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Abstract: Antibiotic resistance is a pressing global, one health and planetary health challenge. Links
between climate change, antibiotic use, and the emergence of antibiotic resistance have been well
documented, but less attention has been given to the impact(s) of earth systems on specific bacterial
livestock diseases at a more granular level. Understanding the precise impacts of climate change on
livestock health—and in turn the use of antibiotics to address that ill-health—is important in providing
an evidence base from which to tackle such impacts and to develop practical, implementable, and
locally acceptable solutions within and beyond current antibiotic stewardship programs. In this
paper, we set out the case for better integration of earth scientists and their specific disciplinary
skill set (specifically, problem-solving with incomplete/fragmentary data; the ability to work across
four dimensions and at the interface between the present and deep/geological time) into planetary
health research. Then, using a case study from our own research, we discuss a methodology that
makes use of risk mapping, a common methodology in earth science but less frequently used in
health science, to map disease risk against changing climatic conditions at a granular level. The
aim of this exercise is to argue that, by enabling livestock farmers, veterinarians, and animal health
observatories to better predict future disease risk and risk impacts based on predicted future climate
conditions, earth science can help to provide an evidence base from which to influence policy and
develop mitigations. Our example—of climate conditions’ impact on livestock health in Karnataka,
India—clearly evidences the benefit of integrating earth scientists into planetary health research.

Keywords: climate change; antimicrobial resistance; earth science; risk mapping; transdisciplinarity

1. Introduction

In this paper we highlight the need for more flexible and iterative research agendas
to address the climate-change-related root drivers of antimicrobial resistance (AMR). The
recent addition of the United Nations Environment Program (UNEP) to the Quadripartite
Joint Secretariat on Antimicrobial Resistance between WOAH, FOA, WHO, and now UNEP,
is welcomed [1], but we argue that there needs to be further bridging between the work of
this group and the United Nations Framework Convention on Climate Change (UNFCCC).
Climate change and disease risks, including AMR, are two of the most pressing challenges
of the Anthropocene and cannot be considered in isolation [2]. Planetary health is already
deeply invested in identifying the complex links between climate change and zoonotic
disease [3], to raising awareness of the intersection of Anthropocene risks in general [4–6],
and argues for addressing global and intergenerational risks from AMR through a lens of
planetary health ethics [7]. Other fields have also made such links explicit [8–10]. There
is growing interest in the risks posed to human and animal health by antibiotic resistant
bacteria such as Escherichia coli, Staphylococcus aureus, Pseudomonas, Acinetobacters and
Enterobacteriaceae in the environment [11–13]. However, fewer commentators focus on
specific ways in which earth scientists, environmental scientists and infectious disease
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researchers can work together to evidence the exact conditions that drive emergence and
transmission so that this knowledge can more readily inform both climate change and
AMR policy and identify implementable solutions.

Thus far, for example, neither Challenges nor The Lancet Planetary Health, the planetary
health field’s two most prominent journals, have published a single original research paper
evidencing links between antibiotic resistance and climate change explicitly. Only two short
commentary papers [14,15], the latter of which is by one of the authors of this paper, touch
on the specifics of the issue.

Earth scientists’ work has deeply influenced the field of planetary health—not least
the work of those involved in determining the earth systems trends of the Great Accelera-
tion [16] and the planetary boundaries of a safe and just operating space for humanity [17]
but it is less common to see earth scientists and health scientists working side-by-side on
AMR within a single project team.

We present a case study based on our own research [18,19] which we believe shows the
value in allowing space for transdisciplinary research that more holistically and iteratively
integrates earth scientists’ discipline-specific skills into planetary health’s conceptual frame-
work. These skills include problem-solving with incomplete/fragmentary data [20–22],
the ability to think across four dimensions [23] and at the interface between the present
and deep/geological time [24]. This, we argue, enables the development of more com-
pelling evidence on changing climate conditions’ direct harms to the prevalence and spread
of animal bacterial disease, the use of antibiotics to treat it, and thus the emergence of
antibiotic resistance.

2. Transdisciplinary Research: Iterative, Agile and Adaptive

In the process of conducting research into the drivers of antibiotic use and poor an-
tibiotic stewardship in the Indian livestock sector as part of a cross-disciplinary team
comprising microbiologists, veterinarians, anthropologists and economists [15,25,26], we
listened to farmers and veterinarians in regions of India as far apart as Karnataka in the
south and Assam in North-East India, who spoke, openly and implicitly during ethno-
graphic observations of the pressures that climate change places on their livelihoods. The
changing climate has already pushed these farmers from crop farming to livestock raising
and now stresses the health of their animals [15]. These observations pushed us to consider
a closer examination of the environmental drivers of ill-health in order to understand the
root causes of antibiotic use intended to treat that ill-health; to consider not only which
bacteria were present in the environment but why and how they are there. Whilst a focus
on climate change was technically outside of the original remit of our funding and of the
project intentions, COVID-19 travel restrictions pushed us into desk-based research using
secondary data, and then enabled the replacement of ethnographic researchers, who left
the project when they were unable to undertake further fieldwork, with earth scientists
who were able to explore climate impacts more deeply.

3. The Value of More Granular Integration of Earth Science with Planetary Health

Understanding the impact of climate change on human and livestock health is critical
to safeguarding global food supplies and economies and to plan global recovery from the
COVID-19 pandemic [2] as well as in maintaining the efficacy of antibiotics. This raises a
unique challenge for planetary and one health researchers and practitioners, as they will
need to explore new (and perhaps even yet-to-be-developed) methodologies, knowledge,
skills and networks in order to enhance environmental awareness. At least in the short
term, such researchers are likely to be working with incomplete and fragmented data, as
the regions of the world most affected by climate change are also those where surveillance
is less robust [19]. Earth scientists, however, are more than familiar with the challenges of
such data [20,22]. Furthermore, AMR and other wicked problems of the Anthropocene are
not only made visible by the earth system trends of the Great Acceleration graphs [16] but
are likely to need additional international policies and treaties to address them, which will
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need to be underpinned by robust evidence from outside of health science. It is often the
impact on health—rather than the environment per se—that attracts political interest and
helps treaties to be ratified. The Stockholm Convention on Persistent Organic Pollutants
(POPs) [27] and the Montreal Protocol that protects the ozone layer [28], both limit the
use of chemicals detrimental to the environment, but in each case the impact on (human)
health was a key driver for their adoption and implementation. Future policies and treaties
may be even more successful if they foreground the risks to health, evidenced by the
well-understood risks imposed by earth system changes. Such international treaties should
be considered key planetary health documents but are less familiar to health systems
researchers than to earth scientists. Human health is a strong lever for international
agreement [29]: working together, earth scientists and health scientists can speak with a
collective voice that will be harder for policymakers to ignore.

Recognizing that the root drivers of antibiotic use lie outside the (traditional) power of
health systems to address takes an important first step. For example, while microbiologists
are able to quantify the levels of bacteria in the environment and their susceptibility (or
not) to antibiotics [30] and genomics can map which genes they carry, how closely they
are related to other strains and where else those strains are found [31], those same micro-
biologists will need to reach out to earth scientists to understand, map and predict the
meteorological conditions that are most conducive to disease emergence and spread; and
to soil and water chemists to understand which pollutants may help to drive antibiotic
resistance [32]. The ground set by these collaborative relationships will be even more
critical in the later stages of such work: after the mapping processes and meteorological
relationships have been founded, the expertise of the microbiologists and veterinarians
will be needed to divulge the true impact of the spatial–temporal mapping by carrying out
disease surveillance and diagnosis that proves the model as the predicted climatic condi-
tions unfold and disease incidence does (or does not) increase. Experts from both fields
will then need to communicate the results of their observations to relevant stakeholders,
including commercial farms, governmental bodies, local research institutes, etc., for true
transdisciplinarity to be realized [33].

4. Mapping the Spatial Distribution of the Conditions That Drive Ill-Health

Earth scientists may in turn need to work with modelling specialists to build and
automate the production of climate-related risk maps [19]. The input of veterinarians and
farmers will be needed to ensure such models are utilized as widely as possible. Animal
health observatories will need to share epidemiological data from regions at risk (including
where and when the prevalence of cases and outbreaks changes) while earth science brings
to the table different ways of interpreting risk and of working with fragmentary and
incomplete data [21,24] over longer timescales, into both the deep past and longer-term
future [34]. Geographers are needed too, to map the topography and topology of regions
in which those cases occur, and to consider how farmer’s livelihoods, access to veterinary
services and patterns of sector transformation are intersecting with climate changes and
local development agendas; for example, whilst environmentally-controlled chicken sheds
might on the surface appear to be a sufficient mitigation to the risks of heat-stress-induced
dysbiosis and thus reduced immune response that drives higher use of antibiotics in
Indian poultry farms, the current failings of rural energy infrastructure prevent this being
a practical solution [15]. Looking instead for regions which at present may be cooler
than the ideal conditions for livestock rearing, but which may be warming and likely to
reach such thresholds in future, so that expansion into such regions can be planned, or
which currently favor poultry rearing but are becoming more suited to aquaculture, are
alternative options. Such integrated methodologies can also work in other fields, e.g., at the
intersection of the spatial distribution of cases of human disease with distributions of social
deprivation [35], location of healthcare infrastructure [36] and access to blue and green
space [37]. There is growing interest in human health fields in ensuring the integration of air
quality and health [38], soil pollution and health [39] etc., on increasingly granular spatial
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scales. The UK’s National Health Service [40] is a world-leader in setting a Green Agenda
for Health [41], aiming towards net-zero carbon operations by 2040. This approach has been
as dependent on earth science as it has on approaches that have come from inside health
systems and medical science. Figure 1 demonstrates the sizable, shared space between
health and climate science, seen through the skillset of an earth scientist, as well as the way
in which this overlap is manifest across different stakeholders and geographical scales.
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refer to the UN Sustainable Development Goal most relevant to the sector/geographic scale indicated.

Practitioners of one health (defined by the One Health Commission [42] as “an in-
tegrated, unifying approach that aims to sustainably balance and optimize the health of
people, animals and ecosystems [that] recognizes the health of humans, domestic and
wild animals, plants, and the wider environment, including ecosystems that are closely
linked and interdependent”) are quick to point out that animal health and human health
cannot and should not be considered independently [43]. There is also benefit from greater
integration of citizen science, another approach earth science has long embraced [44].

5. Scaling from the Microbiome to Exposome

To understand what is making animals ill, a systematic and systemwide approach is
needed to the holistic environment and the conditions within it that create disease ‘situa-
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tions’ (where conditions such as overcrowding and poor welfare stress animals’ immune
responses and causes otherwise commensal bacteria to become pathogenic [45]), so that the
‘exposome’, the ecosystem of external risk exposures can be mapped [46]. How these risk
exposures combine (with or without antibiotic exposure) to influence, support or challenge
equally complex animal and human microbiomes under different climatic conditions is
still poorly understood, despite the considerable work of the decade-long Human Micro-
biome Project [47]. Tellingly, this has included neither earth science nor a consideration of
how climate drivers such as recent and rapid increases in the magnitude and severity of
geohazards (e.g., heatwaves and monsoon rainfall) may impact microbiomes.

Because of the complexity that is now developing, systems thinkers [48] and modellers
need to be able to combine multiple insights to model not only the risks that have already
been identified and predict where they may increase (or decrease) in future, but also how
the system-of-systems those risks inhabit are configured. Even then, ethnographers and
economists will need to work with communities to determine what can be done to mitigate
the predicted risks in a manner that is practical, acceptable and affordable; changing
people’s behavior towards making more rational choices regarding the use of antibiotics,
let alone for the overall health of themselves or the planet, is far from being a trivial
exercise [49].

6. A New Methodology for Mapping the Climate/Disease Risk Interface

Having set the scene for why closer integration of earth scientists into planetary health
research teams has scientific value, our recent work in southern India [19] offers a first
step towards the future integration of researchers from interrelated and overlapping fields.
Our work emerged from two Newton-Bhabha Fund projects that aimed to address drivers
of antimicrobial resistance (AMR) in India [30,31,50,51] and to understand the behavioral
drivers influencing the use of antibiotics by farmers [15,26] and vets [25].

Farmers’ insights and lived experiences [15,25,26], observed during a rapid ethno-
graphic assessment of livestock systems and recorded in semi-structured interviews, focus
groups and transect walks through peri-urban farming communities, led us to consider the
role of climate change on animal ill-health as a trigger for antibiotic use. This in turn led
us to develop a risk classification tool that assesses how disease risk varies in Karnataka
in the present and in possible future scenarios. Despite a relatively limited epidemiolog-
ical dataset (from the NADRES-v2 database [52]), clear relationships between bacterial
disease and high-risk zones were defined using time-series data over a period of 33 years
(1987–2020). By constructing risk maps, which are common across geoscientific (e.g., for
volcanic hazard and flood risk) and epidemiological research, we used a physics-based
statistical approach to define risk thresholds based on the inferred relationships between
climate and disease data. The maps were constructed using open-source climate data
(Climate Research Unit (CRU) TS 4.5 dataset). Thresholds for risk were defined by using
the inferred relationships between the climate data and disease data after statistically in-
vestigating the spatio-temporal relations between the two, first with correlative statistical
analysis (Spearman’s rank) followed by principal component analysis (PCA). Through
this methodology (which is described in more detail in the full scientific research paper
version [19]) it is possible to interpret the individual climate variable contribution to risk in
each grid box, providing insight into the varying climatic controls for higher and lower
risk across the areas. Although there are far more socio-economic factors that also play
a role in predicting disease outbreak risk (farm locations, population density, sanitation
standards, food standards, veterinary access, vaccination campaigns etc.), these are typi-
cally more granular controls whilst climate-associated risk is useful for a ‘bigger picture’
perspective—identifying complete regions of higher and lower risk, which can then be
investigated in more detail using the aforementioned socio-economic factors.

Outputs from this modelling work are captured in Figure 2, where each case study has
the raw data presented in time-series graphs, followed by the statistical correlative results,
then finally the risk maps themselves. While our research in India was primarily interested
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in drivers of AMR, and thus bacterial diseases, this methodology can be replicated to
investigate other diseases and other regions, or even climatic conditions that impact crop
yields, if the climate and epidemiological/harvesting data cover similar time periods.
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Our transdisciplinary approach led us to identify that hitherto unconsidered changes
in the key climate variables of precipitation and vapor pressure (i.e., humidity) are the
most important factor governing outbreaks of hemorrhagic septicemia (HS), anthrax (AX),
and black quarter (BQ) in livestock across the Indian state of Karnataka. Unaddressed,
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such outbreaks risk economic damage to the farming community, food security and, in
turn, poorer livelihoods for those dependent on both the farming economy and the food
it produces but addressing them needs more granular data on precisely which climate
conditions are likely to impact which specific diseases, in which species, in which regions
and over what timescales, ensuring that those informed by the data will have sufficient
time to act.

We intend to continue working with this methodology, improving the robustness of
the risk maps by defining more quantitative thresholds upon which disease outbreaks may
relate to specific climate variable change, i.e., at what average rainfall, at what average
temperatures, and at what average vapor pressure does risk increase. We will need to work
across more disciplines, for example with computational modellers, livestock and human
disease experts, ethnographers and local data collectors, to achieve these aims. We hope to
provide a new platform through which planetary health researchers and earth scientists
can come together in new transdisciplinary spaces. To achieve this, we seek more robust,
long-term disease data across a variety of global case studies (currently Nepal, Egypt,
Kenya, South America), preferably with diverse meteorological conditions to provide the
best range of test scenarios—data that other planetary health researchers may hold or be
encouraged to gather.

7. Towards Climate Models for Social Justice

Beyond animal health, once earth scientists’ skill sets are embedded into research inves-
tigating the underlying drivers of bacterial disease, antibiotic use and thus the emergence
of resistance to antibiotics, they can be cascaded out to human health research more widely.
Increasing unpredictability and magnitudes of annual hydrological budgets (inflows, out-
flows and storage of water), greater temperature and wet-bulb humidity extremes, as well
as the effects of this on the environmental realm (such as exacerbating the magnitude
of air and water pollution) increases the risks associated with human health conditions
such as obesity, diabetes and hypertension, which in turn increases susceptibility to more
severe symptoms of respiratory diseases, including COVID-19 [53], particularly during
heatwaves [54]. On 7 October 2022, a joint report published by the Office for National
Statistics and UK Health Security Agency indicated there had been 3000 more deaths
in England and Wales than would usually be expected during the year’s unusually hot
summer [55].

The impact of climate factors is known to intersect strongly with socioeconomic
deprivation [56]: evidencing this impact may help to drive policy to tackle underlying
socioeconomic drivers at source and thus help to deliver justice to the most vulnerable
pockets of society, speaking to planetary health’s strong ethical focus on championing equity
and social justice [57]. Short of relocating agricultural operations to regions of the world less
impacted by climate stress, and human populations to regions where their livelihoods will
be made less precarious by climate change, developing a methodology for identifying, at
very precise granular resolutions, where the areas of highest risk are found—today and in
the short- to mid-term future—so that limited resources for intervention can be prioritized
to where they are needed most acutely provides a practical mid-term intervention strategy.

Thus, only by taking a system-of-systems approach to health, working simultaneously
across all the societal systems and earth systems implicated in the Great Acceleration [16],
will we be able to address the real underlying drivers that place pressure on those systems.
For all planetary health’s lauding of the conceptual framework of the Great Acceleration
and planetary boundaries [16,17], truly integrated, evidence-producing projects between
earth scientists, health systems scientists and social scientists remain scarce. This is in
spite of strong evidence that earth systems change profoundly challenges human, animal
and plant health directly e.g., through ill-health caused by heat-stress [58,59] and crop
failure [60,61], and indirectly, e.g., through increased incidence of biological disease caused
by pathogens that proliferate more in warmer conditions [62]; or food shortages [63] that
cause malnutrition and reduce the immune response. In short, we argue that research
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on the drivers of antibiotic resistance can no longer afford not to embrace earth scientists,
wider environmental considerations, and earth systems science more fully.

Health researchers need to go further than just referring to the current climate science
literature by meaningfully integrating earth systems scientists into their ongoing research
across the entire lifecycle of a research project, from problem conception/definition to co-
development of data collection and analysis methods, to the dissemination of data/information
to relevant stakeholders. This in turn leads on to other considerations: once engaged, earth
scientists might look to develop enhanced process understanding of, e.g., the monsoon;
health scientists might want to determine under what specific climate conditions disease
transmission or severity of cases increases, and if the relationship is linear, logarithmic
or if it reaches a tipping point aligned to regime change [64]. Local communities will be
able to use the evidence earth scientists provide to invest in or implement new ways to
de-risk their livestock falling ill and thus safeguard their future livelihoods; government
stakeholders will be able to use the same data to protect their population and economies.
True earth/health collaboration would satisfy all of these stakeholder needs and would
involve an equitable and fair balance of resources and time, which goes far beyond just
having a token health scientist on a largely earth science program or vice versa.

8. Conclusions

The evidence produced by the work of the earth scientists in our research project [18,19],
evidenced important links between not only climate change in general, but specific as-
pects of climate change—namely between average and maximum surface temperature,
precipitation and vapor pressure, and several livestock bacterial diseases including, but
unlikely to be limited to, hemorrhagic septicemia, anthrax, and black quarter. We identified
that the north-western coast of Karnataka is at highest risk for outbreaks of these diseases
under future climate change prediction models, while the central-eastern and south-eastern
regions are at low-risk (for full results, see [19]). The results show that the risk profile of
each region is likely to be stable over the next five decades even if temperature increases
further, but this may not be true for other regions of the world.

This highlights not only the value of earth science to the immediate challenge at hand,
but also the benefit of enabling research projects to break out of their original silos when
there is clear value in doing so. The recent addition of UNEP to the (now) Quadripartite
Secretariat on AMR will hopefully act as a rallying call to other human, animal, and
planetary health researchers to take an even wider, even more transdisciplinary approach
to AMR (and to other health challenges of the Anthropocene) and to other earth and
environmental scientists to consider how they too might bring their skills to the table.

There are already frameworks into which these more complex collaborations can fit.
For example, the UNICEF-led Integrated Outbreak Analytics program [18,65] acts as not
only a platform for researchers from diverse fields working with disease outbreak data but
also as a network through which collaborative researchers can connect, disseminate their
work, share methodologies, and seek out future collaborators. We urge more planetary
health researchers to connect and collaborate with them.

Successful transdisciplinary research projects such as the one we have described in this
paper have the potential to tackle larger, international and complex issues that affect global
communities and speak directly to planetary health’s willingness to face up to even the most
complex and challenging ‘wicked problems’ of the Anthropocene [66,67]. The evidence
our research provides, of granular links between specific diseases and specific climate
conditions, highlights the need for greater synergies between earth scientists, climate
change science, planetary and one health research and policy formation. In the short-term,
we argue this puts forward a(n even) strong(er) case for greater alignment between the
Quadripartite Agreement (between WOAH, FOA, WHO, and UNEP) on antimicrobial
resistance and the United Nations Framework Convention on Climate Change (UNFCCC),
as these two pressing challenges of the Anthropocene cannot be considered in isolation.
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