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Abstract:

 The proposal deals with electromagnetic (EM) wave scattering by one and many small impedance particles of an arbitrary shape. Analytic formula is derived for EM wave scattering by one small impedance particle of an arbitrary shape and an integral equation for the effective field in the medium where many such particles are embedded. These results are applied for creating a medium with a desired refraction coefficient. The proposed theory has no analogs in the literature. (Mathematical Subject Classiffication: 35J05, 35J25, 65N12, 78A25, 78A48.)
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1. Statement of the Problem

Let



∇×E=iωμH,∇×H=-iωϵE



(1)






E=E0+vE,E0=ξeikα·x,α·ξ=0



(2)






∂vE∂r-ikvE=o(1r),r=|x|→∞



(3)




Equation (1) hold in [image: there is no content], D is a bounded domain, [image: there is no content], [image: there is no content], i.e., D is a small body, the boundary S of D is [image: there is no content]-smooth, i.e., in the local coordinates the equation of S is [image: there is no content] and f has first derivative, satisfying the Hölder condition with exponent [image: there is no content]. The impedance boundary condition on S is


[image: there is no content]



(4)




where N is the unit normal to S pointing out of D, ζ is the impedance, Im[image: there is no content], [image: there is no content]const. Vector ξ in Equation (2) is constant, [image: there is no content], [image: there is no content] is the unit sphere in [image: there is no content], condition [image: there is no content] implies [image: there is no content]. The [image: there is no content] is the wave number, ω is the frequency, ϵ and μ are dielectric and magnetic constants.
The problem PI (Principal Investigator) proposes to investigate is the electromagnetic (EM) wave scattering problem by one and many small impedance bodies (particles) of an arbitrary shape.

If there are M small particles, then [image: there is no content], [image: there is no content], [image: there is no content] on [image: there is no content], the surface of [image: there is no content], [image: there is no content], [image: there is no content]∈[image: there is no content] is an arbitrary point in [image: there is no content], [image: there is no content], Im[image: there is no content] is a given continuous function in [image: there is no content], and [image: there is no content] is a parameter. The function [image: there is no content] and the parameter κ can be chosen by the experimentalist as he wishes.

Equations (1)–(4) can be reduced to finding vector E, and if E is found then H is found from the equation [image: there is no content]. The problem for E is:



∇×∇×E=k2E,k2:=ω2ϵμ



(5)




where we have assumed [image: there is no content]


[N,[E,N]]=ζiωμ[N,∇×E]onS



(6)




and Equations (2) and (3) remain valid.
The first basic result PI proposes to obtain is an analytic, closed-form formula for the EM field scattered by the small impedance body D of an arbitrary shape.

The second basic result PI proposes to obtain is a numerical method for solving many-body EM wave scattering problem in the case of M small impedance bodies of an arbitrary shape, where M ranges from [image: there is no content] to [image: there is no content]. The usual approach, based on solving boundary integral equations, is not feasible when M is large. A new approach and new ideas are needed. These are described in Section 2.

The third basic result PI proposes to derive is an integral equation for the effective field in the medium in which many small impedance bodies (particles) are embedded. This allows PI to derive an analytic formula for the refraction coefficient of the above medium. PI proposes to give a method for creating materials with a desired refraction coefficient by embedding many small impedance particles in the given medium. The distribution of the small particles and their boundary impedances determine the desired refraction coefficient.

PI and his Ph.D students (research assistants) plan to obtain numerical implementation of the PI’s theory, developed in this proposal. Since the number of small particles is very large, the numerical implementation requires solving very large linear algebraic systems. PI plans to use GMRES method ([18]) for solving such systems and PETSC libraries to do the computations in parallel ([1]).



2. Description of PI’s Approach

Let us look for the solution Equations (1)–(4) of the form



[image: there is no content]



(7)




where [image: there is no content] is some tangential to S field and [image: there is no content] is the element of the surface area. Let


[image: there is no content]



(8)




Then Equation (7) can be written as


[image: there is no content]



(9)




where [image: there is no content] is an arbitrary point and one has used the formula [image: there is no content], where [image: there is no content] is the vector product, [image: there is no content] is the scalar product. PI’s main idea is to prove that if [image: there is no content] (small D) and [image: there is no content], then


[image: there is no content]



(10)




Therefore, the problem of finding a function [image: there is no content] from the boundary condition Equation (6), which amounts to solving a boundary integral equation (bie), the problem Equations (2), (3), (5), (6) is reduced to finding one pseudovector Q. Note that since E is a vector σ has to be a pseudo-vector field. PI derives an asymptotic analytic formula, as [image: there is no content], namely


Q=-[image: there is no content]iωμτ∇×E0(x1),a→0



(11)




where [image: there is no content] is the surface area of S and


τ:=(τjp):=δjp-1[image: there is no content]∫SNj(s)Np(s)ds



(12)




[image: there is no content] is the j-th component of the unit normal [image: there is no content] at the point [image: there is no content]. Thus the solution to the EM wave scattering problem Equations (2), (3), (5), (6) is


E(x)=E0(x)-[image: there is no content]iωμ[∇xg(x,x1),τ∇×E(x1)]



(13)




This formula is valid if [image: there is no content] and [image: there is no content]. To derive formula Equation (13), PI plans to use boundary condition Equation (6) not for solving the result from Equation (6) equation for σ, but for finding asymptotic formula Equation (11).
If there are [image: there is no content] small bodies, then PI looks for the solution to problem Equations (2), (3), (5), (6) with D=∪m=1M[image: there is no content] of the form



E(x)=E0(x)+∑m=1M∇×∫[image: there is no content]g(x,t)[image: there is no content](t)dt



(14)




PI checks that the right-hand side of Equation (14) satisfies Equations (2), (3), (5) for any [image: there is no content], so that problem Equations (2), (3), (5), (6) is solved if the boundary conditions Equation (6) is satisfied on every [image: there is no content], [image: there is no content]. The field Equation (14) can be written as


E(x)=E0(x)+∑m=1M[∇g(x,[image: there is no content]),Qm]+∑m=1M∇×∫[image: there is no content](g(x,t)-g(x,[image: there is no content]))[image: there is no content](t)dt



(15)




where [image: there is no content]∈[image: there is no content] are arbitrary points. PI proves that


|∇×∫[image: there is no content](g(x,t)-g(x,[image: there is no content]))[image: there is no content](t)dt|≪[∇g(x,[image: there is no content]),Qm]



(16)




Thus, the solution to many-body EM wave scattering problem is given by the formula


E(x)=E0(x)-∑m=1Mζm|[image: there is no content]|iωμ[∇xg(x,[image: there is no content]),τm∇×Ee([image: there is no content])]



(17)




where [image: there is no content] is the effective field acting on m-th particle. Let us assume that small particles [image: there is no content] are of the same shape and size. Then [image: there is no content] and |[image: there is no content]|=cSa2, where [image: there is no content] is a constant. For example, the constant [image: there is no content] and [image: there is no content] if [image: there is no content] are spheres. Let us assume that


[image: there is no content]



(18)




where [image: there is no content] is a given continuous function, Re[image: there is no content], in a bounded domain Ω in which the small bodies [image: there is no content] are distributed, and [image: there is no content] is a given parameter. The experimentalist can choose [image: there is no content] and κ as he wants. Assume also that the number [image: there is no content] of small bodies (or points [image: there is no content]) in any subdomain Δ is given by the formula


N(Δ)=1a2-κ∫ΔN(x)dx(1+o(1))a→0



(19)




where [image: there is no content] is a continuous in Ω function that can be chosen by the experimentalist as he wants.
Let us define the effective field acting on j-th particle by the formula



Ee(x)=E0(x)-cSiωμ∑m≠ja2-κh([image: there is no content])[∇xg(x,[image: there is no content]),τ∇×Ee([image: there is no content])]



(20)




To find vectors ∇×E([image: there is no content]), PI applies the operator [image: there is no content] to Equation (20) and then sets [image: there is no content] to get:


∇×E(xj)=∇×E0(xj)-cSa2-κiωμ∑m≠jh([image: there is no content])∇×[∇g(x,[image: there is no content]),τ∇×E([image: there is no content])]|[image: there is no content]



(21)




This is a linear algebraic system for finding vectors ∇×E([image: there is no content])[image: there is no content].
If M is very large, say [image: there is no content], then one reduces the order of the system Equation (21) as follows. Consider a partition of the domain Ω in the union of [image: there is no content] small cubes [image: there is no content] of side [image: there is no content], [image: there is no content]. Assume that [image: there is no content], where [image: there is no content] is the minimal distance between two neighboring particles. Let [image: there is no content] be the center of the cube [image: there is no content], and denote ∇×E([image: there is no content]):=Ap,∇×E0([image: there is no content])=Aop. Then Equation (21) can be transformed as follows:



Aq=A0q-cSiωμ∑p≠q∇×[∇g(x,[image: there is no content]),τAp]h([image: there is no content])∑[image: there is no content]∈[image: there is no content]1



(22)




Using Equation (19) and denoting |[image: there is no content]|:= volume [image: there is no content], one gets:


a2-κ∑[image: there is no content]∈[image: there is no content]1=N([image: there is no content])|[image: there is no content]|,a→0



(23)




Thus Equation (22) takes the form


Aq=Aoq-cSiωμ∇×∑p≠q[∇g(x,[image: there is no content]),τAp]h([image: there is no content])Np|[image: there is no content]|



(24)




As [image: there is no content], Equation (24) tends to the limiting integral equation


[image: there is no content]



(25)




The limiting form of Equation (20) is


[image: there is no content]



(26)




To demonstrate possible application of Equation (26) to creating materials with a desired refraction coefficient, apply the operator [image: there is no content] to Equation (26). The result is


∇×∇×E=k2E0-∇×(graddiv-∇2)∫Ωg(x,y)τ∇×Eh(y)N(y)dy



(27)




Since [image: there is no content]grad [image: there is no content] and [image: there is no content], Equation (27) yields


[image: there is no content]



(28)




Assume for simplicity that [image: there is no content] and [image: there is no content] are constants and [image: there is no content] are spheres, i.e., [image: there is no content]. Then Equation (28) yields


[image: there is no content]



(29)




This means that the refraction coefficient of the new medium which is obtained by embedding of many small impedance balls into Ω, is equal to


n2=1+cSiωμ23hN,n02=ϵμ



(30)




Since h and N are at our disposal, Re[image: there is no content], one can change the original refraction coefficient in a desired direction. For example, suppose one wants to have [image: there is no content]. Denote [image: there is no content], [image: there is no content]. Then Equation (30) yields


b1=1+Ch2(1+h2C)2+h12C2;b2=h1C(1+h2C)2+h12C2;C:=2cSN3ωμ



(31)




Formula Equation (28) gives also a recipe for creating materials with a desired magnetic permeability [image: there is no content]. To formulate this recipe apply the operator [image: there is no content] to the first Equation (1) assuming [image: there is no content]. This yields


∇×∇×E=k2E+iω[∇μ,H]=k2E+∇μμ,∇×E,k2=ω2ϵ(x)μ(x)



(32)




Compare Equations (28) and (32) assuming that [image: there is no content] are balls of radius a, so that [image: there is no content], and denote [image: there is no content] in Equation (28), while [image: there is no content]is the magnetic permeability of the new medium in which many small impedance particles are embedded.
Then Equation (28) can be rewritten as



[image: there is no content]



(33)




Compare Equation (33) with Equation (32) and remember that [image: there is no content]. Then one obtains



μ(x)=μ01-i2cSh(x)N(x)3ωμ0;∇μμ=i2cS∇(h(x)N(x))3ωμ0(1-i2cSh(x)N(x)3ωμ0)



(34)




Thus, [image: there is no content] can be changed by changing [image: there is no content] and [image: there is no content].



3. Comparison of the Proposed Research with the Known Results

EM wave scattering by small bodies is a classical field of theoretical and applied physics and mathematics. Rayleigh in 1871 [17] understood that the main term in the scattered field is given by the dipole radiation. He did not give formulas for the induced dipole moment for a body of an arbitrary shape. This was done about 100 years later by PI ([6,7,8]). In 1908 Mie [5] gave a solution of the EM wave scattering by one perfectly conducting sphere by separation of variables ([19]). In [2,3,4], these results are summarized. The origin of these results is the work [17]. There were no results which would give analytic formula, asymptotically exact as [image: there is no content], for the EM wave field scattered by one small impedance particle (body) of an arbitrary shape. Such a formula PI proposes to derive. There were no methods for solving many-body EM wave scattering problem when the number M of small impedance bodies is very large [image: there is no content]. Such a method PI proposes to develop. There were no methods for deriving an integral equation for the effective EM field in the medium in which many small impedance bodies are embedded. PI proposes to derive such an equation and give on this basis a method for creating materials with a desired refraction coefficient and/or desired magnetic permeability.

In Rayleigh theory of wave scattering by small bodies the order of the scattering amplitude is [image: there is no content], where a is the characteristic size of the small body, [image: there is no content]. In PI’s theory of wave scattering by small impedance body the scattering amplitude is of the order [image: there is no content], where [image: there is no content]. Thus, in PI’s theory the order of the scattering amplitude is much larger that in Rayleigh’s theory. This difference comes from the fact that in Rayleigh’s theory the scattering amplitude is proportional to the volume of the small body, while in PI’s theory it is proportional to [image: there is no content], where [image: there is no content] is the surface area of the small body, and [image: there is no content] is its boundary impedance. This difference may be used practically.

The ideas of this research were developed in [6,7,8,9,10,11,12,13,14,15]. In [16] numerical results, based on this proposal, are presented.

Remark. If Equation (7) is assumed for one small body D, where [image: there is no content] and [image: there is no content], then



∇×vE=iωμvHinD′



(35)




and one can derive the following equations:


∇×vH=-iωϵvEinD′



(36)






∇×∇×vE=k2vEinD′



(37)






∇×∇×vH=k2vHinD′



(38)
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