI-Plankton dataset is added in the experiments. The training data of the rare taxa and
all the testing data are strictly and randomly selected from the original WHOI-Plankton
dataset considered as ground truth.

3.2. Detection Performance Evaluation
3.2.1. Experiment for the Dataset in Table 2

At the training stages, the loss curves of the YOLOV3 series models are compared with
the proposed YOLOV3-dense model, as shown in Figure 8. All of the three YOLOV3 based
models achieved convergence after tens of thousands of training steps. The convergence
performance of the proposed YOLOV3-dense model is faster than the YOLOV3-tiny model
and high degree of consensus as the original YOLOV3 model. The final loss of the original
YOLOV3 model, YOLOV3-tiny model and the proposed YOLOV3-dense model is 0.409,
0.514 and 0.405, respectively. This indicates that the proposed YOLOV3-dense model has a
higher utilization of image features than the other YOLOV3 based comparison models.
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The indexes of performance evaluation for the strategy proposed in this paper and
the other comparison models are listed in Table 4. The strategy is abbreviated as ours in
the table and the values in bold denote that the related model has the best performance
for the corresponding evaluation indexes. Based on the results, the mAP of the proposed
strategy achieves 97.21%, which is higher than the other models both YOLOV3 based
models and the Faster RCNN model. This verifies the performance of the proposed
strategy is superior to the other models in plankton detection. It is notable that the AP of
“Prorocentrum” increases from 91.87% to 96.00% after the data augmentation for the rare
taxa with the CycleGAN model. Meanwhile, both the true positives and the false positives
of the proposed strategy have a better performance than the other comparison models.
This indicates that the proposed strategy could detect more plankton accurately with the
least false alarms comparing to the other models. On the other hand, another important
finding is that all the indexes of performance evaluation for the YOLOV3-dense model
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(values for mAP, True Positive and False Positive are 96.55%, 581 and 19, respectively)
are better than the YOLOV3 model (values for mAP, True Positive and False Positive are
95.92%, 578 and 22, respectively), which confirms that the densely connected structure is
helpful to improve the performance of the plankton detection by reducing the feature loss
during the feature transmission in models.

Table 4. Plankton detection performance of the proposed strategy and comparison models for the dataset in Table 2.

Model YOLOV3-Tiny YOLOV3 YOLOV3-Dense Ours Faster RCNNTaxonomic Group

AP

Cerataulina 85.63% 94.60% 94.69% 93.54% 86.00%
Cylindrotheca 98.81% 99.00% 99.00% 99.00% 99.00%

Dino30 99.50% 99.88% 98.80% 100.00% 99.98%
Guinardia_delicatula 96.67% 96.00% 97.98% 97.94% 99.66%
Guinardia_striata 89.76% 97.01% 96.94% 96.75% 99.60%

Prorocentrum 95.00% 89.00% 91.87% 96.00% 83.00%

mAP 94.23% 95.92% 96.55% 97.21% 94.54%
True positives 572 578 581 584 568
False positives 28 22 19 16 31

3.2.2. Experiment for the Dataset in Table 3

For the dataset in Table 3, the loss curves of the YOLO series models at the training
stages are shown in Figure 9, which are most similar to the curves in Figure 8. Even though
both the number of taxa and the data volume are increased, the models also could be
well trained. The final loss of the original YOLOV3 model, YOLOV3-tiny model and the
proposed YOLOV3-dense model is 0.416, 0.469 and 0.423, respectively.
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Table 5 lists the indexes of performance evaluation for the dataset in Table 3. Based
on the results, the mAP of the YOLOV3-dense model without data augmentation for the
rare taxa yields 95.69%, which has 3.02% increase than the YOLOV3-tiny model (92.67%)
and basically equals to the YOLOV3 model (95.53%) only has 0.16% increase. However,
after the data augmentation for the rare taxa, the mAP of our proposed plankton detection
strategy increases to 97.14% with the best detection performance than the other comparison
models. Similar to the results with one rare taxon data augmentation, the AP of the two rare
taxa are increased from 90.89% to 92.82% and from 92.00% to 98%, respectively. Parallelly,
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the true positive and false positive of our proposed detection strategy achieve the best
performance than the other comparison models. On the whole, the experimental results
for the dataset both in Tables 2 and 3 demonstrate the proposed strategy is suitable for the
detection of the imbalanced distributed plankton in the practical ocean environment.

Table 5. Plankton detection performance of the proposed strategy and comparison models for the dataset in Table 3.

Model YOLOV3-Tiny YOLOV3 YOLOV3-Dense Ours Faster RCNNTaxonomic Group

AP

Cerataulina 85.13% 92.34% 91.83% 93.27% 82.00%
Cylindrotheca 96.59% 97.62% 98.88% 98.97% 99.00%

Dino30 98.58% 99.50% 99.54% 99.73% 99.99%
Dinobryon 98.93% 99.98% 99.96% 99.88% 100.00%

Guinardia_delicatula 98.61% 98.76% 97.65% 97.88% 100.00%
Guinardia_striata 87.48% 98.31% 94.75% 96.57% 97.63%

Pennate 80.01% 86.76% 90.89% 92.82% 93.76%
Prorocentrum 96.00% 91.00% 92.00% 98.00% 87.97%

mAP 92.67% 95.53% 95.69% 97.14% 95.04%
True positives 753 768 768 780 762
False positives 47 32 32 20 37

3.3. Real-Time Performance Evaluation

The plankton detection time consumption with these models are listed in Table 6. The
average detection time costs of the proposed YOLOV3-dense model are 36 ms and 51 ms
for one testing image data in the two experiments, which are slower than the YOLOV3-tiny
model and YOLOV3 model, respectively, for the reason that more features were processed
and transmitted in the model. Considering the properties of both the data acquisition
platform and equipment, the detection speed of YOLOV3-dense is enough for practical
applications in real-time. In contrast, the average detection time costs of Faster RCNN
are 893 ms and 814 ms, more than 15 times slower than the YOLOV3-dense model. The
slow detection speed causes that it is difficult to be implemented in the plankton detection
applications with some fast-moving mobile platforms.

Table 6. Comparisons of real-time zooplankton detection performance.

Model
Detection Time Consumption (ms)

Dataset in Table 1 Dataset in Table 2

YOLOV3-tiny 8 11
YOLOV3 25 28

YOLOV3-dense 36 51
Faster RCNN 893 814

4. Conclusions

The main goal of this study is to improve the ability of in situ plankton detection for
the phenomenon of class imbalanced distribution in the real marine environment. The
CycleGAN model was employed to produce many fake images by the adversarial learning
and augment the volume of the training dataset for the rare plankton taxa, which ensures
the balanced learning of the latter proposed plankton detection model for the features
of each plankton taxon. Moreover, an improved plankton detection model based on the
YOLOV3 model by fusing the DenseNet was designed, which reduced the feature loss
during the transmission in the model.

The experimental results under two experimental datasets with a difference in the
number of rare taxa showed that the AP of the rare taxa increases by about 4.02% on
average (4.13% for Prorocentrum in Experiment 1; 1.93% and 6% for Pennate and Pennate,
respectively, in Experiment 2) and the mAP increases by 0.66%, 1.45%, respectively, after
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data augmentation. In addition, the mAP of the proposed model (97.21% in Experiment
1; 97.14% in Experiment 2) outperformed the YOLOV3-tiny, YOLOV3 and Faster-RCNN
models (94.23%, 95.92% and 94.54% in Experiment 1; 92.67%, 95.53% and 95.04% in Experi-
ment 2), and the detection time consumption (36 ms in Experiment 1; 51 ms in Experiment
2) is not much different from the YOLOV3-tiny (8 ms in Experiment 1; 11 ms in Experiment
2) and YOLOV3 (25 ms in Experiment 1; 28 ms in Experiment 2) models, but much lower
than the Faster-RCNN model (893 ms in Experiment 1; 814 ms in Experiment 2). Hence,
the proposed plankton detection strategy in this paper outperformed other state-of-the-art
detection models to solve the problem of the species imbalanced distribution both in the
performance of accuracy and in real-time.

Currently, the proposed model is deployed on the deep learning development board
Jetson Nano which is a small integrated hardware equipped with a Linux system and
GPU. The advantage of low energy consumption is helpful to carry out the applications of
large-scale to the plankton observation with an underwater autonomous vehicle. In the
ongoing and future works, the proposed in situ plankton detection will be implemented on
an autonomous underwater vehicle to verify the feasibility in the real marine environment.
It is notable that, the autonomous underwater vehicle at higher navigation speed affects the
image quality of the imaging sensor which possibly limits the performance of the plankton
detection and classification. However, the autonomous underwater vehicle is difficult to
control at very low navigation speed in the complex marine environment. Therefore, the
plankton sampling strategy and the detection model will be further optimized.
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