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Abstract: This paper explores the applicability of the agent-based (AB) and system dynamics (SD)
methods to model a case study of the management of water field services. Water borehole sites are
distributed over an area and serve the water needs of a population. The equipment at all borehole sites
is managed by a single water utility that has adopted specific repair, replacement, and maintenance
rules and policies. The water utility employs several service crews initially stationed at a single
central location. The crews respond to specific operation and maintenance requests. Two software
modeling tools (AnyLogic and STELLA) are used to explore the benefits and limitations of the AB
and SD methods to simulate the dynamic being considered. The strength of the AB method resides
in its ability to capture in a disaggregated way the mobility of the individual service crews and
the performance of the equipment (working, repaired, replaced, or maintained) at each borehole
site. The SD method cannot capture the service crew dynamics explicitly and can only model
the average state of the equipment at the borehole sites. Their differences aside, both methods
offer policymakers the opportunity to make strategic, tactical, and logistical decisions supported by
integrated computational models.
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1. Introduction

Many problems residing at the crossroads between socio-economic, natural, and infrastructure
systems are complex and cannot be addressed with simple analytical tools. Computer simulations can
be used instead to decide where to intervene in these systems while accounting for their evolution over
time (i.e., their dynamics). This cannot be done blindly, and a methodology must be followed, starting
with getting acquainted with the context and scale of the landscape in which the problems unfold.
This is followed by developing a clear understanding of the issues and their dynamics, being able
to simplify these issues, and accessing databases. Once simplified and abstracted, the next stage is
to select appropriate modeling tools jointly with realistic input data to simulate and reproduce the
dynamics of the issues of interest. Finally, the last step is to carry out various sensitivity analyses,
recommend possible intervention scenarios, and decide on the pros and cons of their implementation.

Regardless of how one approaches the modeling of complex problems, it must be remembered
that models are based on an interpretation of reality and are not reality itself. They are virtual
representations needed to simplify the complexity of the world around us. As remarked by George Box,
“essentially all models are wrong, but some are useful [ . . . ] the approximate nature of the model must
always be borne in mind” [1]. In their interpretation of reality, models must be useful, comprehensive,
and sound enough to be able to “reason, explain, design, communicate, act, predict, and explore” [2].

Since the 1940s, a variety of modeling tools have been proposed in various disciplines of systems
and complexity science to address complex problems (see the map by Castellani [3]). Among these
tools, Borshchev and Filippov [4] consider three types: system dynamics (SD), discrete event modeling
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(DE), and agent-based (AB) modeling. As shown in Figure 1, these three categories address different
levels of abstraction and details and can be used at different levels of decision making (i.e., strategic,
tactical, and operational).
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Grigoryev [5]).

In a nutshell, the SD method is top-down and can be applied to systems with high levels of
aggregation (i.e., high abstraction). The method assumes that all processes are continuous and considers
multiple feedback mechanisms, delays, and complex non-linear processes described by differential
equations. On the other hand, the AB and DE methods use a bottom-up perspective and deal with
processes that are discrete and can handle middle to low levels of aggregation (i.e., low abstraction).
The difference between these two methods resides in that the AB method deals with active and
interactive evolving agents, whereas the DE method deals with passive and non-interactive agents.
To the three specific modeling methods, one can add hybrid modeling tools that combine the best of
each method [6,7].

As noted by Rahmandad and Sterman [8] regarding the AB and SD methods, one method is not
better than the others; they are just different. Selecting the most appropriate method to model the
dynamics of a given problem depends on “the purpose of the model and the level of aggregation
appropriate for that purpose.” In short, the selected level of aggregation must match the level of details
in the available data sources and provide a balance between “simplicity and realistic depiction of the
underlying mechanisms” expected to be at play in the problem of interest.

The purpose of this paper is to explore the applicability of the AB and SD methods to model
a specific case study of managing water field services in a remote region (Afar regional state) of
Ethiopia. The dynamic considered herein was adapted from that used in the Field Service AB model,
which can be found in the Big Book of Simulation Modeling by Borshchev (pp. 142–194 [6]). The case
study considered here involves multiple water borehole sites distributed over a given geographic area.
The borehole units at each site serve the water needs of people in that area. The location of each site
is defined by its latitude and longitude GIS coordinates. Each site involves a variety of equipment
used for pumping (e.g., water pumps), storage (e.g., tanks), filtration (e.g., water filtration units),
distribution (e.g., pipes, canals), and wastewater collection and treatment facilities, etc. When each
borehole unit operates as planned, some water-related revenue stream is generated that benefits the
population who depend on the borehole sites for livelihood and socio-economic development.
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All borehole sites are managed by a single water utility that has adopted specific operation
and maintenance rules and policies. A maintenance policy includes replacing site equipment after
several cycles of maintenance. A policy is also in place to take care of any site equipment that needs
to be repaired or replaced, assuming a specific rate of failure, which is expected to increase with
equipment aging.

The water utility employs several motorized service crews (SC) that are initially all stationed at a
single central location (service center) defined by its latitude and longitude GIS coordinates. When the
utility receives a request of service (repair or replacement) from a borehole site, one of the service
crews takes the request, drives to the site, and performs the necessary work of equipment repair,
replacement, and/or maintenance. After completion of the work at each borehole site, the service crew
takes another request from a request queue and drives to the next borehole site. If the queue is empty,
it returns to the service center. All service crews are assumed to be able to communicate with each
other and with a central dispatcher located at the service center. Furthermore, each service crew has
fixed daily operating costs associated with its services. Each operation, such as repair, replacement,
or maintenance, has an additional one-time charge.

In this paper, the AB and SD methods are used to model the dynamics outlined above. Both methods
account, albeit in different ways, for the interaction of two groups of agents: the borehole sites and
service crews. More specifically, the goal of this paper is to explore, for two different levels of
abstraction, the capacity of each method to analyze how the management of the system of borehole
sites and decision making over time are affected by (i) the location of the service center; (ii) the
number of water utility service crews and their speed of transport, and (iii) the repair, replacement,
and maintenance policy of the water utility. Two simulation modeling software tools are used in this
paper: the agent-based modeling tool of AnyLogic (Personal Learning Edition, version 8.5.2) and the
STELLA Architect system dynamics modeling tool by isee systems, Inc. (version 1.9.4.)

2. Agent-Based Simulation

A value proposition of agent-based modeling tools is to be able to capture the dynamic at play
between multiple autonomous agents and heterogeneous groups of agents interacting in a system [9].
The agents have individual discrete behavior, and their interaction is defined by logic and a set of rules
selected by the user. The interaction may change with time and location. Another advantage of the AB
method is its ability to capture emergent phenomena at the global system level that may unfold through
local agent interaction while considering their evolving behavior in a specific environment [6,10–13].

2.1. AB Model

The AB simulation modeling component of the AnyLogic software was used to model the dynamic
between the two groups of agents considered in this case study, i.e., the borehole sites and the SC
crews. The conceptual AB model used here is a modified version of the Field Service model proposed
by Borshchev [6]. It has been modified to include a GIS map of a region of Ethiopia (Afar region) of
interest, where 179 borehole sites are considered (Figure 2). The sites have specific GIS coordinates [14]
and are spread over a 900 km long north–south stretch between Addis Ababa and Adigrat.

Table 1 lists the basic simulation parameters involved in the AB model. Note that other than the
actual borehole site GIS coordinates used in this model, all other input parameters are, for demonstration
purposes, virtually the same as those used in the Field Service model of Borshchev [6]. They do
not reflect, however, the actual management of water field service in the region of Ethiopia under
consideration. The AB model should be seen as a simplified version of the field reality with the sole
purpose of being able to capture the dynamics at play between the borehole sites and the SC crews.
It can also be understood as a template to be used in the management of water field services, or other
services, used by communities in specific scales and contexts, once data are available.

The AB method can consider the various states that the two sets of agents may experience over a
specific time, as well as possible state transitions. So-called “statecharts” are introduced to represent
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these states, how agents enter the states and transition between states, and the decision process
involved in these transitions.Challenges 2019, 10, x 4 of 18 
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Figure 2. Map of the Afar region of Ethiopia considered in the agent-based (AB) model with the GIS
location of the service center.

Table 1. Input parameters used in the agent-based model (adapted from Borshchev pp. 144, [6]).

Parameters Value

Service center location GIS (latitude, longitude)
Number of borehole units 179

Borehole units location GIS (latitude, longitude)
Number of motorized service crews (SCs) 5

Service capacity (number of SCs) 5
Equipment repair time (hours) 5

Equipment maintenance time (hours) 3
Equipment replacement time (hours) 12

Time between equipment maintenance (days) 90
Base equipment failure rate* (/day) 0.03

Probability of equipment replacement after failure 0.1
Number of maintenance periods before equipment is automatically replaced 4

Mobility of service crew (km/hour) 10 (240 km/day)
Service crew daily operating costs ($/day) 1500

Average equipment repair one-time cost ($) 1000
Average equipment replacement one-time cost ($) 10,000
Average equipment maintenance one-time cost ($) 600

Daily revenue per working unit ($/day) 400

* The actual failure rate increases as the equipment ages and has experienced several maintenance periods.

2.1.1. Equipment Statechart

Figure 3 shows the statechart used to map the lifecycle of each borehole site equipment which
can go through five possible states over time: working (green), failed (red), replaced or repaired
(yellow), or under maintenance (blue). The equipment at all borehole sites is assumed to be initially
working (green). The transition from one state to the next can be triggered by (i) a state change rate
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(e.g., failure rate); (ii) a timeout (e.g., time to finish maintenance, replacement, or repair) or delay;
or (iii) a message between agents (e.g., SC arrived for repair, SC arrived for maintenance). In Figure 3,
places of decision (equivalent to “if” statements) are represented by three lozenge-shaped symbols.
One choice (probabilistic) may be to repair or replace the equipment when an SC arrives at a site
where the equipment failed; repair is the default. The equipment is automatically replaced when its
age is such that it has experienced at least a certain number (4 in the case of Table 1) of consecutive
maintenance periods (90 days). After the repair is done, a decision (deterministic) needs to be made
whether the equipment is already due for regular maintenance (every 90 days); no maintenance is
the default. Finally, another deterministic decision (planned replacement) when an SC arrives at a
site to carry out regular maintenance (every 90 days) is whether to proceed or replace the equipment;
maintenance only is the default. As in the case of failed equipment, replacement automatically takes
place if its age is such that it has experienced at least a certain number (4 in the case of Table 1) of
consecutive maintenance periods of 90 days.
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2.1.2. Service Crew Statechart

Figure 4 shows the statechart for the motorized service crews (SC), which can be in four different
states: idle at the service center (red), working (yellow), or on the move either to the service center
(waiting for a message from a borehole site), or to a borehole site for servicing (orange). The service
crews transition from one state to another after exchanging different types of messages: (i) from each
borehole site (person or signal) to the service crews (e.g., check request messages) via the service center
(e.g., request for service message); (ii) from the service crews to the service center (e.g., accept message
to proceed or re-check for a message and take it); (iii) from the service crews to the borehole sites (e.g.,
arrived message); and (iv) from the borehole sites to the service crews (e.g., finished message that the
service is completed).

In Figure 4, places of decision (equivalent to “if” statements) are represented by two lozenge-shaped
symbols. One decision after checking the request queue sent from the service center is for each SC
whether to drive to the worksite or return to the service center (driving home). Another decision is to
check whether each service crew is still needed for service (e.g., still employed or laid off). This decision
is controlled by the modeler using a service capacity parameter, which describes the number of SC
units deemed necessary for service. If, at any time, the service capacity is larger than the current
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number of SC units, new SC units are added to close the gap. If the service capacity is smaller than the
current number of SC units, some are laid off, as indicated in Figure 4. In other words, the service
capacity always represents the default value for the number of service crews.

Furthermore, all service crews are assumed to follow specific operative and mobility rules
(p. 188, [6]). The service is provided 24 h a day, and all service crews “always have all the necessary
parts and tools on board. They never have to drive to the base location [service center] to pick up
missing stuff.” Since the present model uses a GIS map, all service crews follow roads and trails
on the map. Finally, the service crews do not seek the closest borehole sites once they receive a
request from the service center. They “just take the next request from the queue and drive there.”
These operative and mobility rules could be overcome, in part, by combining the agent-based method
with the discrete-event method discussed in Section 1.
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2.2. Flight Simulator

2.2.1. Example

The agent-based Field Service model from the Big Book of Simulation Modeling by Borshchev [6]
comes with a flight simulator consisting of two parts: (i) a two-dimensional (2D) model (Figure 5)
showing the agent dynamics (movement of the service crews and states of each borehole site)
and (ii) a metrics and statistics window showing time-depend graphs (Figure 6). The model
FieldService2DEthiopia used here is available from the author upon request.

Figure 5 is a snapshot of the 2D model showing the status of the equipment for the 179 borehole
sites and the movement of the service crews at a specific model simulation time. The trucks representing
the service crews are assumed to follow the roads and trails on the GIS map of Figure 2.

Figure 6 shows the daily variation of the state of the equipment and the change over five years
(1825 days) of the annual averages of (i) equipment availability, (ii) service crew utilization, and (iii)
cost, revenue, and profit involved in the operation and maintenance of the equipment at the borehole
sites. After about two years (730 days), the fractions of working equipment and working and driving
service crews increase slightly with time. This trend also translates into a slightly increasing annual
cost and slightly decreasing yearly revenue and profit. Overall, Figure 6 shows that a service capacity
consisting of five service crews is not enough to keep up with the failed equipment; hence, the service
capacity must increase.
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2.2.2. Effect of Service Capacity

A unique feature of the flight simulator shown in Figure 6 is the possibility of changing at any
time: (i) the number of service crews using the service capacity parameter (from 1 to 10 in the present
example), (ii) the daily revenue per unit, and (iii) the service crew, replacement, repair, and maintenance
costs. Finally, the user can decide whether the borehole equipment is automatically replaced if it cannot
be repaired, or if it has also experienced an arbitrary number of consecutive maintenance cycles of
fixed duration (four cycles of 90 days each in the present example). Both decisions were discussed in
Section 2.1.1.

Figure 7 shows the variation over five years of the annual average cost, revenue, and profit
involved in the operation and maintenance of the equipment at the borehole sites when the service
center capacity increases by one service crew at the end of each year from five initially to ten at the end
of year 5 (1825 days). Table 2 compares the annual average profit assuming a constant number of five
service crews with that assuming an increase of one service crew per year. The results clearly show
the sensitivity of the annual profit on the number of service crews. A yearly increase in service crews,
from five in year one to ten in year five, results in increasing the cumulative five-year profit by 53%.
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Table 2. Comparison of annual average profit (k$) and five-year cumulative profit assuming a constant
number of five service crews (SC) with that assuming an increase of one service crew per year starting
with five of them.

Years Annual Average Profit (k$)
(Constant SC)

Annual Average Profit (k$)
(Increasing SC)

1 9123 9123

2 6227 6890

3 5465 8725

4 5283 10,612

5 4324 11,169

Cumulative 30,422 46,519

2.2.3. Optimization

The Field Service Model of Borshchev (p. 182, [6]) also contains a built-in optimizer (OptQuestTM

optimizer), which can be useful in exploring how some of the parameters listed in Table 1 have more
impact than others on the lifecycle of the equipment at the 179 borehole sites. We might be interested
in determining, for instance, what combination of parameters leads to a maximum profit over a certain
period. For the present example, the objective function Profit (t) is defined as follows:

Pro f it (t) = (Mean Daily Revenue−Daily Service Crew Cost) ∗ t− Total Work Cost (1)
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where t is the time expressed in days. The mean daily revenue is calculated as the product between
the mean number of borehole units working daily and the daily revenue per working unit ($400 in
Table 1). The daily service crew cost is the product of the number of daily working service units and
the service crew daily operating costs ($1500 in Table 1). The total work cost is the accumulated cost
associated with the incremental operation (repair, replacement) and maintenance costs of the borehole
units over time.

As a numerical optimization example, let’s consider the case where the number of maintenance
periods before the equipment is replaced varies from 1–5, and the service capacity varies from 3–10
service crews. For this example and at the end of five years (1825 days), the optimization algorithm
gives an optimal annual profit of $41,930 (k$) for a one-time maintenance cost of $400; four maintenance
periods of 90 days; and service capacity of six service crews.

2.2.4. Influence of Service Center Location

A parameter likely to influence cost and profit is the location of the service center relative to
the fixed borehole sites. Four possible locations of the service center were considered on the map
of Figure 2 to analyze that effect: the position shown in Figure 2, Mek’ele Dessie, and Addis Ababa.
Table 3 summarizes the impact of the service center’s location on the annual average profit and the
cumulative profit over five years. The location of the service center does not seem to have much of an
influence on the cumulative profit at the end of five years.

Table 3. Comparison of annual average profit (k$) and five-year cumulative profit for four different
locations of the service center, all other input parameters being the same.

Year
Figure 2
11.74506,
41.00237

Mek’ele
13.50247
39.47589

Dessie
11.12075,
39.61866

Addis Ababa
9.01238,
38.76209

1 9123 8857 8910 9459

2 6227 5904 6323 5834

3 5465 5782 5529 5510

4 5283 5321 5653 4975

5 4324 4809 4989 4918

Cumulative 30,422 30,673 31,404 30,696

An optimization analysis, like the one mentioned in Section 2.2.3, was carried out for the four
locations of the service center. The results listed in Table 4 show that, if optimizing the cumulative
profit at the end of five years (1825 days) is the goal, the different service locations yield similar values
of the profit but require slightly different operation and maintenance policies in terms of the number of
90 day maintenance periods before the equipment is replaced and the number of service crews.

Table 4. Optimization scenarios for four different locations of the service center, all other input
parameters being the same. Time window of five years.

Service Center
Location

Five-Year Profit
(k$)

Maintenance
One-Time Cost ($)

Number of Maintenance
Periods before Equipment

is Replaced

Capacity Service.
Number of

Service Crews

Figure 2 41,930 400 4 periods of 90 days 6

Mek’ele 40,910 400 5 periods of 90 days 10

Dessie 39,998 400 4 periods of 90 days 6

Addis 41,703 400 4 periods of 90 days 8
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3. System Dynamics Simulation

The system dynamics method is a relatively recent branch of systems science that originated
with the work of Dr. Jay Forrester at the Massachusetts Institute of Technology in the 1950s and
1960s [15–17]. A review of the method and its multiple applications can be found in some landmark
books by Richmond [18], Sterman [19], and Ford [20], among many others. The unique characteristics
of the SD method that warrant its use in modeling the dynamics of complex systems include being able
to (i) study how systems continuously change over time due to possible changes in and relationships
among components and changes in the overall direction of systems allowing for both qualitative and
quantitative modeling; (ii) account for systems non-linearities, feedback mechanisms, and delays;
(iii) illustrate that as the structure of a system changes, so does its behavior and vice-versa. A limiting
aspect of SD is that it cannot capture the details of the individual components that form the system.

3.1. SD Model

Compared to the AB method, system dynamics (SD) considers all borehole equipment sites
and service crews as two aggregated and indistinguishable homogeneous sets of agents that are
evolving continuously. As a result, this abstraction level makes the modeling of how the agents in
Figures 3 and 4 interact and change more challenging. For instance, it is not possible to capture the
individual mobility of the service crews directly as the borehole equipment sites transition from one
state to the other. Only the average behavior of the two sets of agents can be estimated. One way to
overcome some of these limitations is to carry out sensitivity and stochastic analyses on key parameters
in the SD models, as shown below.

Having this in mind, Figure 8 shows a possible stock-and-flow system dynamics simulation
model that captures as best as possible the dynamic between the different states in the equipment
statechart of Figure 2. The model was developed by the author using the STELLA Architect
software (version 1.9.4). A user interface of the system dynamics model is available on the
web (https://exchange.iseesystems.com/public/bernardamadei/bhserviceethiopia) and can be used to
explore different scenarios. A special effort was made to integrate the same data (Table 1) used in the
AB model in the SD simulation.

In the SD model of Figure 8, several stocks are used to represent the state of the equipment
at the borehole sites. Different states (e.g., working, repaired, failed, replaced, and maintained)
and transitional states (e.g., failed, needing replacement, and needing maintenance) are considered.
Three decision time converters, expressed in hours, are used to capture the time necessary for the
borehole units to return from a repair, maintenance, or replacement state to a working state. The three
decision times are selected at random, assuming a triangular distribution ranging between 12 and 48 h
with a mode of 24 h.

The equipment failure rate is represented by a time function specified by the user. Since it was not
possible to reproduce with SD the failure rate algorithm used in the AB model, an S-shaped function
was selected to match as best as possible the variation of the failure rate considered in that model.
The failure rate varies between a minimum value (0.03 in this example) and a maximum value specified
by the user (0.11 in this example). The slope of the S-shaped function (0.01 in this example) dictates how
quickly the failure rate increases with time. If necessary, the maximum value and slope can themselves
be made dependent on specific maintenance rules and policy selected by the utility company.

After failure, some borehole sites have their equipment repaired, while others require equipment
replacement. The basic rate of equipment replacement after failure is equal to 10% per day (see Table 1).
Once the equipment is replaced after a specific time, the borehole units are returned to a working state.
If not replaced, the equipment is repaired. It may happen that during repair, the equipment is due
for maintenance. If not, the borehole units are returned to a working state. If yes, maintenance of the
equipment is performed, and the borehole units are returned to the working state. Finally, borehole
units that follow a regular maintenance policy are checked whether they have exceeded a specified

https://exchange.iseesystems.com/public/bernardamadei/bhserviceethiopia
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number (four) of cycles of maintenance (90 days each). If yes, their equipment is automatically replaced.
If not, the borehole units are returned to a working condition.

The daily number of service crews necessary to provide the replacement, repair, and maintenance
services is calculated as the ratio between the daily number of boreholes repaired, replaced,
or maintained calculated by the model and the number of borehole units assumed to be serviced by
each service crew. The latter is selected at random, assuming a triangular distribution ranging between
three and seven with a mode/mean value of five borehole units served by each service crew.Challenges 2019, 10, x 12 of 18 
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Figure 8. Stock-and-flow system dynamics (SD) model showing the dynamic between the different
borehole equipment states.

It should be noted that the travel time of the service crews to each borehole site is not accounted
for explicitly in the SD model, like in the AB model. As an alternative, the travel time is assumed to be
random, assuming a triangular distribution ranging between 15 and 45 h with a mode/mean value
of 30 h. This extra time is added to the basic equipment repair time (5 h), maintenance time (3 h),
and replacement time (12 h) of Table 1. The selected range of travel time translates into a travel distance
ranging from 150 to 450 km at a speed of 10 km/hour (see Table 1), which corresponds somewhat to the
range of travel distances expected from the service center to the northern limit (Adigrat) and southern
limit (Addis Ababa) of Figure 2. Recall that the distance between these two limits is about 900 km and
that the service center is located roughly halfway (about 450 km) in between.
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As an example, Figure 9 shows the variation of the cumulative revenue, cost, and profit over five
years for the input data mentioned above. The cumulative profit predicted by the AB method (listed in
Table 2) is also shown for comparison.
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3.2. Sensitivity Analysis

The SD model presented above can be used to carry out various sensitivity analyses. The baseline
values of the parameters involved in the analyses presented below were selected as follows: (i) time
between maintenance events = 90 h; (ii) extra times for service (repair, replacement, maintenance) = 30 h;
(iii) decision times from service (repair, replacement, maintenance) to working = 48 h; and (iv) number
of borehole units serviced (repair, replacement, maintenance) per service crew = 5. The sensitivity
analyses consisted of varying each one of these parameters incrementally over specific ranges of values.

3.2.1. Influence of Time between Maintenance Events

As an example, Figure 10 shows the influence of the time between two consecutive maintenance
events on the performance of the system. That time is assumed to vary between 20 and 200 days,
all other parameters being the same. Figure 10 shows a significant influence after 365 days for a 100%
confidence interval. For smaller levels of confidence, the impact is limited.
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3.2.2. Influence of Extra Service Time

A second sensitivity analysis was carried out to explore the effect of the extra times for repair,
replacement, and maintenance on the cumulative profit. All three times were assumed to vary between
15 and 45 h, all other parameters being the same. The sensitivity of the profit to the extra times after
365 days is clearly emphasized in Figure 11.
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replacement, and maintenance. The mean value and confidence intervals are shown.

3.2.3. Influence of Decision Time between Service and Working

A third sensitivity analysis was carried out to explore the effect of the three decision times in
Figure 8 (repaired to working, replaced to working, and maintained to working) on the profit. All three
decision times were assumed to vary incrementally between 24 and 96 h each, all other parameters being
the same. As shown in Figure 12, the decision time has a limited influence on the cumulative profit.
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3.2.4. Influence of Number of Borehole Units per Service Crew

The last sensitivity analysis explores the influence that the number of boreholes serviced per crew
has on the cumulative profit. That number is assumed to vary incrementally between three and seven
for repair, replacement, and maintenance; all other parameters being the same. The results of the
analysis shown in Figure 13 show that the number of boreholes serviced per crew has a limited effect
on the profit for the range considered herein.
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3.3. Optimization Analysis

The STELLA Architect software can also be used to carry out optimization work using different
algorithms such as the Powell, grid, and differential evolution methods [21]. As an illustrative example,
the differential evolution algorithm was used to determine the values of decision times and extra times
that lead to the maximum cumulative profit at the end of five years (1825 days). All other model
parameters were assumed to be the same. An optimal profit of $50,408 (k$) was found for the following
input values:

• Decision times between repair, maintenance, or replacement and working: 24 h
• Extra times for repair, replacement, and maintenance: 15 h

For these conditions, the management of the borehole sites can be accomplished by changing
the number of service crews providing the services of repair, replacement, and maintenance. In this
example, each service crew is assumed to serve five borehole units per day. Figure 14 shows the
variation of the total number of service crews with time.
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4. Conclusions

This paper looked at the application of two numerical methods to model the dynamic between
two groups of interacting agents involved in the management of water field services in a remote region
of Ethiopia. Both methods use different formulations and levels of abstraction to model that interaction.

The disaggregation inherent to the AB method allows for a detailed and discrete analysis of
the impact individual agents and groups of agents have on the performance of complex systems.
This unique characteristic of the AB method allows for capturing emergence, a phenomenon that is
unique to complex systems and which cannot be obtained using linear equations, or the SD and DE
methods. In the case study considered herein, the interaction of the borehole site and service crew agents
creates an emerging behavior that cannot be inferred from the sum of individual interactions alone.

The SD method assumes a high level of abstraction and homogeneity when considering the
interaction between the two groups of agents. The method requires fewer details than the AB method
and uses an averaging process to predict the continuous behavior of the two groups of agents. Various
parametric studies can still be carried out to analyze, for instance, the impact of multiple factors on the
cumulative profit. However, the influence of the location of the service center on the profit cannot
be analyzed.

The two AB and SD modeling software tools used in this paper are powerful enough to handle
multiple complex processes and interactions. Despite their differences and for the case study considered
in this paper, both AB and SD modeling tools give results that are realistic, good enough, and consistent
in the ballpark with each other. Of course, many assumptions would have to be made to match the
predictions of both methods even further.

As emphasized in the literature comparing AB and SD methods, one approach is not better than
the other [11,22]. They are different in the way they interpret reality and can be used for various
aspects of decision making in addition to matching the level of disaggregation in the situation of
interest. A metaphor used by Schieritz and Milling [7] to describe the main difference between the two
methods is that the SD method models the trees, and the AB method models the forest. The decision
to use one method rather than the other should be based on whether decision-makers interested in
exploratory policies are involved at the strategic level, where SD is more appropriate, or the operational
level where AB is more relevant. In some situations, the value proposition of both approaches (i.e.,
modeling the forest and the trees) should be considered when considering how strategy translates into
operational work.
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Despite being arbitrary selected, the numerical example used in this paper shows that the different
complex steps involved in the management of water field services can be captured explicitly using AB
and SD models. As emphasized in Section 1, in their interpretation of reality, the models can be useful
to “reason, explain, design, communicate, act, predict, and explore” [2]. It must be kept in mind that
models are as good as the data available from field studies.

Finally, it should be noted that the AB and SD models presented above do not specify the sequences
of operations and processes taking place at each borehole site from the arrival of a service crew to its
departure once repair, replacement, and maintenance are completed. The operations may include,
for instance, crew assessment, sequential repairing, and replacement of some of the borehole equipment,
finding missing parts, etc. This additional complexity would require another level of disaggregation,
which, if needed in operation and maintenance, could be accounted for by combining either method
with the discrete-event (DE) method mentioned earlier in this paper.
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