Environmental, plant and animal exposure to hazardous substances from electronic wastes (e-wastes) in Nigeria is increasing. In this study, the potential cytogenotoxicity of e-wastes leachate and contaminated well water samples obtained from Alaba International Electronic Market in Lagos, Nigeria, using induction of chromosome
[...] Read more.
Environmental, plant and animal exposure to hazardous substances from electronic wastes (e-wastes) in Nigeria is increasing. In this study, the potential cytogenotoxicity of e-wastes leachate and contaminated well water samples obtained from Alaba International Electronic Market in Lagos, Nigeria, using induction of chromosome and root growth anomalies in
Allium cepa, and micronucleus (MN) in peripheral erythrocytes of
Clarias gariepinus, was evaluated. The possible cause of DNA damage via the assessments of liver malondialdehyde (MDA), catalase (CAT), reduced glutathione (GSH) and superoxide dismutase (SOD) as indicators of oxidative stress in mice was also investigated. There was significant (
p < 0.05) inhibition of root growth and mitosis in
A. cepa. Cytological aberrations such as spindle disturbance, C-mitosis and binucleated cells, and morphological alterations like tumor and twisting roots were also induced. There was concentration-dependent, significant (
p < 0.05) induction of micronucleated erythrocytes and nuclear abnormalities such as blebbed nuclei and binucleated erythrocytes in
C. gariepinus. A significant increase (
p < 0.001) in CAT, GSH and MDA with concomitant decrease in SOD concentrations were observed in the treated mice. Pb, As, Cu, Cr, and Cd analyzed in the tested samples contributed significantly to these observations. This shows that the well water samples and leachate contained substances capable of inducing somatic mutation and oxidative stress in living cells; and this is of health importance in countries with risk of e-wastes exposure.
Full article