Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review
Abstract
:1. Introduction
1.1. Land Use Optimization
1.2. Mutually Beneficial Relationship
2. Optimization Studies
2.1. Engineering Optimization
2.1.1. Tracking
2.1.2. PV Cell Type
2.2. Layout Optimization
2.2.1. Placement
2.2.2. Orientation
3. Potential Benefits of AV System
3.1. Crop Production
Non-Commercial Crops
3.2. Micro-Climates
3.2.1. Water Usage
3.2.2. Increased PV Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AV | agrivoltaic |
LER | land equivalent ratio |
NZE | net-zero emission |
PAR | photosynthetically active radiation |
PV | photovoltaic |
RET | renewable energy technology |
STICS | Simulateur mulTIdisciplinaire les Cultures Standard |
References
- IEA. Net Zero by 2050; Technical Report; IEA: Paris, France, 2021; All Rights Reserved. [Google Scholar]
- Mancini, F.; Nastasi, B. Solar energy data analytics: PV deployment and land use. Energies 2020, 13, 417. [Google Scholar] [CrossRef]
- Herrick, J.E.; Abrahamse, T. Land Restoration for Achieving the Sustainable Development Goals; A think piece of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Fritsche, U.R.; Berndes, B.; Cowie, A.L.; Dale, V.H.; Kline, K.L.; Johnson, F.X.; Langeveld, H.; Sharma, N.; Watson, H.; Woods, J. Sustainable Energy Options and Implications for Land Use; Technical Report; IEA: Paris, France, 2017. [Google Scholar]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- IEA. Solar PV—Analysis—IEA. 2021. All Rights Reserved. Available online: https://www.iea.org/reports/solar-pv (accessed on 6 June 2022).
- Bolinger, M.; Bolinger, G. Land Requirements for Utility-Scale PV: An Empirical Update on Power and Energy Density. IEEE J. Photovolt. 2022, 12, 589–594. [Google Scholar] [CrossRef]
- Dias, L.; Gouveia, J.P.; Lourenço, P.; Seixas, J. Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy 2018, 81, 725–735. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Beck, M.; Bopp, G.; Goetzberger, A.; Obergfell, T.; Reise, C.; Schindele, S. Combining PV and Food Crops to Agrophotovoltaic? Optimization of Orientation and Harvest. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, Frankfurt, Germany, 24–28 September 2012. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Riaz, M.H.; Imran, H.; Younas, R.; Butt, N.Z. The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems. Sol. Energy 2021, 230, 1004–1012. [Google Scholar] [CrossRef]
- Imran, H.; Riaz, M.H. Investigating the potential of east/west vertical bifacial photovoltaic farm for agrivoltaic systems. J. Renew. Sustain. Energy 2021, 13, 033502. [Google Scholar] [CrossRef]
- Imran, H.; Riaz, M.H.; Butt, N.Z. Optimization of Single-Axis Tracking of Photovoltaic Modules for Agrivoltaic Systems. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; IEEE: New York, NY, USA, 2020; pp. 1353–1356. [Google Scholar] [CrossRef]
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential is Greatest Over Croplands. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Al-Agele, H.A.; Nackley, L.; Higgins, C.W. A pathway for sustainable agriculture. Sustainability 2021, 13, 4328. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. var. rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Cos¸gun, A.E. The potential of Agrivoltaic systems in TURKEY. Energy Rep. 2021, 7, 105–111. [Google Scholar] [CrossRef]
- Willockx, B.; Herteleer, B.; Cappelle, J. Theoretical potential of agrovoltaic systems in Europe: A preliminary study with winter wheat. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Calgary, AB, Canada, 15 June–21 August 2020. [Google Scholar] [CrossRef]
- MetSolar. What Is Agrivoltaics? How Can Solar Energy and Agriculture Work Together. 2021. Available online: https://metsolar.eu/blog/what-is-agrivoltaics-how-can-solar-energy-and-agriculture-work-together/ (accessed on 6 June 2022).
- Apostoleris, H.; Chiesa, M. High-concentration photovoltaics for dual-use with agriculture. In Proceedings of the AIP Conference Proceedings, Fes, Morocco, 25–27 March 2019; American Institute of Physics Inc.: College Park, MD, USA, 2019; Volume 2149. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate af-fected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Carreño-Ortega, A.; do Paço, T.A.; Díaz-Pérez, M.; Gómez-Galán, M. Lettuce Production under Mini-PV Modules Arranged in Patterned Designs. Agronomy 2021, 11, 2554. [Google Scholar] [CrossRef]
- Kwon, O.H.; Lee, K.S. Agrophotovoltaic Designs: Irradiation Analysis on and under PV Modules. J. Korean Sol. Energy Soc. 2021, 41, 9–23. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Perna, A.; Grubbs, E.K.; Agrawal, R.; Bermel, P. Design Considerations for Agrophotovoltaic Systems: Maintaining PV Area with Increased Crop Yield. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 668–672. [Google Scholar] [CrossRef]
- Frick, K.; Talbot, P.; Wendt, D.; Boardman, R.; Rabiti, C.; Bragg-Sitton, S.; Ruth, M.; Levie, D.; Frew, B.; Elgowainy, A.; et al. Evaluation of Hydrogen Production Feasibility for a Light Water Reactor in the Midwest. 2019. Available online: https://www.osti.gov/biblio/1569271 (accessed on 6 July 2022). [CrossRef]
- Pascaris, A.S.; Schelly, C.; Pearce, J.M. A first investigation of agriculture sector perspectives on the opportunities and barriers for agrivoltaics. Agronomy 2020, 10, 1885. [Google Scholar] [CrossRef]
- Sargentis, G.F.; Siamparina, P.; Sakki, G.K.; Efstratiadis, A.; Chiotinis, M.; Koutsoyiannis, D. Agricultural land or photovoltaic parks? The water—Energy—Food nexus and land development perspectives in the thessaly plain, Greece. Sustainability 2021, 13, 8935. [Google Scholar] [CrossRef]
- Tahir, Z.; Zafar Butt, N. Implications of Spatial-Temporal Shading Under Mobile & Fixed Tilt Bifacial Agrivoltaic Panels & Implications for the Cropping Practices. Renew. Energy 2022, 190, 167–176. [Google Scholar] [CrossRef]
- Martín-Chivelet, N. Photovoltaic potential and land-use estimation methodology. Energy 2016, 94, 233–242. [Google Scholar] [CrossRef]
- Willockx, B.; Herteleer, B.; Cappelle, J. Techno-Economic Study of Agrovoltaic Systems Focusing on Orchard Crops. In Proceedings of the 37th EU PVSEC 2020, Virtual, 7–11 September 2020. [Google Scholar]
- Hassanpour Adeh, E.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Tajima, M.; Iida, T. Evolution of agrivoltaic farms in Japan. AIP Conf. Proc. 2021, 2361, 030002. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Murali Manohar, S.R.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Takahashi, N.; Uchida, Y. Prediction of Effects of Solar Panel Control Methods on Solar Radiation on the Ground under the Panels and Power Generation in an Agrivoltaic System with Rotatable Panels. Kagaku Kogaku Ronbunshu 2021, 47, 184–190. [Google Scholar] [CrossRef]
- Majewski, P.; Al-shammari, W.; Dudley, M.; Jit, J.; Lee, S.H.; Myoung-Kug, K.; Sung-Jim, K. Recycling of solar PV panels- product stewardship and regulatory approaches. Energy Policy 2021, 149, 112062. [Google Scholar] [CrossRef]
- Keil, J.; Liu, Y.; Kortshagen, U.; Ferry, V.E. Bilayer Luminescent Solar Concentrators with Enhanced Absorption and Efficiency for Agrivoltaic Applications. ACS Appl. Energy Mater. 2021, 4, 14102–14110. [Google Scholar] [CrossRef]
- Osterthun, N.; Neugebohrn, N.; Gehrke, K.; Vehse, M.; Agert, C. Spectral engineering of ultrathin germanium solar cells for combined photovoltaic and photosynthesis. Opt. Express 2021, 29, 938–950. [Google Scholar] [CrossRef]
- Thompson, E.P.; Bombelli, E.L.; Shubham, S.; Watson, H.; Everard, A.; D’Ardes, V.; Schievano, A.; Bocchi, S.; Zand, N.; Howe, C.J.; et al. Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland. Adv. Energy Mater. 2020, 10, 2001189. [Google Scholar] [CrossRef]
- Toledo, C.; Scognamiglio, A. Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). Sustainability 2021, 13, 6871. [Google Scholar] [CrossRef]
- Racharla, S.; Rajan, K. Solar tracking system—A review. Int. J. Sustain. Eng. 2017, 10, 72–81. [Google Scholar] [CrossRef]
- Oleskewicz, K. The Effect of Gap Spacing Between Solar Panel Clusters on Crop The Effect of Gap Spacing Between Solar Panel Clusters on Crop Biomass Yields, Nutrients, and the Microenvironment in a Dual-Biomass Yields, Nutrients, and the Microenvironment in a Dual-Use Agrivoltaic System Use Agrivoltaic System. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2020. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Santra, P.; Meena, H.M.; Yadav, O.P. Spatial and temporal variation of photosynthetic photon flux density within agrivoltaic system in hot arid region of India. Biosyst. Eng. 2021, 209, 74–93. [Google Scholar] [CrossRef]
- Campana, P.E.; Stridh, B.; Amaducci, S.; Colauzzi, M. Optimisation of vertically mounted agrivoltaic systems. J. Clean. Prod. 2021, 325, 129091. [Google Scholar] [CrossRef]
- Cuppari, R.I.; Higgins, C.W.; Characklis, G.W. Agrivoltaics and weather risk: A diversification strategy for landowners. Appl. Energy 2021, 291, 116809. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Jansri, S.N. Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of bok choy (Brassica rapa subsp. chinensis L.) under the panels. Int. J. Renew. Energy Dev. 2021, 11, 103–110. [Google Scholar] [CrossRef]
- Moreda, G.P.; Muñoz-García, M.A.; Alonso-García, M.C.; Hernández-Callejo, L. Techno-economic viability of agro-photovoltaic irrigated arable lands in the eu-med region: A case-study in southwestern spain. Agronomy 2021, 11, 593. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Cho, J.; Park, S.M.; Park, A.R.; Lee, O.C.; Nam, G.; Ra, I.H. Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 2017, 23, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 2017, 206, 1495–1507. [Google Scholar] [CrossRef]
- Othman, N.F.; Yaacob, M.E.; Su, A.S.M.; Jaafar, J.N.; Hizam, H.; Shahidan, M.F.; Jamaluddin, A.H.; Chen, G.; Jalaludin, A. Modeling of stochastic temperature and heat stress directly underneath agrivoltaic conditions with orthosiphon Stamineus Crop Cultivation. Agronomy 2020, 10, 1472. [Google Scholar] [CrossRef]
- Gonocruz, R.A.; Nakamura, R.; Yoshino, K.; Homma, M.; Doi, T.; Yoshida, Y.; Tani, A. Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan. Environments 2021, 8, 65. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Proctor, K.; Murthy, G.; Higgins, C. A Case Study of Tomato (Solanum lycopersicon var. Legend) Production and Water Productivity in Agrivoltaic Systems. Sustainability 2021, 13, 2850. [Google Scholar] [CrossRef]
- Andrew, A.C.; Higgins, C.W.; Smallman, M.A.; Graham, M.; Ates, S. Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System. Front. Sustain. Food Syst. 2021, 5, 659175. [Google Scholar] [CrossRef]
- Lytle, W.; Meyer, T.K.; Tanikella, N.G.; Burnham, L.; Engel, J.; Schelly, C.; Pearce, J.M. Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. J. Clean. Prod. 2020, 282, 124476. [Google Scholar] [CrossRef]
- Graham, M.; Ates, S.; Melathopoulos, A.P.; Moldenke, A.R.; DeBano, S.J.; Best, L.R.; Higgins, C.W. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Willockx, B.; Herteleer, B.; Cappelle, J. Combining photovoltaic modules and food crops: First agrovoltaic prototype in belgium. Renew. Energy Power Qual. J. 2020, 18, 266–271. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Othman, N.F.; Yap, S.; Ya’Acob, M.E.; Hizam, H.; Su, A.S.; Iskandar, N. Performance evaluation for agrovoltaic DC generation in tropical climatic conditions. AIP Conf. Proc. 2019, 2129, 020006. [Google Scholar] [CrossRef]
- Proctor, K.W.; Murthy, G.S.; Higgins, C.W. Agrivoltaics align with green new deal goals while supporting investment in the us’ rural economy. Sustainability 2021, 13, 137. [Google Scholar] [CrossRef]
- Irie, N.; Kawahara, N.; Esteves, A.M. Sector-wide social impact scoping of agrivoltaic systems: A case study in Japan. Renew. Energy 2019, 139, 1463–1476. [Google Scholar] [CrossRef]
- Bellini, E. Japan’s First Vertical Agrivoltaic Project—PV Magazine International. PV Magazine. 2022. Available online: https://www.pv-magazine.com/2022/04/26/japans-first-vertical-agrivoltaic-project/ (accessed on 6 June 2022).
- Feuerbacher, A.; Laub, M.; Högy, P.; Lippert, C.; Pataczek, L.; Schindele, S.; Wieck, C.; Zikeli, S. An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics. Agric. Syst. 2021, 192, 103193. [Google Scholar] [CrossRef]
- Guerrero Hernández, A.S.; Ramos de Arruda, L.V. Technical–economic potential of agrivoltaic for the production of clean energy and industrial cassava in the Colombian intertropical zone. Environ. Qual. Manag. 2021, 31, 267–281. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J.; et al. The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants. Emerg. Technol. Manag. Crop Stress Toler. 2014, 2, 347–384. [Google Scholar] [CrossRef]
Engineering | |
---|---|
Tracking | Dual Axis |
North/South | |
West/East | |
PV | Bifacial |
Concentrated | |
Thin Film | |
Transparent | |
Spectral Selective | |
System Layout | |
Placement | Density |
Spacing | |
Patterned (i.e., Checker-board) | |
Height | |
Orientation | Vertical Panels |
Tilt Angle |
Testing Facility or Model Location | Method | Observations | Source |
---|---|---|---|
Montpelier, France | Density (IS) | Half density produced more than full density in summer only. | [46] |
ICAR-Central Arid Reseach Insitute, India | Vertical and Spacing (IS) | PAR measured, and shading under PV was 18–58%. | [47] |
Lahore, Pakistan | Spacing (M) | Inter-cropping increases production. Half density was ∼24% more productive. | [31] |
Vertical Bifacial Density | Spacial uniformity of sunlight better and increased LER. | [12] | |
Incheon, Korea | Height/Spacing (M) | 2–3 m height saw the largest change. Spacing between panels, not just rows, decreased shading. | [25] |
Fresno, Ca | Checkerboard Arrangement (M) | No significant shadow difference from 15 m × 15 m vs. 3 m × 3 m Checkerboard reduces irradiation losses by 6%. | [27] |
R.E.M Tech Energy, Italy | Panel Density (M) | Higher density tracking saw increased maize yield. Non-tracking saw decrease in yield. | [26] |
Västerås, Sweden | Bifacial Spacing (IS) | Optimal spacing for oats is 9.7 m. Optimal distance for potatoes is 9.7 m. | [48] |
Crop | Location | Observations | Source |
---|---|---|---|
Alfalfa | OR, USA | $2.623 per acre improvement | [49] |
Basil | Italy | −15% in market yield +2.5% financial gain | [42] |
Bok Choy | Thailand | Significant growth loss, ↑ panel efficiency | [51] |
Canola | Spain | −20% yield | [52] |
Carrots | Spain | −10% yield | [52] |
Celeriac | Germany | +12% (’18) harvest yield, 1.76 LER | [53] |
−19% (’17) + 12% (’18) harvestable yield | [17] | ||
Chiltepin Pepper | AK, USA | Production 3x greater, same water efficiency | [50] |
Clover Grass | Germany | −8% (’17) − 5% (’18) harvest yield | [53] |
Corn | Japan | +5% low density, −3% high density | [54] |
Fava Bean | Spain | No change yield | [52] |
Grapes | Korea | No growth difference, 10 delay for harvest | [55] |
India | ∼same yield, 15x economic gains | [56] | |
Jalapeño | AZ, USA | Production equal with 157% water efficiency | [50] |
Lettuce | Spain | Pattern Array: +68.8% (sp) + 87.6% (sum), Single Array: +15.3% (sp) + 16.4% (sum) | [24] |
LER:1.51 (sp), 1.57 (sum), 1.53 (fall) | [57] | ||
Melon | Spain | −17% yield | [52] |
Misai Kuciy | Malaysia | No yield change, +14.27% PV efficiency | [58] |
Onion | Spain | 6% decrease in crop yield | [52] |
Potato | Germany | −10% (’17) + 11 (’18)% harvest yield, 1.76 LER | [53] |
Spain | 23% decrease in crop yield | [52] | |
Rice | Japan | Shading limit range 27–39% | [59] |
Soybeans | NC, USA | $2.473 per acre improvement | [49] |
Spinach | Italy | −26% marketable yield, +35% financial gain | [42] |
Strawberries | NC, USA | Increase from $656/acre to $2.162/acre | [49] |
OR, USA | Increase from $149/acre to $1.884/acre | ||
Tomato | AZ, USA | 2x greater production 65% water efficiency | [50] |
OR, USA | Under Panel: −51%, Between Panel: −39% | [60] | |
Spain | 5% decrease in crop yield | [52] | |
Wheat | Germany | −19% (’17) + 3% (’18) harvest yield, 1.71 LER | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reasoner, M.; Ghosh, A. Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review. Challenges 2022, 13, 43. https://doi.org/10.3390/challe13020043
Reasoner M, Ghosh A. Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review. Challenges. 2022; 13(2):43. https://doi.org/10.3390/challe13020043
Chicago/Turabian StyleReasoner, Meagan, and Aritra Ghosh. 2022. "Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review" Challenges 13, no. 2: 43. https://doi.org/10.3390/challe13020043
APA StyleReasoner, M., & Ghosh, A. (2022). Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review. Challenges, 13(2), 43. https://doi.org/10.3390/challe13020043