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Abstract: In the context of addressing the global challenge of facilitating a decision-making process
based on methane production using a predictive model, the study seeks to evaluate the performance of
a biogas digester in varying operating conditions for optimization purposes. One of the techniques for
doing this is the application of constrained linear least-square optimization. This has been employed
to optimize the input parameter with the corresponding measured desired response. The developed
model was built from 430 measured data set points of all the predictors over an 18-day monitoring
period with an interval of 30 min. The result showed that the difference between the optimized
model and the general model output for methane production in the biogas digester was less than 4%.
Hence, the performance of the model demonstrated a strong validity as the determination coefficient
(R2) between the modeled, and optimized output was 0.968 for the volume of methane produced in
the biogas digester. The obtained determination coefficient of the developed and optimized model
suggests that the modeled value of the methane fits well with the measured value of methane for
validation. Thus, from the test dataset, the optimized and modeled methane volume was reported
as 28%. In this scenario, under the various operational parameters, an increase of 26.5% in methane
was obtained when comparing the maximum volume of methane from the optimization process
with the maximum methane volume (54.5%) produced in the real biogas digester. Interestingly, the
biogas digester produced a maximum methane yield of 0.24 m3 and a methane composition of 60%.
Evidently, methane yield was influenced by temperature as well as other meteorological factors in the
developed model hence, these factors should be widely considered for sustainable biogas production.

Keywords: methane production; mathematical model; biogas digester; optimization; determina-
tion coefficient

1. Introduction

Anaerobic digestion of organic waste is an efficient process to produce biogas with high
energy value. In recent times, this technology has attracted so much attention due to the
added advantage of minimizing greenhouse gas emissions. The produced biogas serving
as an alternative or supplement for fossil fuels products results in reduced emissions [1].
In addition, anaerobic digestion is considered an economical and effective technique due
to the use of waste as a substrate. Organic waste such as animal waste, sewage sludge,
industrial organic residue, and agricultural waste are usually employed with animal waste
topping the list. Among animal waste, cow dung is mostly used as a substrate due to its
universal abundance and availability. Not only does cow dung serve as a substrate, but it is
also used for thermal insulation and as a fertilizer for soil conditioning. In terms of biogas
production, previous studies have shown its effectiveness as a substrate. For instance, the
effectiveness of cow dung for biogas production was carried out by Mukumba et al. [2].
The study revealed that cow dung produced a biogas yield with a 50% average methane
composition. Interestingly, the study noted that the use of cow dung resulted in an early
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retention time with a high biogas yield. On a similar note, Obileke et al. [3] compared the
performance of an aboveground and underground fixed dome digester using cow dung as
substrate installed in the Eastern Cape Province. The findings showed that the optimum
methane yield was 50% and 60% for aboveground and underground digester systems
respectively. This is a further indication that the use of cow dung as substrate results in
higher methane yield. Although studies have noted that the type of organic substrate used,
plays a significant role in the composition of biogas produced. However, some other factors
which are termed operational such as temperature is of great importance thus, bringing the
need for process optimization.

Therefore, adjusting inputs to find the minimum or maximum output is referred to
as optimization. Previous studies have used optimization tools such as artificial neural
networks (ANN) and generic algorithms (GA) for poultry droppings [4], organic waste [5],
and fertilizers [6] to produce biogas. Pei et al. [7], Optimized the production of biogas
from substrates such as banana pseudo-stem fiber, a mixture of rapeseed residue and cow
dung [8], and poultry manure [9] using the response surface method (RSM). Gueguim
Kane et al. [10] study focused on the modeling and optimization of biogas production
using a mixed substrate of sawdust, cow dung, banana stalks, rice bran, and paper waste
using ANNGA couplings. In addition, Sathish and Vivekanandan [11] used both RSM
and ANN to model and optimize biogas yields. According to their study, the prediction
accuracy of ANN is superior to the prediction accuracy of RSM. ANN represents the
complex relationship between input and output data, as in the case of anaerobic digestion.
The beauty of artificial neural networks must deal with their high nonlinear relation to a
large dataset due to their intrinsic nonlinearity, adaptability, noise immunity, generalization
ability, and robustness. They are regarded as effective modeling data tools used to capture
and represent complex predictor/response relationships for the stimulation and control
of anaerobic digestion for biogas production [5]. For ANN to be successful, it needs to be
integrated into optimization techniques. This identifies the optimal operating parameters
for the biogas digester and the optimal combination of different substrates to increase biogas.
As a result, optimization of biogas production can assist biogas fermenters as they function
economically. GA, on the other hand, is a biologically inspired computational model based
on modeling genetic recombination and natural selection. It processes various variables and
processes numerically generated data, experimental data, or analytic functions. Therefore,
there is no need to optimize the information about the structure of the function and use it
as a black box [12].

On a global scale, the study addresses and contributes to planetary health (health,
places, and planet) directly or indirectly. These three areas mutually affect each other, so
that the final assessment can be made, and decision-making is taken based on the findings.
Despite this, it has been the heartbeat of researchers and energy engineers in establishing an
effective approach to optimize the input parameter with respect to the measured response.
The establishment of this approach or technique creates a platform for arriving at the
best design relative to a given set of constraints. To this end, an optimization approach
via constrained linear least squares was employed which provides a breakthrough to the
challenge. Optimum production of biogas attained using optimization via constrained
linear least square technique tends to contribute towards the improvement of quality of
life (health), reduces energy cost incurred (human being), and mitigates global greenhouse
effect as well as less carbon dioxide emission (environment). Over time, these areas have
been affected as related to the energy crisis which tends to be a global challenge. The
utilization of the employed approach enhances the prediction accuracy and reliability of
the developed model.

Having looked at the need for renewable energy, anaerobic digestion potential, pre-
vious studies on optimization of biogas production, and the significance of the study in
addressing the global challenge, the present study aimed to optimize the input parameters
corresponding to the measured desired response by the employment of the constrained
linear least-squares technique for efficient optimization purposes. This technique is a
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general MATLAB optimization tool. In so doing, finding out the difference between the op-
timized model and general model output as well as the determination coefficient between
the modeled and optimized output of the methane volume will be presented. The study
provides novelty and originality in two ways; (1) the optimization of methane production
using the constrained least square technique. (2), the use of mono-digestion of the substrate
in solid anaerobic digestion as regards the recent studies involving co-digestion [1,12–14].
Therefore, the authors would like to state that, to the best of their knowledge, no study
related to the present one has been published based on the scientific resources available.
This study is of great essence as it will help facilitate the decision-making process, thereby
providing a predictive model obtained which can be integrated into the real-life experience
by the facility operator, engineers of the biogas facility, and renewable energy at large.

2. Materials and Methods
2.1. Preparation of Substrate and Set Up of the Biogas Digester

The collected fresh cow dung used as a substrate in the study was from a dairy farm
at Fort Hare University. With the ratio of 1:1 (waste/water), the slurry was obtained by the
dilution of solid waste and water, based on Obileke et al. [15] study (See Figure 1), which is
the same as the ratio proportion reported by Zareei and Khodaei [16] study, The mixing
process was conducted manually and stirring the mixture of cow dung and water in an
open cylindrical container. The essence of mixing and stirring is to ensure homogeneity is
achieved. The substrate was characterized using the following parameter: total solids (TS),
volatile solids (VS), pH, chemical oxygen demand (COD), temperature, and calorific value
as summarized in Table 1.
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Figure 1. 3D surface plot of the dataset points and the model mesh for methane yield. [CH4 reported
in %, X and Y reported in %/◦C, and % respectively].

Table 1. Characterization of cow dung used in the study.

Total
Solid (%)

Volatile
Solids (%) pH COD (mg/L) Calorific Value

(CV) MJ·g−1
Carbon/Nitrogen

Ratio

13.80 11.04 7.83 at 30 ◦C 42,583 27.0 24
(Note: the characterization of cow dung (TS, VS and CV) was carried out on a wet basis analysis).

All these analytical determinations were carried out at the Microbiology Department,
Fort Hare University, according to the standard methods APHA 2005 [17]. The biogas
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digester was fed 200 L of slurry on the first day and then the gas valve was left open for 72 h
(3 days) from the first day of feeding. This is necessary to expel the air. Later, inoculum from
existing biogas digestion tanks was introduced into the biogas digestion tanks, increasing
the rate of biodegradation or fermentation. Then, in subsequent supplies, 50 L of the slurry
was introduced every 3 days. Cow dung occupies about 55–60% of the total fermenter,
leaving enough space for biogas to accumulate. The biogas digester chamber (2.15 m3)
was fabricated from high-density polyethylene (HDPE) material and was executed by
Ikusasa Green (Pty) Limited located at Stutterheim in Eastern Cape, South Africa. On
the other hand, the inlet and outlet chamber was built with the use of clinker bricks. The
volume of the digester was split into a 1.50 m3 operating part, 0.64 m3 gas storage, and
0.01 m3 neck volume where the gas valve is located. The internal diameter and peak of
the digester were 1400 and 1700 mm respectively. The combination choice of the material
provides novelty and innovation in terms of the design of the biogas digester which has
in no way been utilized in any study. The biogas digester was operated as a continuous
process with a liquid operating volume of 1.80 m3 and a hydraulic retention time of 18 days
under mesophilic conditions. For complete-scale experiments, the production of biogas
was recorded daily.

The gas, temperature, and pressure measurement sensor (GTPMS) and the data acqui-
sition system (DAS) were built and designed to monitor the performance and collection of
data for the biogas digester system. The GTPMS consisted of the gas sensor, pressure sensor,
air pump, hydrophobic filter, and thermocouple modules. This could monitor the methane
gas and the temperature of the slurry and gas. The precise equipment used for measuring
the methane gas was a non-dispersive infrared (NDIR) sensor whereas the temperature
was measured using a K-type thermocouple. pH measurement was done manually using
the pH digital meter throughout the 18-day monitoring period. On the other hand, the
DAS consisted of the data logger, power supply unit, circuit breaker, and converter. It
was powered by the control unit and was used to store and collect data from the GTPMS,
specifically for methane and temperature. The data collection was done over a monitoring
period of 18 days with an interval of 30 min using a CR 1000 data logger.

2.2. Consideration of Parameters Used in the Study

The selection of parameters for the development of the model (Equation (1)) was based
on factors that affect the input materials [18]. These include the following: pHr, Tg, Tb,
and Tt as the indoor parameters while Ir, RHr, and Tam are referred to as the outdoor
parameters. Both the indoor and outdoor parameter is known as predictors whereas
the desired response is the produced methane. The definitions of these parameters are
presented in Table 2 which is referred to as the set of effective parameters used in the
development model.

Table 2. Factors used and considered in the study [18].

Input Parameter Definitions

pHr pH (Relative): ratio of the absolute pH to the neutral

Ir Global irradiance (Relative): ratio of absolute global solar irradiance to the
maximum global irradiance (Imax)

RHr (%) Humidity (Relative): ratio of absolute relative humidity to the maximum
relative humidity (RHmax)

Tam (◦C) Ambient temperature: surrounding temperature in the vicinity of the
biogas digester

Tg (◦C) Gas temperature: the temperature in the vicinity of the methane produced
inside the biogas digester

Tb (◦C) Slurry temperature: the temperature at a lower level within the digester

Tt (◦C) Slurry temperature: the temperature at an upper level within the digester
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Having looked at the material and methods used in the study, Table 3 presents the
summary of the materials and equipment used in the study.

Table 3. Summary of the material and equipment used in the study.

Substrate Cow Dung

Parameter considered for the substrate Total solids/Volatile solids/Calorific
value/Chemical oxygen demand and pH

Monitoring instrument NDIR gas sensor, K-type thermocouple, pH
metre etc.

Data capturing device CR 1000 data logger

Optimization tool Constrained linear least square technique

Software used MATLAB

Type of plastic used for digester chamber High-density polyethylene (HDPE) plastic

2.3. Development of the Mathematical Model

From the data acquisition system (DAS), as explained in Section 2.1, a total of 430
measured datasets of all the predictors or input parameters were collected. The 430
measured datasets were split into two, such that 286 (67%) were used as a trained dataset for
the development of the model while 144 (33%) served as the test dataset for the validation
of the model. The model in Equation (1), was developed from a linear combination of the
product term of the affected input and the exponential combination of the desired input
using MATLAB.

Gas volume = A + B
[
(PHr + Ir + RHr)(TgTam)

Tb + Tt

2

]
+ Ce(PHr+Ir+RHr) (1)

Equation (1) can be reduced into a more simplified form as presented in Equation (2).

V = A + Bx + CY (2)

where
V = Volume of the desired response of the CH4 yield in %.
A = Forcing constant (%), referred to the lumped constant that caters to the possible

input parameter that could impact the output but is not considered in the derivation of the
mathematical equation.

x = (PHr + Ir + RHr)
(
TgTam

)( Tb+Tt
2

)
= Linear combination term for the product of

the relative input quantity (PHr, Ir, RHr), air temperature inputs quantities (Tg, Tam), and
the slurry temperature inputs quantities (Tb, Tt). Its unit is (◦C).

B = Scaling constant for x, and the unit is %/(◦C). B is equated to a positive or negative
real number known as the scaling value upon which the derivation of the mathematical
model is developed.

Y = e(PHr+Ir+RHr) = Exponential term for the summation of the relative input quanti-
ties (PHr, Ir, RHr) and has no unit.

C = Scaling constant for Y, and the unit is %. C is equated to a positive or negative
real number called the scaling value upon which derivation of the mathematical model is
developed [18].

The mathematical model (Equation (1)) contains multiple independent variables.
Therefore, the least squares and maximum likelihood methods were used to estimate the
parameters used to develop the model. Using the principle of least squares, the coefficients
of the linear regression model were determined by minimizing the sum of squares of the
difference between the approximate and observed values. On the other hand, the maximum
likelihood was used to choose those which maximized the likelihood function [18].
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2.4. Optimization and Validation of the Mathematical Model

This deals with employing a constrained linear least-squares optimization technique to
optimize the input parameters corresponding to the measured desire response using the test
dataset for the biogas digester. Furthermore, the implementation of the optimization of the
test input dataset using the objective equation, which is equal to the derived mathematical
model, aids in optimizing the set of input data values, which upon inputted into the model
equation would give the specified output value [19].

The use of the constrained linear least-squares optimization in the optimization tool
was possible because the custom non-linear model equation (See Equation (1)) for the
methane volume of the systems was reduced to multiple linear regression models with the
introduction of the lump input parameters as shown in Equation (2).

x =

[
(PHr + Ir + RHr)

(
TgTam

)Tb + Tt

2

]
and Y = e(PHr+Ir+RHr) (3)

Furthermore, the optimized lump parameters for the methane for the biogas digester
were used to produce the optimized predicted response. Therefore, to validate the model
of gas production of the system, this was conducted between the modeled response from
the test lump input dataset and the respective optimized model from the optimized input
values obtained from the final point. The results demonstrated a strong correlation between
the optimized model and the measured test response data points as opposed to the modeled
response and the measured test response data points.

3. Results and Discussions

As seen in Section 2.3, 286 datasets of predictors and responses were used in the
trained data set to build and derive the forcing and scaling constants for the development
of the model (See Equation (1)). Therefore, Table 4 shows the model equation determination
coefficient, forcing, and scaling constant of the methane production in volume.

Table 4. Methane model equation constants and determination coefficient for the underground biogas
digester.

Lump Input Parameter Constant Name Constant
Symbol

Constant
Value

Desired
Output (%)

Determination
Coefficient (R2)

Forcing constant A 42.41

CH4 vol R2 = 0.968x =
[
(PH r + Ir + RHr)(T gTam

)
Tb+Tt

2

]
Scaling constant B 0.0003999

y = e(PHr+Ir+RHr) Scaling constant C 0.8976

It was observed in Table 5, that all three constants (A, B, and C) are positive and hence
any increase in the lump input parameter (x or y) would result in a corresponding increase
in the methane volume provided the other remained unchanged. Also, any decrease in the
lump input predictors would result in a reduction in the volume of methane production.
The lump input parameter (x and y) to the desired output is shown in Figure 1, presented
in a 3D plot.

It can be depicted from Figure 1 that the plotted dataset points exhibited very good
fits with the mesh surface model plot without outliers. Hence, the determination coefficient
(R2) between the modeled methane volume and the measured methane volume production
was 0.968 (See Table 4). This suggests that the modeled value of the methane fits well
with the measured value of the methane used for the validation. Figure 1 is necessary as
it represents all possible model outputs as regards the potential combination of the set of
input values over a range of the trained data. Notably, the black solids circles in Figure 1
show the calculated methane yield in the biogas digester.
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Table 5. Samples of lump input parameters from the test dataset and modeled methane for the biogas
digester.

Forcing Constant Multiplier Lump Input x Lump Input y Modelled CH4

1 3080.440 7.084 18.935
1 2569.645 7.055 18.862
1 5164.320 7.643 19.816
1 3661.732 7.131 19.034
1 2518.530 7.070 18.875
1 439.330 6.863 18.471
1 469.135 7.372 19.155
1 268.552 6.650 18.171
1 247.250 6.545 18.031

The constrained least squares method was invoked from the optimization tool as the
solver to run the optimization. All the required boxes on the optimization tool graphical
user interface (GUI) are completed using the lump input parameters (x and y), objective
equation, and the desired response. These are associated with the test dataset and math-
ematical model equation for the biogas digester in predicting methane gas production.
Upon completion of the set parameters, the optimization tool start button was clicked to
run the optimization as shown in Figure 2.
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Figure 2. Optimization of a model predictor to optimize methane production in the biogas digester.

Figure 2 shows the GUI of the optimization with the current iterations, objective
function value, and final point displayed.

In Table 5, the modeled forcing constant multiplier, specific values for the lump
parameters x and y, and the corresponding output value for a sample of the test data set
are presented.

Table 6 shows the optimized modeled forcing constant multiplier, specific values for
the lump input parameters x and y, and the corresponding optimized output value for a
sample of the test dataset.
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Table 6. Sample of optimized lump input parameter from test data set and optimized modeled
methane for the biogas digester.

Optimized Forcing
Constant Multiplier

Optimized Lump
Input x

Optimized Lump
Input y Optimized CH4

1.005 3080.440 7.084 18.933
0.990 2569.645 7.052 18.860
1.221 5164.320 7.675 19.860
1.285 3661.732 7.173 19.090
0.860 2518.530 7.047 18.850
0.960 439.330 6.860 18.463
1.060 469.135 7.380 19.167
0.790 268.552 6.620 18.130
0.795 247.245 6.515 17.991

It can be observed from Tables 5 and 6 that there was no change in the values of the
sample’s lump input parameters and the optimized lump input parameters. Also, the
optimized forcing constant for the samples test dataset was close to unity. The difference
between the optimized model and the general model output as provided in Tables 5 and 6,
was less than 4%, which is similar to that of Zareel and Khodaei’s [16] study that reported
5% while Iweka et al. [1] obtained 0.2%. Figure 3 shows the 400 observations of the
correlation performance behavior of the optimized and modeled methane yield from the
developed model.

Challenges 2022, 13, x FOR PEER REVIEW 9 of 11 
 

 
Figure 3. Modelled and optimized methane volume for the biogas digester. 

In Figure 3, the modeled output and optimized output based on sample observations 
from the test dataset were presented, thereby obtaining a maximum volume of 28% for 
methane. Comparing this with the total yield of 54.5% of the methane produced in the real 
biogas digester (Refer to Obileke et al. [3]), implies that the biogas digester is controlled 
by the operational parameters (temperature, pH, RH, and Ir) to an optimal level, which 
leads to increase of methane products by 26.5% by digesting the cow dung. Thus, the op-
timal value of the operational parameter includes temperature (35 °C), pH (7.00), RH 
(100%), and Ir (1340 W/m2). 

As a result of the model, a strong validity was demonstrated as the determination 
coefficient between the developed model and the optimized output over the sample ob-
servation was 0.968. The very good determination coefficient reported on the rate of me-
thane production means that the model could explain 96% of response variability thereby 
confirming how well the modeled methane fits with the measured methane. Hence, show-
ing the validity of the established model. The determination coefficient reported differs 
from Iweka et al. [1] study, where the determination coefficient in their study was 0.996. 
On the other hand, the determination coefficient reported by Zareei and Khodaei [16] was 
0.92 using 11 predictors. This affirms the reliability of the result in these studies. The result 
of Iweka et al. [1] is the same as that of Saghouri et al. [12] of 0.99 determination coeffi-
cients using 20 available datasets. However, the lines of best fit from Saghouri et al. [12], 
showed a strong positive correlation to the scatter plot data of the modeled and optimized 
values of methane gas production. It is interesting to know that the differences between 
the present study with other studies reported lie in the number of datasets and the type 
of digestion (mono or co-digestion) used for biogas production. Further on the regression, 
the obtained determination coefficient (R2) was of accepted ranges and hence, over 90% of 
the prediction could guarantee with 95% confidence level. Despite this, the p-value of the 
calculated and modeled methane yield was above 80% and demonstrated no significant 
difference. Interestingly from the regression, which reveals the strong correlation between 
the optimized and measured test dataset (Figure 3), it is established that the root means 
square bias error of the optimized and modeled methane was smaller than the minimum 
optimized methane yield from the measured test data set. On the other hand, during the 
performance monitoring of the biogas digester, a maximum methane yield and composi-
tion of 0.24 m3 and 60% respectively was generated (Refer to Obileke et al. [3]). 

 

Figure 3. Modelled and optimized methane volume for the biogas digester.

In Figure 3, the modeled output and optimized output based on sample observations
from the test dataset were presented, thereby obtaining a maximum volume of 28% for
methane. Comparing this with the total yield of 54.5% of the methane produced in the real
biogas digester (Refer to Obileke et al. [3]), implies that the biogas digester is controlled by
the operational parameters (temperature, pH, RH, and Ir) to an optimal level, which leads
to increase of methane products by 26.5% by digesting the cow dung. Thus, the optimal
value of the operational parameter includes temperature (35 ◦C), pH (7.00), RH (100%), and
Ir (1340 W/m2).

As a result of the model, a strong validity was demonstrated as the determination
coefficient between the developed model and the optimized output over the sample obser-
vation was 0.968. The very good determination coefficient reported on the rate of methane
production means that the model could explain 96% of response variability thereby con-
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firming how well the modeled methane fits with the measured methane. Hence, showing
the validity of the established model. The determination coefficient reported differs from
Iweka et al. [1] study, where the determination coefficient in their study was 0.996. On the
other hand, the determination coefficient reported by Zareei and Khodaei [16] was 0.92
using 11 predictors. This affirms the reliability of the result in these studies. The result of
Iweka et al. [1] is the same as that of Saghouri et al. [12] of 0.99 determination coefficients
using 20 available datasets. However, the lines of best fit from Saghouri et al. [12], showed
a strong positive correlation to the scatter plot data of the modeled and optimized values
of methane gas production. It is interesting to know that the differences between the
present study with other studies reported lie in the number of datasets and the type of
digestion (mono or co-digestion) used for biogas production. Further on the regression,
the obtained determination coefficient (R2) was of accepted ranges and hence, over 90% of
the prediction could guarantee with 95% confidence level. Despite this, the p-value of the
calculated and modeled methane yield was above 80% and demonstrated no significant
difference. Interestingly from the regression, which reveals the strong correlation between
the optimized and measured test dataset (Figure 3), it is established that the root means
square bias error of the optimized and modeled methane was smaller than the minimum
optimized methane yield from the measured test data set. On the other hand, during the
performance monitoring of the biogas digester, a maximum methane yield and composition
of 0.24 m3 and 60% respectively was generated (Refer to Obileke et al. [3]).

Application: Focusing on the wider application of the study, the nonlinear regression
model provides a multi-purpose benefit as it could be used for the in-depth performance
prediction of a system and universal model equation. This model predicts the performance
of methane production of the same biogas digester volume but in different locations.
Therefore, a different biogas digester design requires generating its forcing and scaling
constant. Hence, provided others parameter used in the model remains constant. In a
different development, looking at the biogas and gas application regarding models with a
focus on actual work or system, Cheng et al. [20], developed a comprehensive consultation
model for explosion risk (CCMER). The model is applicable in designing and minimizing
possible fire and hazard explosions. Further to this, the application of CCMER predicts the
explosion risk changing and track the gases because of underground mine gas explosion.
The result from the model is used as a control measure for a sealed atmosphere rationally
and economically. In the case of the model employed in our study, the CCMER provides
versatile, reliable, and accurate results, especially in ventilation management. Referring
to the maximum operation of the biogas digester in the study, similarly, Cheng et al. [21]
develop a sealing material with excellent performance to ensure a long-term high efficiency
of the operation of the gas drainage borehole. Based on the regression approach, great
thermal stability, fluidity, and thixotropy were characterized as the new inorganic retarding
sealing material for gas drainage boreholes.

4. Conclusions and Recommendations

The study successfully optimized the input parameters which correspond to the
measured response by the application of the constrained least square method. Globally, as
it relates to science, engineering, and planetary health, this is relevant. Focusing on science
and engineering, it provides an idea for best design activities among various factors and
parameters whereas in planetary health, improving quality of livelihood, cost of energy,
and mitigation of global greenhouse effect and less carbon dioxide emission are taken
into consideration. The development of the model involves the linear combination of the
product term of the input and the exponential combination of the desired input. The benefit
of the optimization technique used in the study enhances the prediction accuracy and
reliability of the model developed. Hence, it guaranteed the predictor values that provided
the required model constraint. Based on the reported determination coefficient of the
developed and optimized model, the study revealed that the modeled methane value fits
well with the measured methane value used for the validation. Notable, the integration of
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the customized non-linear model with constrained linear least square resulted in identifying
the optimal operational digester parameter resulting in a 26.5% increase in methane volume.
Therefore, the study shows that non-linear and constrained linear least squares are useful
tools for modeling and optimizing methane production respectively from biogas digesters
under various conditions. Conclusively, it can be stated that the performance of the model
demonstrated a strong validity regarding the modeled and optimized output of the volume
of methane in the biogas digester. Considering the application of the study based on the
actual work system, further study is recommended and ongoing, focusing on the weak and
feasibility of the model. This might include using different volumes of biogas digester to
experiment in predicting the performance.
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