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Abstract: The maritime industry is one of the most competitive industries today. However, there is a
tendency for the profit margins of shipping companies to reduce due to an increase in operational
costs, and it does not seem that this trend will change in the near future. The most important
reason for the increase in operating costs relates to the increase in fuel prices. To compensate for the
increase in operating costs, shipping companies can either renew their fleet or try to make use of
new technologies to optimize the performance of their existing one. The software structure in the
maritime industry has changed and is now leaning towards the use of Artificial Intelligence (AI)
and, more specifically, Machine Learning (ML) for calculating its operational scenarios as a way to
compensate the reduction of profit. While AI is a technology for creating intelligent systems that
can simulate human intelligence, ML is a subfield of AI, which enables machines to learn from past
data without being explicitly programmed. ML has been used in other industries for increasing
both availability and profitability, and it seems that there is also great potential for the maritime
industry. In this paper the authors compares the performance of multiple regression algorithms like
Artificial Neural Network (ANN), Tree Regressor (TRs), Random Forest Regressor (RFR), K-Nearest
Neighbor (kNN), Linear Regression, and AdaBoost, in predicting the output power of the Main
Engines (M/E) of an ocean going vessel. These regression algorithms are selected because they are
commonly used and are well supported by the main software developers in the area of ML. For this
scope, measured values that are collected from the onboard Automated Data Logging & Monitoring
(ADLM) system of the vessel for a period of six months have been used. The study shows that ML,
with the proper processing of the measured parameters based on fundamental knowledge of naval
architecture, can achieve remarkable prediction results. With the use of the proposed method there
was a vast reduction in both the computational power needed for calculations, and the maximum
absolute error value of prediction.

Keywords: Artificial Intelligence (AI); Fuel Oil Consumption (FOC); prediction; regression algo-
rithms; data mining; Machine Learning (ML)

1. Introduction

The prediction of a ship’s crucial operational parameters, such as M/E power, can
lead to major operation sustainability. Required M/E power is directly related to Fuel Oil
Consumption (FOC). Predicting the increase in FOC due to ship’s hull degradation can lead
shipowners to choose the right time and place for a dry docking, achieving the maximum
profitability. On the other hand, the ability to “decode” and compare the information
that lies in the comparison of ships’ performance values between any given time and the
values that were achieved in the sea trials can lead to accurate prediction of performance
reduction of a specific component. This constant comparison will lead to a better control of
the service life of a ship.
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During the last decades, the maritime industry (shipyards, maritime companies,
engineers/researchers) has embarked on a process of continuous research and development
of new technologies. This process is even more important for forthcoming years, in order to
comply with progressively stricter environmental regulations and, at the same time, keep
operational costs as low as possible to maintain shipping as one of the most cost-effective
means of transportation. To make this possible, the whole process of ship design and
operation is based on a balanced mixture of computational and experimental investigations
which are highly demanding in terms of time required and capital cost. After a long and
heavy computational period which mostly relies on theoretical/deterministic models as
much as empirical methods, prototypes have to be constructed and extensive tests have to
be carried out. One promising technique which could help to reduce the effort required
for ship design and cost effective ship operation is ML, which has already been used
successfully in many land-based industrial applications. Building prediction algorithms
based on ML can be the answer for improving ship performance in terms of fuel cost and
exhaust emissions (Nitrogen Oxides, Sulfur Oxides, etc.). The current study relies on this
field, focusing on the prediction of the ship’s M/E power required, depending on the
operational conditions, which could become valuable tools to optimize a ship’s operational
profile.

In shipping and maritime transport in general, the penetration of AI is still in its
infancy but this seems likely to change. In other transportation sectors, the use of Internet of
Things (IoT) and big data are pursued towards augmentation of a system’s intelligence [1],
while in other sectors like manufacturing and Information and Communication Technology
(ICT) the penetration of artificial intelligence is already in a more advanced stage [2,3].
Looking back at the international literature, studies appear more and more often in the
general context of the utilization of ML in shipping. In 2005 a hybrid model for ship
operational performance monitoring was developed, and the uncertainty framework
specific to ship’s performance was analyzed [4]. The application of a gray-box modelling
approach to the prediction of ship fuel consumption was proposed in 2006, which can be
used as a tool for online trim optimization [5]. A fuel consumption model that utilizes data
obtained from the noon-reports that are transmitted daily back to shore was developed
in 2018 [6]. A ML approach, for predicting FOC on ships, by training an ML algorithm
with dynamic data from the ships’ logging system and using high time intervals for fuel
sums has been presented [7]. In more recent studies, the efficiency of several multiple
regression algorithms on the task of ship FOC prediction under different data sampling
frequencies was studied [8]. An estimation model of FOC based on a deep-learning
ANN was conducted [9]. Finally, an FOC optimization study of a container vessel using
regression algorithms, with data selected by correlation analysis, and comparison of the
results has also been carried out [10,11].

The aim of this study is to determine a simple procedure for pre-processing the vast
amount of data that are collected from modern ships ADLM systems. Although the use
of ML in the prediction of operational parameters has been addressed before, this study
focuses on the reduction of the computational work needed for this task. The proposed
procedure does not depend on the type of ship and uses a short fragment of the original
data set, thus limiting the computational demand. The results are verified for actual use.
In this direction, we employ different regression algorithms in the prediction of a ship’s
required main engine power, using data from an ADLM system in their original form and
after a specific preprocess procedure. The performance of algorithms is compared in terms
of accuracy and required processing power.

The rest of the paper is organized as follows: in Section 2, we present the proposed
method of approach. We explain the logical steps that form the data set and the basic
working principle of the different regression algorithms that are going to be used. The
application of the proposed method in our data set, the benchmark tools for evaluation,
and the actual comparison of the results are presented in Section 3. Finally, Section 4 is
dedicated to the conclusion of this paper.
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2. Methodology

Two different data sets are used for the procedure of predicting a ship’s required
main engine power. A raw data set is constructed, with the use of all values gathered
in a period of 6 months, and a preprocessed one that is produced from the above with a
certain proposed methodology. The results are then benchmarked and compared. The flow
diagram of the prediction method is shown in Figure 1.
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The significance of the prediction of a ship behavior is obvious. Until recently, only
white box model approaches (that rely on physics) have been adopted for this purpose in
the maritime industry. This approach has the disadvantage of relying on experience and
demands heavy computational work. These two factors make the use of this approach
an expert-only privilege. In this paper we propose the use of ML in addition to common
and well-known practices in order to achieve respective results with less computational
work and with no need for previous experience. ML is a rapidly growing science with
great penetration in human activity. Establishing a framework is essential for the quickly
adoption of ML in maritime.

The biggest challenge in ML is the pre-processing of the data set that will be used.
For this purpose, many different approaches have been used. Purely computational
methods like Principal Component Analysis (PCA) have been adopted for the purpose of
formation and restriction of the vast amount of data that form data sets. For an industry
that traditionally relies on more conventional approaches we propose a hybrid model of
data pre-processing.

The data set is crucial in ML, since choosing the values that will be imported to the ML
algorithms is of utmost importance in any ML procedure. The main objective is to be able
to achieve acceptable prediction scores with as little values as possible. On the other hand,
choosing the multitude of different attributes is equally important so that with the right
regression algorithm and tuning, there will be no need for heavy computational power. In
most ML applications, the choice of the different attributes that will form the data set is
chosen by the value of correlation factor [12]. Different wrapper or filter methods are used
for the selection of attributes that increase the computational work. In this paper the above
selection is based on the physical principles that affect a ship’s movement on the sea:

• Maneuverability
• Stability
• Engineering
• Seakeeping
• Resistance
• Powering
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The first step of data formation procedure is Sampling. The data we used were
synchronized to refer to specific time periods (1-min interval), which is typical for currently
deployed ADLM systems. Then, they were identified and given the appropriate unit of
measurement.

Attribute selection. From the original attributes (178 in our test case), we opted for
selection based on the possibility of influencing the object of the study (e.g., the speed of
the ship). The attributes that were judged not to affect the object of the study at all (e.g.,
electric oil pressure) were removed, in order to reduce the total volume of data and to
properly configure the data set. (From the 178 entries, 42 were selected).

Feature Engineering/data transformation. In the context of data limitation and based
on the physical nature of the phenomenon under consideration, it is legitimate to transform
attributes in order to either limit the data set, or replace some characteristics with others that
better describe the affect on the phenomenon. Based on this, the attributes (Wind Direction,
Wind Speed) were replaced by the Head Wind Speed (HWS). Head Wind Speed (the
component of the wind speed that is opposite of ships movement) is the value that affects
the resistance of a ship due to the wind according to literature [13–15]. The replacement of
values was done using Formula (1):

X = Wind Direction − True Heading
If X < −180 then X′ = 360 + X
If X > 180 then X′ = 360 − X

X” = ABS(X′)
HWS = COS(X”) ×Wind Speed

(1)

A schematic presentation of the above formula is presented in Figure 2.
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Also, the attributes that correspond to a ship’s relative movement due to weather
conditions, such as Inclinometer_X_max (the maximum trim value of ship), Inclinome-
ter_X_min (the minimum trim value of ship), Inclinometer_Y_max (the maximum list of
ship), and Inclinometer_Y_min (minimum list of ship), were replaced with the average
values, Inclinometer_X_average and Inclinometer_Y_max, respectively.

Instance’s selection. There are many methods in literature to deal with missing values
(NaN) in the data set [16,17]: deleting the entire line, using a fixed value for all lost values,
replacing the lost value with the average value of the column, replacing the lost value
with the average value of the class, and loss value prediction (with 1-NN algorithm) are
some of the most commonly used. In this paper the first method was selected. All the lines
(Instances) which contained even one lost value (NaN) have been deleted. (This way in
our sample, from 236,161 lines initially available, a subset of 39,475 was actually used).

We also proceeded to one more improvement of the initial dataset. There is a power
limit given by the manufacturer (Hyundai in this case), below which any Diesel engine
must not operate for a long time. [18]. This value of power is in most cases approximately
the 15–20% of the maximum continuous (L1) for electronically controlled machines or
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20–25% for mechanically controlled (camshaft controlled). Assuming that the crew is aware
of these limitations, the operation of a ship’s M/E in these conditions can be considered
a transient phenomenon. Based on the results of the ship sea trials, it appears that, with
25% of the engine power, about 57 revolutions per minute are achieved. The condition of
the ship (in terms of hull degradation) could not be identified, so it is possible for 25% of
M/E power at the time of the study to correspond to different performances. Having that
in mind, all the lines of the data set in which the value of the M/E revolutions per minute
(RPM) was less than 50 were excluded and the final data set with 29,067 lines was obtained.

Data cleansing/ “noise” removal. As there is always the possibility of wrong values
being captured due to several reasons (e.g., temporal malfunctioning or transmission error
in the sensing network), we also processed the available dataset to remove such values.
Towards removing the values that refer to transient states (e.g., acceleration process), the
data were renumbered (maintaining their chronological order) and divided into equal
frequency intervals to alleviate the computational burden. These intervals have the same
number of values, which in our case was 5000. At these intervals and with the K-means
method [19], the average and dispersion of the values were identified (always in terms of
the actual speed of the ship which is a quantity that was considered fundamental in terms
of the transience of the phenomenon under consideration). In all the above intervals, the
speed values (mean value ± scatter) were between a minimum and a maximum value, i.e.,
9.8384 (position A in Figure 3) and 15.5759 (position B in Figure 3) in our case. Lines with
speed values outside this field were identified as noise and removed from the data set. The
final data set consisted of 39 columns (attributes) and 27,155 rows (instances).
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Normalization. The use of neural networks is particularly facilitated if the values of the
input data range between 0 and 1. For this reason, a minimum–maximum normalization
was performed, and a data set was constructed with the values of all fields in the range of
0.1 using the following Formula (2):

X′ = X−min
max−min

(1− 0) + min (2)

After the completion of the pre-process, data were randomly divided into a training
data set (consisting of 80% of the lines) which is used for algorithm training, and validation
data set (consisting of the remaining 20% of the lines) for result testing. The power of the
main engine was set as a given goal.

The following algorithms were used for prediction and are graphically presented in
Figure 4:

(1) Linear Regression. The linear regression algorithm locates the linear relationship
between the dependent variable we are looking for (Y) and one or more independent
(X) variables. Since this relationship is linear, we can easily determine how the
dependent variable changes with the value of the independent variable [20]. The
graphical representation (Figure 4a) of the linear regression operating model is the
draw of a sloping and straight line, representing the correlation between independent
and dependent variables. The red line represents the prediction that minimizes the
overall error. All the predicted values are part of this line and the difference in Y axis
between the line and the actual values is the error.

(2) Decision Tree. This is a tree-like classifier. It is a structure that is constructed by nodes.
There are three different types of nodes: chance nodes, decision nodes, and end nodes.
Chance nodes represents the probability of a certain result, decision node represent
the decision to be made and the end node shows the result [21]. The tree acts like a
map of all possible outcomes for the question asked. Decisions are made based on the
characteristics of the data set. It is essentially a graph that aims to explore all possible
solutions to a problem we have posed under specific circumstances. In the example
presented in Figure 4b, a decision has to be made for a kid to be allowed to go out
to play. In left node, the combination of cloudy weather with high temperature is a
‘go’ criteria. The same decision (to allow the kid to play outside) has been made with
completely different weather conditions: sunshine with low wind (right node).

(3) kNN. The kNN algorithm stores the available data and categorizes them. It forms data
categories based on their common characteristics. The new data given are classified
based on their similarity to the basic characteristics of each category that are already
stored [22]. This process is performed dynamically. This means that when new data
appears can easily be sorted into a category from the available ones. In Figure 4c, the
kNN algorithm has to classify the new spot as part of category A or category B.

(4) Random Forest. This is based on the concept of ensemble learning, in which multiple
classifiers are combined to improve the performance of the model, in order to solve a
complex problem. It was named forest because it essentially contains a number of de-
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cision trees which, using subsets of the original data, make decisions and predictions
in parallel. Once the predictions have been made by the decision trees, it takes the
average value of them to improve the predictive accuracy of the total and initial data
set [23]. In the example of Figure 4d, each of the decision trees A, B . . . N give results
to the problem given (red). The result that appeared more often is the end result of
Random Forest Algorithm.

(5) Neural Network. The ANN are the mathematical equivalent of the function of the
biological neurons that make up the human brain. They consist of a number of simple
and internally interconnected processing units, which are organized in layers. The
fundamental structure is consisted of one input layer and one output but it is possible
that in addition to those there are hidden layers in between. The above layers consist
of a number of units or nodes that are connected to each other in such a way that one
unit has links with many other units of the same or another level [24].

(6) AdaBoost. The Adaptive Boosting (AdaBoost) algorithm is an enhancement technique
that aims to combine multiple weak classifiers to in order to create a strong classifier.
An individual (weak) classifier may not be able to accurately predict the class of an
object, but when we group many weak classifiers together, which gradually learn
from the wrong classifications of each other, we can create a very powerful model.
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The above algorithms used the data selected according to the aforementioned proce-
dure and the performance of the forecasts was measured. The same algorithms with the
use of the original data set (after a mild preprocess procedure) were used and the results
have been compared. In both cases, all of the algorithm parameters stayed the same. The
procedure was repeated 10 times with a different selection of data used for training.

3. Evaluation of the Approach
3.1. Our Case and the Dataset

To evaluate the proposed approach, we used a dataset acquired from the ships ADLM
system. The ship used as reference in this paper is a Crude oil Tanker with 165.000 tons
displacement. The ship is relatively new since it was commissioned ten years ago. A raw
data set was constructed with the use of all values gathered in a period of 6 months. Due
to the owner shipping company’s strict policy regarding data release, the values describing
the ship and routes are slightly modified in this presentation (the accurate values were
used for problem formulation). The ship’s features are presented in Table 1.

Table 1. The reference ship’s main features.

Feature Value

Ship Type Crude Oil Tanker

Displacement 165.000 (t)

Main Engine Hyundai 6S70MC-C
18,660 kW × 91 RPM

Propeller FPP 4Blades DIA 8200 (mm)

Generator’s Engine Hyundai 5H21/32
905 kW × 900 RPM

Generators Hyundai HFC7 506-84K
850 kW × 450 V

LBL 265 (m)

B (mld) 50 (m)

D (mld) 23 (m)

The data were extracted from the ship’s ADLM system in a period of 6 months,
from mid-February of 2020 until end of July 2020. A total of 178 different attributes were
collected. The sample frequency that was chosen for forming the data set was one complete
set of values every minute, so there was a total number of 236,161 instances. The ship’s
ADLM system reads values from each different sensor and stores them in a database with
a much higher frequency than 1 per minute. The procedure of recording all of the sensor
values introduces time deviations but these values (in a ship) don’t change so rapidly as to
introduce negligent error. In the data set there were many cases of missing values (NaN)
due to many factors, sensor anomalies, data entry errors, periods in which the recorded
accessory was shutdown, etc. The fields of data that are recorded from the ship’s ADLM,
which make up the data set attributes, belong to four main categories.

• Kinematics (Inclinometer, Speed etc.)
• Propulsion (Rpm, Torque etc.)
• Weather (Wind, Swell Wave etc.)
• Time-Space (Latitude, Time etc.)

At this period of 6 months, the ship executed many different itineraries. The routes
expand through the perimeter of Africa, North Europe, Mediterranean Sea, and the Indian
and Pacific Oceans. The significant differences in the geographical area of routes resulted
in great differentiation of environmental conditions. The different routes are graphically
presented in Figure 5.
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The above routes were executed in various cruising speeds but the area around
12 Knots dominates, as depicted by Figure 6, where the distribution and frequency of the
different cruising speeds are presented.
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Figure 6. The ship’s cruising speed distribution.

Each cruising speed was kept relatively steady through each route by the ship’s crew so
the speed over ground values have low fluctuation (with the exception for the transitional
periods) [25]. Figure 7 presents the actual values of ship speed over the total number of
instances used in the hybrid model, in groups of 5000 instances at each sub-figure (due to
software limitation on the number of instances that can be interpreted).
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3.2. Evaluation Methodology

The accuracy of a prediction is defined as the total number of correct predictions
divided by the total number of predictions made for a data set. However, in a regression
problem that seeks to predict the specific value of an attribute, this definition isn’t sufficient.
We have to define methods that will essentially set forecast deviation values and through
them we will be able to compare prediction performance [26]. The most widely used
indicators for conducting comparative performance benchmarks are the following:

• Mean Absolute Error (MAE)
• Mean Squared Error (MSE)
• Root Mean Squared Error (RMSE)
• Coefficient of Variation of Root-Mean Squared Error (CVRMSE)
• R Square (R2)
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Figure 8 is showing a graphical representation of the prediction results of a regression
algorithm. The blue line represents the actual (true) values and the purple dots the
predicted ones.
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MAE is the average of the absolute differences between predicted and actual prices
and gives us a measure of how far forecasts are from reality. Mathematically it is defined
by Equation (3):

MAE =
1
N

N

∑
i=1
|yi − ŷi| (3)

MSE is quite similar to the MAE, with the only difference being that the MSE takes the
average of the square of the difference between the actual values and the predicted values
(Equation (4)).

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

RMSE is the square root of MSE, is essentially the same measurement tool as it but
has prevailed and is widely used in the literature (Equation (5)).

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (5)

CVRMSE is the next step from RMSE by normalizing it from the mean dependent
variable (Equation (6)).

CV(RMSE) =
1
Y

√
∑N

i=1
(
Yi − Ŷi

)2

N
(6)

Finally, R2 focuses not so much on the results but on the operation of the algorithm
itself. It specifies the degree to which the variations in the values of the dependent variable
(prediction target) can be explained by changes in the values of the independent variables
(data set) (Equation (7)).

R2 = 1− Σi(yi − ŷi)
2

Σi(yi − y)2 (7)

In Table 2 the benchmark scores, using the above-mentioned performance indicators
for both cases, either using the complete original data set or the modified ones (hybrid
model) are presented for all the prediction algorithms examined. In the case of RFR,
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Decision Tree, and AdaBoost, using the complete data set resulted in the achievement
of better results. The use of the proposed hybrid model for pre-processing ships data
increased the error in all of the benchmark scores. On the other hand, in the cases of kNN,
Linear Regression, and ANN the results are clearly better with the use of pre-processed
selected data (hybrid model). Therefore, it is not possible to determine clearly which
methodology is preferable.

Table 2. Benchmark scores of the prediction algorithms using the complete data set and the hybrid model (modified data
set).

Model MSE RMSE MAE R2 CVRMSE

Random Forest 298.902 17.289 2.421 1.000 0.293 Use of complete Data

4542.351 67.397 41.162 0.999 0.966 Hybrid Model

kNN 31,590.858 177.738 72.709 0.998 3.010

6126.236 78.270 43.311 0.999 1.258

Linear Regression Na Na Na Na Na

12,666.868 112.547 84.931 0.998 1.614

Neural Network 111,588.711 334.049 233.929 0.992 5.657

6096.33 78.079 84.931 0.999 1.120

Decision Tree 639.464 25.288 4.957 1.000 0.428

7702.947 87.766 53.181 0.999 1.122

Adaboost 356.969 18.894 4.105 1.000 0.320

4116.474 64.16 39.196 0.999 0.920

The second comparison criteria used was based in real life applications where a
deviation of 3% on predicted M/E power output is considered acceptable. Therefore,
a threshold of 3% error was set to the predicted values so the results were evaluated
accordingly. The percentage of the predicted values in which the difference from the actual
ones is less than 3% was recorded. The prediction results with the use of the complete data
set along with the proposed hybrid model were compared in terms of computational work
and error size values. The use of the proposed method resulted in most cases in a minor
deterioration of the percentage of values with an error below 3%, as shown in Figure 9.
However, in the case of the kNN algorithm, using the hybrid model (modified data set)
leads to slight improvement in the predictive performance, while in the case of the ANN
algorithm the improvement is considerably higher, which is a clear evidence of the better
performance achieved using the hybrid model.

The maximum difference between the predicted and the actual value of M/E power,
is very important because it represents the worst performance (spike) that we can expect
from the use of each method. Figure 10 presents the maximum deviation between the
actual and predicted value of M/E power, using either the complete data set or the hybrid
model (modified data set). As observed, using the hybrid model, for all algorithms, a
considerable reduction on the maximum deviation between actual and predicted value is
obtained, with the best improvement obtained in case of Linear regression and the best
performance observed for the case of the Decision Tree algorithm, with the maximum
deviation being equal to 10.16%. This is a significant performance improvement, however,
for real life applications an even better predictive accuracy is required. To this end, further
improvements on the hybrid model are required.
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Finally, a comparison of the time needed for training and testing the algorithms was
recorded. Figure 11 presents the comparison of the reduced time needed (on a percentage
basis) for the algorithms to complete the calculations for training, using the hybrid model.
All calculations in this study were conducted in the same personal computer, under the
same conditions to make the comparison reliable.

The time needed for training was dramatically reduced in all cases using the hybrid
model (in the range of 93.37% to 99.77%), with the exception of the ANN algorithm where
an increase of 14.35% is observed. Finally, all algorithms performed better in terms of
computational power needed for testing, as shown in Figure 12.
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Figure 12. Comparison of the predictive algorithms testing times required on a percentage basis
using the hybrid model (modified data set).

As observed, there is a significant using the hybrid model for the prediction of M/E
power. The reduction in CPU time demand ranges from 50% to 97.89%. It has been noticed
that although, as shown in Figure 11, the ANN algorithm need more time for the training
using the hybrid model, the situation is altered when using the trained algorithm for M/E
power prediction. Therefore, it is obvious that the hybrid model offers great potential in the
reduction of the required overall computational time for algorithm training and application
for the M/E power prediction. This is very important if we also take into account that,
in real life applications, the computational power demand of the prediction algorithms is
often an equally significant parameter as the accuracy of the predictions.

Figure 13 shows, in the same diagram, the actual (true) values of M/E power output
(black color) in conjunction with the predicted values (green color) using the hybrid model
(modified data set) for all algorithms.
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As observed, in all cases (prediction algorithms), there is a good coincidence between
actual and predicted values of M/E power, during the whole range of the data set used.
However, there are many instances where high discrepancies are observed (spikes) for
all prediction algorithms examined, while it seems that the linear regression algorithm is
the least accurate, with the discrepancies between actual and predicted M/E power being
relatively high at all the data points examined.

4. Conclusions

The results which are presented in this paper indicate that ML can become a valuable
tool for the marine industry. With the use of regression algorithms and the data from ship’s
ADLM systems we can predict with good accuracy a very crucial operational parameter,
such as the engine power, almost in real time. This knowledge can be used to lower the
operational costs in shipping companies. The use of a straightforward pre-processing
procedure proposed by the authors, for selecting and/or transforming the vast data that
ADLM systems collects, significantly improves the performance of the prediction AI
algorithms in terms of computational power demand. Actually, there is a reduction in the
range of 50% to 99.97% of the required computational time, while keeping the accuracy
at almost the same level, i.e., there is a negligible reduction of the predicted values with
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an error less than 3%, as shown in Figure 9. At the same time, the hybrid model reduces
considerably the maximum deviation of the predicted values of M/E power (spikes)
compared to the performance of the same algorithms using the complete original data set.
This deviations (spikes) reach relatively high values (in the range of 10%), which are not
acceptable in real life applications, although this is observed for a very low percentage of
the data points examined, i.e., below 4.46% of the data in the worst case, as shown in Figure
9, for the linear regression algorithm. Therefore, further research is needed to overcome
these deficiencies of the proposed model and determine the most suitable prediction
algorithm for the estimation of M/E power demand using real-time data obtained by the
ADLM system of the ship. In this way, it will become possible to introduce ML in real
life applications (like the prediction of M/E power demand of the vessel according to the
operating conditions), where predictive accuracy and computational power demand are
crucial parameters.
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