The Burden of Yellow Fever on Migrating Humans through The Darién Gap, Adjacent Communities, and Primates’ Biodiversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context and Initial Conditions
2.2. Equations
2.3. Parameters
Variables | Biological Meaning | Initial Value | Unit |
---|---|---|---|
S | Susceptible individuals | Variable | Individuals |
E | Exposed or latent individuals | Variable | Individuals |
I | Infected (or infective) individuals | Variable | Individuals |
R | Recovered individuals | Variable | Individuals |
Parameters | Biological meaning | Daily rates | Source |
a | Average biting rate | 0.33 day−1 | [22] |
b1 | Fraction of infective bites from vector to human | 0.25 | [23] |
b2 | Fraction of infective bites from vector to monkey | 0.4 | [23] |
c | Susceptibility of Haemagogus mosquito to the virus | 0.4 | [23] |
Natural mortality rate of humans | 3.77 × 10−05 day−1 | [24] | |
Natural mortality rate of monkeys | 0.00016 day−1 | [23] | |
Natural mortality rate of Haemagogus mosquitoes | 0.0153 day−1 | [25] | |
Human recovery rate | 0.1428 day−1 | [26] | |
Recovery rate in monkeys | 0.1 day−1 | [23] | |
Latency rate in humans | 0.167 day−1 | [26] | |
Latency rate in monkeys | 0.167 day−1 | [23] | |
Latency rate in mosquitoes | 0.111 day−1 | [26] | |
Disease-induced mortality rate in humans | 8.0 × 10−4 day−1 | [22] | |
Disease-induced mortality rate in monkeys (average) | 0.0083 day−1 | [23] | |
Migration rate or entry rate | 0.49 day−1 | [20] | |
Pace: time taken to cross the forest | 2 to 10 | Variable |
2.4. Systems Coupling
Assumptions
- Our models involve parameters that are challenging to measure precisely, such as the YF immunization prevalence among migrants. For example, assuming that all migrants are naive helps to simplify the approach, making the model more practical. All of the assumptions listed below help focus on specific questions and can be incorporated into new versions of the model when they align with the objectives. However, since they do not directly contribute to our primary goal, we have chosen to establish them as follows: all three population densities are assumed to be homogeneous with constant spatial distributions;
- There is no vaccination nor another control measure in the model;
- There is no seasonality in the dynamics of the disease;
- Vectors and monkeys do not migrate.
2.5. Sensitivity Analysis
3. Results
3.1. Sensitivity Analysis
3.2. Burden on Migrants in the Darién Forest and Panamanian Communities throughout the Time of Exposure
3.3. Burden on Primates’ Community in the Darién Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altizer, S.; Ostfeld, R.S.; Johnson, P.T.J.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Wang, X.; Xu, T.; Zhou, G.; Wang, Y.; Lee, M.-C.; Hartsel, J.A.; Cui, L.; Zheng, B.; Yan, G. Effects of Microclimate Condition Changes Due to Land Use and Land Cover Changes on the Survivorship of Malaria Vectors in China-Myanmar Border Region. PLoS ONE 2016, 11, e0155301. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Guzman, H.; Li, L.; Ellis, B.; Tesh, R.B.; Barrett, A.D.T. Phylogeographic reconstruction of African yellow fever virus isolates indicates recent simultaneous dispersal into East and West Africa. PLoS Negl Trop Dis. 2013, 7, e1910. [Google Scholar] [CrossRef] [PubMed]
- Alencar, J.; Mello, C.F.D.; Morone, F.; Albuquerque, H.G.; Serra-Freire, N.M.; Gleiser, R.M.; Silva, S.O.F.; Guimarães, A.É. Distribution Of Haemagogus And Sabethes Species In Relation To Forest Cover And Climatic Factors In The Chapada Dos Guimarâes National Park, State Of Mato Grosso, Brazil. J. Am. Mosq. Control Assoc. 2018, 34, 85–92. [Google Scholar] [CrossRef] [PubMed]
- IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. (Eds.) 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 8 December 2023).
- Médecins Sans Frontières. International Activity Report 2021. Available online: https://www.msf.org/sites/default/files/2022-07/msf_iar_2021_web_version.pdf (accessed on 26 January 2023).
- Epidemiological Alert: Yellow Fever—31 August 2022—Pan American Health Organization. Available online: https://www.paho.org/en/documents/epidemiological-alert-yellow-fever-31-august-2022 (accessed on 31 January 2023).
- Tabachnick, W.J. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu. Rev. Virol. 2016, 3, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Gaythorpe, K.A.M.; Hamlet, A.; Cibrelus, L.; Garske, T.; Ferguson, N.M. The effect of climate change on yellow fever disease burden in Africa. Elife 2020, 9, e55619. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization. Yellow fever Pan American Health Organization. 2021. Available online: https://www.paho.org/en/topics/yellow-fever (accessed on 21 July 2022).
- Yellow Fever in the Region of the Americas: Vaccine Reserve Stockpile Management—26 May 2022. Pan American Health Organization. Available online: https://www.paho.org/en/documents/yellow-fever-region-americas-vaccine-reserve-stockpile-management-26-may-2022 (accessed on 26 January 2023).
- Johnson, B.W.; Chambers, T.V.; Crabtree, M.B.; Filippis, A.M.B.; Vilarinhos, P.T.R.; Resende, M.C.; Macoris, M.D.L.G.; Miller, B.R. Vector competence of Brazilian Aedes aegypti and Ae. albopictus for a Brazilian yellow fever virus isolate. Trans. R Soc. Trop. Med. Hyg. 2002, 96, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Shearer, F.M.; Longbottom, J.; Browne, A.J.; Pigott, D.M.; Brady, O.J.; Kraemer, M.U.G.; Marinho, F.; Yactayo, S.; de Araújo, V.E.; da Nóbrega, A.A.; et al. Existing and potential infection risk zones of yellow fever worldwide: A modelling analysis. Lancet Glob. Heal. 2018, 6, e270–e278. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. Darien National Park—UNESCO World Heritage Centre. World Heritage Convention. 2022. Available online: https://whc.unesco.org/en/list/159/ (accessed on 26 January 2023).
- Galindo, P.; Srihongse, S. Evidence of recent jungle Yellow-Fever activity in Eastern Panama. Bull World Health Organ. 1967, 36, 151–161. [Google Scholar] [PubMed]
- The New York Times. Perilous, Roadless Jungle Becomes a Path of Desperate Hope. 2022. Available online: https://www.nytimes.com/2021/10/02/world/americas/haitian-migrants-mexican-border.html (accessed on 31 January 2023).
- Council on Foreign Relations. Council on Foreign Relations. Crossing the Darien Gap: Migrants Risk Death on the Journey to the US. 2022. Available online: https://www.cfr.org/article/crossing-darien-gap-migrants-risk-death-journey-us (accessed on 30 January 2023).
- Mixed Migration Centre. Quarterly Mixed Migration Update Latin America and the Caribbean, Q1, 2022. Quarterly Mixed Migration Update. Available online: https://mixedmigration.org/resource/quarterly-mixed-migration-update-lac-q3-2022/ (accessed on 26 January 2023).
- United Nations High Commissioner for Refugees. UNHCR—Number of Venezuelans Crossing the Darien Gap Soars. 2022. Available online: https://www.unhcr.org/news/press/2022/3/6243298f4/number-venezuelans-crossing-darien-gap-soars.html (accessed on 1 February 2023).
- United Nations Children’s Fund (UNICEF). Record Number of Children Crossing the Darien Gap toward the US this Year. 2021. Available online: https://www.unicef.org/press-releases/record-number-children-crossing-darien-gap-toward-us-year (accessed on 26 January 2023).
- United Nations International Children’s Emergency Fund (UNICEF). Panamá CO: Situation Report No 2. 2022. Available online: https://reliefweb.int/report/panama/panama-co-situation-report-no-2-31-august-2022 (accessed on 1 February 2023).
- Massad, E.; Amaku, M.; Coutinho, F.A.B.; Struchiner, C.J.; Lopez, L.F.; Wilder-Smith, A.; Burattini, M.N. Estimating the size of Aedes aegypti populations from dengue incidence data: Implications for the risk of yellow fever outbreaks. Infect Dis. Model. 2017, 2, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Esteva, L.; Vargas, C.; Yang, H.M. A model for yellow fever with migration. Comput. Math. Methods 2019, 1, e1059. [Google Scholar] [CrossRef]
- The United Nations. World Population Prospects 2019: Highlights | Multimedia Library—United Nations Department of Economic and Social Affairs. 2019. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 1 February 2023).
- Raimundo, S.M.; Yang, H.M.; Massad, E. Modeling Vaccine Preventable Vector-Borne Infections: Yellow Fever as a Case Study. J. Biol. Syst. 2016, 24, 1–24. [Google Scholar] [CrossRef]
- Pan American Health Organization. Control of Yellow Fever: Field Guide—PAHO/WHO | Pan American Health Organization 2005. Available online: https://www.paho.org/en/documents/control-yellow-fever-field-guide (accessed on 1 February 2023).
- Soetaert, K.; Petzoldt, T.; Setzer, R.W. Solving Differential Equations in R: Package deSolve. J. Stat. Softw. 2010, 33, 1–25. [Google Scholar] [CrossRef]
- Stevenson, M.; Sergeant, E.; Heuer, C.; Marshall, J.; Sanchez, J.; Thornton, R.; Reiczigel, J.; Robison-Cox, J.; Sebastiani, P.; Solymos, P.; et al. Package epiR. 2022. Available online: https://cran.r-project.org/package=epiR (accessed on 1 February 2023).
- Burton, J.; Billings, L.; Cummings, D.A.T.; Schwartz, I.B. Disease persistence in epidemiological models: The interplay between vaccination and migration. Math. Biosci. 2012, 239, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Venezuela I-ACP for R and M From. Regional Refugee and Migrant Response Plan (RMRP). 2022. Available online: https://rmrp.r4v.info/ (accessed on 1 February 2023).
- United Nations Children’s Fund (UNICEF). A Global Strategy To Eliminate Yellow Fever Epidemics (EYE). 2018. Available online: https://www.who.int/publications/i/item/9789241513661 (accessed on 18 October 2023).
- Estrada, A.; Garber, P.A.; Rylands, A.B.; Roos, C.; Fernandez-Duque, E.; Di Fiore, A.; Nekaris, K.A.I.; Nijman, V.; Heymann, E.W.; Lambert, J.E.; et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci Adv. 2023, 3, e1600946. [Google Scholar] [CrossRef] [PubMed]
- Obholz, G.; Diez, F.; Blas, G.S.; Rossi, G. The austral-most record of the genus Haemagogus Williston (Diptera: Culicidae). Rev. Soc. Bras. Med. Trop. 2019, 53, e1600946. [Google Scholar] [CrossRef] [PubMed]
- Agostini, I.; Holzmann, I.; Di Bitetti, M.S.; Oklander, L.I.; Kowalewski, M.M.; Beldomnico, P.M.; Goenaga, S.; Martínez, M.; Moreno, E.S.; Lestani, E.; et al. Building a Species Conservation Strategy for the brown howler monkey (Alouatta guariba clamitans) in Argentina in the context of yellow fever outbreaks. Trop. Conserv. Sci. 2014, 7, 26–34. [Google Scholar] [CrossRef]
- Moreno, E.S.; Agostini, I.; Holzmann, I.; Di Bitetti, M.S.; Oklander, L.I.; Kowalewski, M.M.; Beldomenico, P.M.; Goenaga, S.; Martínez, M.; Lestani, E.; et al. Yellow fever impact on brown howler monkeys (Alouatta guariba clamitans) in Argentina: A metamodelling approach based on population viability analysis and epidemiological dynamics. Mem. Inst. Oswaldo Cruz 2015, 110, 865–876. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo Fernandes, N.C.C.; Guerra, J.M.; Díaz-Delgado, J.; Cunha, M.S.; Iglezias, S.D.; Ressio, R.A.; dos Santos Cirqueira, C.; Kanamura, C.T.; Jesus, I.P.; Maeda, A.Y.; et al. Differential Yellow Fever Susceptibility in New World Non-human Primates, Comparison with Humans, and Implications for Surveillance. Emerg. Infect. Dis. 2021, 27, 47–56. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.P.; Foster, P.G.; Sallum, M.A.M.; Coimbra, T.L.M.; Maeda, A.Y.; Silveira, V.R.; Moreno, E.S.; da Silva, F.G.; Rocco, I.M.; Ferreira, I.B.; et al. Detection of a new yellow fever virus lineage within the South American genotype I in Brazil. J. Med. Virol. 2010, 82, 175–185. [Google Scholar] [CrossRef] [PubMed]
Pace (Days) | Human Cases | Human Deaths | Exposed People Leaving |
---|---|---|---|
10 | 23,907 | 51 | 15,105 |
7 | 23,904 | 37 | 17,440 |
5 | 23,900 | 26 | 19,332 |
2 | 894 | 0 | 847 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, S.; Amaku, M.; Massad, E. The Burden of Yellow Fever on Migrating Humans through The Darién Gap, Adjacent Communities, and Primates’ Biodiversity. Challenges 2023, 14, 52. https://doi.org/10.3390/challe14040052
Simon S, Amaku M, Massad E. The Burden of Yellow Fever on Migrating Humans through The Darién Gap, Adjacent Communities, and Primates’ Biodiversity. Challenges. 2023; 14(4):52. https://doi.org/10.3390/challe14040052
Chicago/Turabian StyleSimon, Sabrina, Marcos Amaku, and Eduardo Massad. 2023. "The Burden of Yellow Fever on Migrating Humans through The Darién Gap, Adjacent Communities, and Primates’ Biodiversity" Challenges 14, no. 4: 52. https://doi.org/10.3390/challe14040052
APA StyleSimon, S., Amaku, M., & Massad, E. (2023). The Burden of Yellow Fever on Migrating Humans through The Darién Gap, Adjacent Communities, and Primates’ Biodiversity. Challenges, 14(4), 52. https://doi.org/10.3390/challe14040052