Climate Strategic Soil Management
Abstract
:1. Introduction
Year | Cereal Yield (Mg/ha) | Total Cereal Production (106 Mg/year) | ||
---|---|---|---|---|
Without | With | Without | With | |
2005 | 3.27 | NA | 2,240 | NA |
2025 | 3.60 | 4.40 | 2,780 | 3,629 |
2050 | 4.30 | 6.00 | 3,250 | 4,553 |
2. Soil Resources and Sustainable Management
- (i)
- Actual and potentially available soil resources;
- (ii)
- Loss of soil resources to climate-induced degradation;
- (iii)
- Degradation of soil by land use and soil mismanagement;
- (iv)
- Determinants of soil resilience to abiotic and biotic stresses;
- (v)
- Strategies of soil restoration in the context of threshold levels of key soil properties and their dynamics;
- (vi)
- Global and regional hot spots of soil degradation; and
- (vii)
- Sustainable intensification of soils devoted to agroecosystems.
Region | Un Irrigated | Irrigated | ||||
---|---|---|---|---|---|---|
Maize | Rice | Wheat | Maize | Rice | Wheat | |
Sub-Saharan Africa | 14.6 | 11.5 | 32.8 | 39.7 | 39.4 | 34.5 |
South Asia | 36.8 | 16.4 | 54.7 | 26.0 | 19.8 | 50.1 |
Latin America and the Caribbean | 11.2 | 20.7 | 4.9 | 23.9 | 24.9 | 21.5 |
Developed Countries | 6.0 | 30.5 | 17.1 | 3.2 | 17.3 | 22.6 |
Developing Countries | 15.6 | 13.1 | 31.0 | 15.7 | 22.6 | 37.5 |
World | 12.7 | 13.1 | 24.5 | 8.9 | 22.3 | 35.5 |
Decade | Stabilization of Atmospheric CO2 | |||
---|---|---|---|---|
No Climate Change | Unmitigated | 550 ppmv | 750 ppmv | |
1990 | 1,800 | |||
2020 | 2,700 | 2,670 | 2,676 | 2,672 |
2050 | 3,500 | 3,475 | 3,477 | 3,473 |
2080 | 4,000 | 3,927 | 3,949 | 3,987 |
Type | Area Affected (106 ha) | |||||
---|---|---|---|---|---|---|
Africa | Asia | Australiaand Pacific | Europe | Latin America and Caribbean | World Total | |
Water Erosion | 227 | 440 | 83 | 115 | 169 | 1,094 |
Wind Erosion | 187 | 222 | 16 | 42 | 47 | 548 |
Nutrient Depletion | 45 | 15 | - | 3 | 72 | 135 |
Salinization | 15 | 53 | 1 | 4 | 4 | 76 |
Contamination | - | 2 | - | 19 | - | 22 |
Physical Degradation | 4 | 12 | 2 | 36 | 13 | 79 |
Others | 1 | 3 | 1 | 2 | 1 | 10 |
Total | 287 | 747 | 103 | 218 | 306 | 1,964 |
Region | # of Countries | Degrading Area (106 km2) | Affected People in 2008 (106) |
---|---|---|---|
Sub-Saharan Africa | 44 | 6.4 | 196 |
Central Asia | 6 | 0.5 | 4 |
South Asia | 8 | 0.8 | 274 |
East Asia | 5 | 2.4 | 512 |
Southeast Asia | 10 | 2.4 | 228 |
The Caribbean | 8 | 0.3 | 12 |
Central America | 8 | 1.1 | 45 |
Latin America | 10 | 0.6 | 128 |
World | 10 | 35.1 | 1,538 |
Per Capita Land Area (ha/person) | |||
---|---|---|---|
Region | 1970 | 2004 | Rate of Decline (ha/person/yr) |
Sub-Saharan Africa | 0.48 | 0.38 | 0.007 |
Latin America | 0.39 | 0.27 | 0.004 |
South Asia | 0.27 | 0.13 | 0.004 |
East Asia | 0.13 | 0.11 | 0.001 |
Maize (Mg/ha) | Rice (Mg/ha) | Wheat * (Mg/ha) | ||||||
---|---|---|---|---|---|---|---|---|
Country/Region | Average | Potential | Country/Region | Average | Potential | Country/Region | Average | Potential |
SSA: | China: | 5.9 | 7.6 | Northern India | 3.0 | 7.5 | ||
Sub-Tropical/Mid Latin | 2.5 | 7.0 | Early Crop | 5.6 | 9.8 | Punjab | 4.1 | 5.5 |
Tropical Lowland | 0.7 | 4.5 | Late Crop | 5.6 | 9.5 | Haryana | 3.8 | 4.0 |
West Kenya | 1.7 | 3.7 | Single Crop | 7.2 | 11.5 | Bihar | 2.8 | 3.8 |
Tropical Lowland | 1.4 | 4.5 | India: | 3.6 | 5.9 | Bangladesh ** | 2.9 | 4.2 |
SEA, EA: Tropical Lowland | 2.2 | 5.5 | Punjab W. Bengal | 5.0 3.1 | 6.5 5.0 | Mexico ** Yaqui Valley | 5.8 | 8.2 |
Sub-Trop./Mid Lat. | 3.0 | 8.0 | Bihar | 1.8 | 6.1 | San Lui Rio, CO | 6.4 | 9.0 |
LA: Highlands | 4.0 | 10.0 | Orissa U.P. | 2.0 2.9 | 5.6 6.6 | |||
Tropical Lowlands | 1.5 | 5.0 | ||||||
USA (Nebraska): | ||||||||
Model | 10 | 18 | ||||||
Rainfed | 6 | 15 |
3. Vulnerability to Climate Change
4. Yield Gap
Region | Crop | Yield (kg/ha) | Ratio (Potential:Actual) | |
---|---|---|---|---|
Actual | Potential | |||
SAT-1 | Maize | 1,460 | 3,410 | 2.3 |
SAT-2 | Maize | 1,460 | 7,330 | 5.0 |
SAT-1 | Groundnut | 980 | 2,400 | 2.5 |
SAT-2 | Groundnut | 980 | 4,080 | 4.2 |
SAT-1 | Pearl Millet | 690 | 2,660 | 3.9 |
SAT-2 | Pearl Millet | 690 | 2,950 | 4.3 |
SAT-1 | Sorghum | 1,170 | 4,030 | 3.5 |
SAT-2 | Sorghum | 1,170 | 5,910 | 5.1 |
SAT-1 | Soybean | 1,420 | 2,590 | 1.8 |
SAT-2 | Soybean | 1,420 | 4,760 | 3.3 |
5. Adaptation to Climate Change
6. Technological Options
7. Managing Water for Alleviating Drought Stress
8. Sustainable Intensification
9. Precision Agriculture
10. Sustainable Management
11. Urban Agriculture
12. Biofuels
13. Meat-Based Diet
14. Research and Developmental Needs towards Achieving Global Food Security
15. Conclusions
- (1)
- Global food production must be increased substantially over the next several decades, both to meet the demands of a growing population and for increasing preferences towards the animal-based diet.
- (2)
- Global soil and water resources are limited, vulnerable to land misuse and soil mismanagement and strongly coupled with the processes that also govern climate change.
- (3)
- Sustainable intensification of agriculture, based on proven technologies, can increase food, production on existing land, reverse the processes of soil and environmental degradation and avoid the encroachment on or conversion of natural ecosystems (e.g., forest, prairie) into agroecosystems.
- (4)
- Conservation agriculture, precision agriculture water harvesting and recycling by micro-irrigation, agroforestry, urban agriculture and techniques of carbon sequestration in soils and ecosystems, perennial culture and integrated nutrient management based on biological nitrogen fixation are among the proven technologies of sustainable intensification.
- (5)
- Important among researchable priorities are soil/site-specific identification of appropriate system-based agronomic packages, operationalizing urban agriculture and green roof technology, promoting precision agriculture and conservation agriculture and developing modus operandi for payments to land managers for ecosystem services (e.g., carbon farming).
Conflicts of Interest
References
- Koning, N.B.J.; van Ittersum, M.K.; Becx, G.A.; van Boekel, M.A.J.S.; Brandenburg, W.A. Long-term global availability of food: Continued abundance or new scarcity? J. Life Sci. 2008, 55, 229–292. [Google Scholar]
- Swinnen, J.; Squicciarini, P. Mixed messages on prices and food security. Science 2012, 335, 405–406. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- How to feed a hungry world. Nature 2010, 466, 531–532. [CrossRef]
- Parker, J. The 9 Billion-people Question: A Special Report on Feeding the World. Available online: http://www.economist.com/node/18200618 (accessed on 22 August 2013).
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Sec. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Gulliford, J.; Nielsen, D.; Rice, C.W.; van Pelt, R.S. Adapting agriculture to drought and extreme events. J. Soil Water Conserv. 2012, 67, 162–166. [Google Scholar] [CrossRef]
- Lyall, S. Heat, Flood or Icy Cold, Extreme Weather Rages Worldwide; The New York Times: New York, NY, USA, 2013. [Google Scholar]
- Parry, M.; Rosenzweig, C.; Livermore, M. Climate change, global food supply and risk of hunger. Phil. Trans. Roy. Soc. London B 2005, 360, 2125–2138. [Google Scholar] [CrossRef]
- Romm, J. Oxfam: Extreme Weather Has Helped Push Tens of Millions into Hunger and Poverty in Grim Foretaste of Warmed World. Available online: http://thinkprogress.org/climate/2011/11/29/377015/oxfam-extreme-weather-hunger-and-poverty/?mobile+=nc (accessed on 22 August 2013).
- Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2011; World Meteorological Organization (WMO): Geneva, Switzerland, 2011; p. 4.
- IPCC. Summary for Policymakers. In Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2013. [Google Scholar]
- Lal, R. The Nexus of Soil, Water and Waste; UNU-FLORES: Dresden, Germany, 2013. [Google Scholar]
- United Nations (UN). Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2006 Revision and World Urbanization Prospects: The 2007 Revision, 2012. Available online: http://esa.un.org/unup (accessed on 22 August 2013).
- Energy Information Agency, USA (EIA). Annual Energy Outlook 2013 with Projections to 2040. Available online: http://www.eia.gov/forecasts/aeo/pdf/0383(2013).pdf (accessed on 26 November 2013).
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1974, 171, 1212–1217. [Google Scholar]
- Pimentel, D. Food for thought: A review of the role of energy in current and evolving agriculture. Crc Crit. Rev. Plant Sci. 2011, 30, 35–44. [Google Scholar] [CrossRef]
- Flora, C.B. Food security in the context of energy and resource depletion: Sustainable agriculture in developing countries. Renew. Agr. Food Syst. 2010, 25, 118–128. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Paisner, M.S.; Meijer, S.; Witcover, J. 2020 Global Food Outlook: Trends, Alternatives, and Choices. Available online: http://www.fcrn.org.uk/sites/default/files/fpr30_0.pdf (accessed on 22 August 2013).
- Swaminathan, M.S. Combating hunger. Science 2012, 338, 1009. [Google Scholar] [CrossRef]
- Lovejoy, S. What is climate? EOS 2013, 94, 1–2. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Varon, D. Do GCM’s predict the climate or macroweather? Earth Syst. Dyn. Discuss. 2012, 3, 1259–1286. [Google Scholar] [CrossRef]
- Zhang, J. China’s success in increasing per capita food production. J. Exp. Bot. 2011, 62, 3707–3711. [Google Scholar] [CrossRef]
- Miao, Y.; Stewart, R.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China: A review. Agron. Sust. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef]
- Wild, A. Soils, Land and Food: Managing the Land during the 21st Century; Cambridge University Press: Cambridge, UK, 2003; p. 256. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Corn stover removal impacts on micro-scale soil physical properties. Geoderma 2008, 145, 335–346. [Google Scholar] [CrossRef]
- Lashgarara, F.; Mirdamadi, S.M.; Hosseini, S.J.F.; Chizari, M. The Role of Food-security Solutions in the Protection of Natural Resources and Environment of Developing Countries. In Environmental Challenges in the Pacific Basin Book Series:Annals of the New York Academy of Sciences; Carpenter, D., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 68–72. [Google Scholar]
- Bouma, J.; Mcbratney, A. Framing soils as an actor when dealing with wicked environmental problems. Geoderma 2013, 200, 130–139. [Google Scholar] [CrossRef]
- International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Agriculture at A Crossroads: Synthesis Report. Available online: http://www.unep.org/dewa/agassessment/reports/iaastd/en/agriculture%20at%20a%20crossroads_synthesis%20report%20(english).pdf (accessed on 25 December 2013).
- Commission on Sustainable Agriculture and Climate Change. In Achieving Food Security in the Face of Climate Change; Beddington, J.; Asaduzzaman, M.; Clark, N. (Eds.) Institute of Development Studies, University of Sussex: Brighten, UK, 2012.
- Climate Change and Hunger: Responding to the Challenge; World Food Programme: Rome, Italy, 2009; p. 100.
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; RIngler, C.; Msangi, S.; Palazzo, A.; Batka, M.; Magalhaes, M.; Valmonte-Santos, R.; Ewing, M.; Lee, D. Climate Change: Impact on Agriculture and Costs of Adaptation.Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Lenka, N.K.; Lal, R. Soil-related constraints to the carbon dioxide fertilization effect. Crc Crit. Rev. Plant Sci. 2012, 31, 342–357. [Google Scholar] [CrossRef]
- Yiridoe, E.K.; Langyintuo, A.S.; Dogbe, W. Economics of the impact of alternative rice cropping systems on subsistence farming: Whole-farm analysis in northern Ghana. Agr. Syst. 2006, 91, 102–121. [Google Scholar] [CrossRef]
- Tyfield, D. Food systems transition and disruptive low carbon innovation: Implications for a food security research agenda. J. Exp. Bot. 2011, 62, 3701–3706. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar]
- Spiertz, H. Avenues to meet food security. The role of agronomy on solving complexity in food production and resource use. Eur. J. Agron. 2012, 43, 1–8. [Google Scholar] [CrossRef]
- Rockström, J.; Barron, J. Water productivity in rainfed systems: Overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrig. Sci. 2007, 25, 299–311. [Google Scholar] [CrossRef]
- Crews, T.E.; Peoples, M.B. Legume vs. fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agr. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Revelle, R. Carbon dioxide and world climate. Sci. Amer. 1982, 35, 39–40. [Google Scholar]
- Revelle, R. The resources available for agriculture. Sci. Amer. 1976, 235, 165–178. [Google Scholar]
- Adgo, E.; Teshome, A.; Mati, B. Impacts of long-term soil and water conservation on agricultural productivity: The case of anjenie watershed, Ethiopia. Agr. Water Manage. 2013, 117, 55–61. [Google Scholar]
- Dregne, H.E. Desertification: Challenges ahead. Ann. Arid Zone 1996, 35, 305–311. [Google Scholar]
- Oldeman, L.R. The Global Extent of Soil Degradation. In Soil Resilience and Sustainable Land Use Greeland; Szabolcs, I.D.J., Ed.; Cab International: Wallingford, UK, 1994; pp. 99–118. [Google Scholar]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schapman, M.E. Proxy global assessment of land degradation. Soil Use Manage. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Lal, R. Hydrologic sources of carbon cycling uncertainty throughout the terrestrial aquatic continuum. Glob. Change Biol. 2006, 11, 1852–1873. [Google Scholar]
- Lal, R. Enhancing eco-efficiency in agroecosystems through soil C sequestration. Crop Sci. 2010, 50, S120–S131. [Google Scholar]
- Den Biggelaar, C.; Lal, R.; Wiebe, K.; Breneman, V. The global impact of soil erosion on productivity. II. Effects on crop yields and production over time. Advan. Agron. 2004, 81, 49–95. [Google Scholar]
- Lal, R. Soil erosion impact on agronomic productivity and environmental quality. Crc Crit. Rev. Plant Sci. 1998, 17, 319–464. [Google Scholar] [CrossRef]
- Lal, R. Effects of soil erosion on crop productivity. Crc Crit. Rev. Plant Sci. 1987, 5, 303–368. [Google Scholar]
- Eynard, A.; Lal, R.; Wiebe, K. Crop response in salt-affected soils. J. Sustainable Agr. 2005, 27. [Google Scholar] [CrossRef]
- Tan, Z.; Lal, R.; Wiebe, K. Soil nutrient depletion and global yield reduction. J. Sust. Agric. 2005, 26, 123–146. [Google Scholar]
- Lal, R. Long-term tillage and wheel traffic effects on soil quality for two central Ohio soils. J. Sustainable Agr. 1999, 14, 67–84. [Google Scholar]
- Nkonya, E.; Gerber, N.; Baumgartner, P.; von Braun, J.; de Pinto, A.; Graw, V.; Kato, E.; Kloos, J.; Walter, T. The Economics of Land Degradation: Towards an Integrated Global Assessment. Development Economics and Policy. Band 66; Peter Lang: Berlin, Germany, 2011; p. 262. [Google Scholar]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar]
- Monfreda, C.; Ramankutty, N.; Foley, J.A. Farming the planet: Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycle. 2008, 22. [Google Scholar] [CrossRef]
- Godfray, H.C.J. Food and biodiversity. Science 2011, 333, 1231–1232. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L.; van Vuuren, D.P.; den Elzen, M.G.J.; Eickhout, B. Climate benefits of changing diet. Climate Change 2009, 95, 83–102. [Google Scholar] [CrossRef]
- Fernandez, M. Texas Bakes in a Long Drought, Water Becomes Focus for Legislators; New York Times International: New York, NY, USA, 2013. [Google Scholar]
- Gills, J. Not Even Close: 2012 was Hottest Even in USA; New York Times International: New York, NY, USA, 2013. [Google Scholar]
- Koebler, J. Report: 100 Million Could Die from Climate Change by 2030. Available online: http://www.usnews.com/news/articles/2012/09/27/report-100-million-could-die-from-climate-change-by-2030 (accessed on 22 August 2013).
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Gregory, P.J.; Ingram, J.S.I.; Brklacich, M. Climate change and food security. Phil. Trans. Roy. Soc. London B 2005, 360, 2139–2148. [Google Scholar] [CrossRef]
- Newton, A.C.; Johnson, S.N.; Gregory, P.J. Implications of climate change for diseases, crop yields and food security. Euphytica 2011, 179, 3–18. [Google Scholar] [CrossRef]
- Funk, C.C.; Brown, M.E. Declining global per capita agricultural production and warming oceans threaten food security. Food Secur. 2009, 1, 271–289. [Google Scholar] [CrossRef]
- Haile, M. Weather patterns, food security and humanitarian response in Sub-Saharan Africa. Phil. Trans. Roy. Soc. London B 2005, 360, 2169–2182. [Google Scholar] [CrossRef]
- Armah, F.A; Odoi, J.O.; Yengoh, G.T.; Obiri, S.; Yawson, D.O. Food security and climate change in drought-sensitive savanna zones of Ghana. Mitigation Adaptation Strateg. Glob. Change 2011, 16, 291–306. [Google Scholar] [CrossRef]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.; Gbetibouo, G.; Jain, S.; et al. Will African agriculture survive climate change? World Bank Econ. R. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef]
- Challinor, A.; Wheeler, T.; Garforth, C.; Craufurd, P.; Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Climate Change 2007, 83, 381–399. [Google Scholar] [CrossRef]
- Liu, J.; Fritz, S.; van Wesenbeeck, C.F.A.; Fuchs, M.; You, L. A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Global Planet. Change 2008, 64, 222–235. [Google Scholar] [CrossRef]
- Moore, N.; Alagarswamy, G.; Pijanowski, B.; Thornton, P.; Lofgren, B. East African food security as influenced by future climate change and land use change at local to regional scales. Climate Change 2012, 110, 823–844. [Google Scholar] [CrossRef]
- Brown, L.R. Who will feed China? Futurist 1996, 30, 14–18. [Google Scholar]
- Ye, L.; van Ranst, E. Production scenarios and the effect of soil degradation on long-term food security in China. Global Environ. Change 2009, 19, 464–481. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Liu, J.; Zhang, Z. Climate change, land use change, and China’s food security in the 21st Century: An integrated perspective. Climate Change 2009, 93, 433–445. [Google Scholar] [CrossRef]
- Beddington, J. Global food and farming futures. Phil. Trans. Roy. Soc. London B 2010, 365, 2767. [Google Scholar] [CrossRef]
- Beddington, J. Food security: Contributions from science to a new and greener revolution. Phil. Trans. Roy. Soc. London B 2010, 365, 61–71. [Google Scholar]
- HLPE. Food Security and Climate Change. Available online: http://www.fao.org/docrep/meeting/026/me495e.pdf (accessed on 22 August 2013).
- Fischer, G.; van Velthuizen, H.; Hizsnyik, E.; Wiberg, D. Potentially Obtainable Yields in the Semi-arid Tropics. Global Theme on Agroecosystems. Available online: http://oar.icrisat.org/198/ (accessed on 25 November 2013).
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J. Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Laborte, A.G.; de Bie, K.C.A.J.M.; Smaling, E.M.A.; Moya, P.F.; Boling, A. Rice yields and yield gaps in southeast Asia: Past trends and future outlook. Eur. J. Agron. 2012, 36, 9–20. [Google Scholar] [CrossRef]
- Van Tran, D. Closing the Rice Yield Gap for Food Security. In The New Development in Rice Agronomy and Its Effects on Yield and Quality in Mediterranean Areas; Chataigner, J., Ed.; CIHEAM: Montpellier, France, 2001; pp. 2–12. [Google Scholar]
- Ingram, J.S.I.; Gregory, P.J.; Izac, A.-M. The role of agronomic research in climate change and food security policy. Agr. Ecosyst. Environ. 2008, 126, 4–12. [Google Scholar]
- Wopereis, M.C.S.; Defoer, T. Moving Methodologies to Enhance Agricultural Productivity of Rice-based Lowland Systems in Sub-Saharan Africa. In Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities; Bationo, A., Waswa, B., Kihra, B., Eds.; Springer: New York, NY, USA, 2007; pp. 1077–1091. [Google Scholar]
- Antle, J.M.; Capalbo, S.M. Adaptation of agricultural and food systems to climate change: An economic and policy perspective. Appl. Econ. Perspect. Policy 2010, 32, 386–416. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef]
- Alauddin, M.; Quiggin, J. Agricultural Intensification, irrigation and the environment in south Asia: Issues and policy options. Ecol. Econ. 2008, 65, 111–124. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- Kreye, C.; Bouman, B.A.M.; Reversat, G.; Fernandez, L.; Cruz, C.V. Biotic and abiotic causes of yield failure in tropical aerobic rice. Field Crop. Res. 2009, 112, 97–106. [Google Scholar] [CrossRef]
- Kreye, C.; Bouman, B.A.M.; Castaneda, A.R.; Lampayan, R.M.; Faronilo, J.E. Possible causes of yield failure in tropical aerobic rice. Field Crop. Res. 2009, 111, 197–206. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Sanchez, P.A. Tripling crop yields in tropical Africa. Nat. Geosci. 2010, 3, 299–300. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef]
- Ziska, L.H.; Bunce, J.A.; Shimono, H.; Gealy, D.R.; Baker, J.T. Food security and climate change: On the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. Biol. Sci. 2012, 279, 4097–4105. [Google Scholar]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- Gill, M.; Smith, P.; Wilkinson, J.M. Mitigating climate change: The role of domestic livestock. Animal 2010, 4, 323–333. [Google Scholar] [CrossRef]
- The Potential of USA Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect; Follett, R.F.; Kimble, J.M.; Lal, R. (Eds.) CRC Press LLC.: Boca Raton, FL, USA, 2011; p. 472.
- Lal, R.; Stewart, B.A. Principles of Sustainable Soil Management in Agroecosystems. In Advances in Soil Science; Lal, R., Stewart, B.A., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2013; p. 568. [Google Scholar]
- Lal, R. Constraints to adopting no-till farming in developing countries. Soil Till. Res. 2007, 94, 1–3. [Google Scholar] [CrossRef]
- Lal, R. Controlling Greenhouse Gases and Feeding the World through Soil Management; Distinguished University Lecture; The Ohio State University: Columbus, OH, USA, 2000. [Google Scholar]
- Shah, T.; Singh, O.; Mukherji, A. Some aspects of south asia’s groundwater irrigation economy: Analyses from a survey in India, Pakistan, Nepal Terai and Bangladesh. Hydrogeol. J. 2006, 14, 286–309. [Google Scholar]
- Condon, A.G.; Richards, R.A; Rebetzke, G.J.; Farquhar, G.D. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 2002, 42, 122–131. [Google Scholar] [CrossRef]
- Bossio, D.; Geheb, K.; Critchley, W. Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods. Agr. Water Manage. 2010, 97, 536–542. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Allan, J.A.; Hoekstra, A.Y. Strategic importance of green water in international crop trade. Ecol. Econ. 2010, 69, 887–894. [Google Scholar]
- Cassman, K.G. cological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. 1999, 96, 5952–5959. [Google Scholar] [CrossRef]
- Monaghan, J.M.; Daccache, A.; Vickers, L.H.; Hess, T.M.; Weatherhead, E.K. More “crop per drop”: Constraints and opportunities for precision irrigation in European agriculture. J. Sci. Food Agr. 2013, 93, 977–980. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. Drought ozone, aba, and ethylene: New insight from cell plant community. Plant Cell Environ. 2010, 35, 510–525. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Ajayi, O.C.; Sileshi, G.; Chirwa, P.; Chianu, J. Fertiliser Trees for Sustainable Food Security in the Maize-based Production Systems of East and Southern Africa. In Sustainable Agriculture; Lichtfouse, E., Hamelin, M.E., Navarrete, M., Debaeke, P., Eds.; Springer: Verlag, Netherlands, 2011; Volume 2, pp. 129–146. [Google Scholar]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater harvesting and management in rainfed agricultural systems in Sub-Saharan Africa—A review. Phys. Chem. Earth 2012, 47–48, 139–151. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Lampayan, R.M.; Toung, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity. Available online: http://books.irri.org/9789712202193_content.pdf (accessed on 25 December 2013).
- Bouman, B.A.M.; Peng, S; Castaneda, A.R.; Visperas, R.M. Yield and water use of irrigated tropical aerobic rice systems. Agr. Water Manage. 2005, 74, 87–105. [Google Scholar] [CrossRef]
- Yang, X.; Bouman, B.A.M.; Wang, H.; Wang, Z.; Zhao, J.; Chen, B. Performance of temperate aerobic rice under different water regimes in north China. Agric. Water Manage. 2005, 74, 107–122. [Google Scholar] [CrossRef]
- Yang, X.G.; Bouman, B.A.M.; Deng, W.; Zhang, Q.P. Effects of irrigation and nitrogen on the performance of aerobic rice in northern China. J. Integr. Plant Bio 2008, 50:12, 1589–1600. [Google Scholar]
- Peng, S.; Bouman, B.; Visperas, R.A.; Castañeda, A.; Nie, L.X.; Park, H.K. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crop. Res. 2006, 96, 252–259. [Google Scholar] [CrossRef]
- Xue, C.-Y.; Yang, X.-G.; Bouman, B.A.M.; Deng, W.; Zhang, Q.-P.; Yan, W.; Zhang, T.; Rouzi, A.; Wang, H. Optimizing yield, water requirements, and water productivity of aerobic rice for the north China plain. Irrig. Sci. 2008, 26, 459–474. [Google Scholar]
- Bouman, B.A.M. Water-efficient Management Strategies in Rice Production. International Rice Research Notes 16.2; IRRI: Los Banos, Phillipines, 2001; pp. 17–22. [Google Scholar]
- Zhang, L.; Lin, S.; Bouman, B.A.M.; Xue, C.; Wei, F. Response of aerobic rice growth and grain yield to N fertilizer at two contrasting sites near Beijing, China. Field Crop. Res. 2009, 114, 45–53. [Google Scholar] [CrossRef]
- Nie, L.; Peng, S.H.; Bouman, B.A.M.; Huang, J.; Cui, K. Alleviating soil sickness caused by aerobic monocropping: Responses of aerobic rice to nutrient supply. Field Crop. Res. 2008, 107, 129–136. [Google Scholar] [CrossRef]
- Nie, L.; Peng, S.; Bouman, B.A.M.; Huang, J.; Cui, K.; Visperas, R.M.; Park, H.K. Alleviating soil sickness caused by aerobic monocropping: responses of aerobic rice to soil oven-heating. Plant Soil 2007, 300, 185–195. [Google Scholar] [CrossRef]
- Fan, S.; Chan-Kang, C. Is small beautiful? Farm size, productivity, and poverty in Asian agriculture. Agr. Econ. 2005, 32, 135–146. [Google Scholar] [CrossRef]
- Makurira, H.; Savenije, H.HG.; Uhlenbrook, S.; Rockstrom, J.; Senzanje, A. The effect of system innovations on water productivity in subsistence rainfed agr sys in semi-arid Tanzania. Agr. Water Manage. 2011, 98, 1696–1703. [Google Scholar] [CrossRef]
- Jama, B.; Pizarro, G. Agriculture in Africa: Strategies to improve and sustain smallholder production systems. Reducing the impact of poverty on health and human development. Sci. Approaches 2008, 1136, 218–232. [Google Scholar]
- Lal, R.; Griffin, M.; Apt, J.; Lave, L.; Morgan, M.G. Managing soil carbon. Science 2004, 304, 393. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil carbon sequestration: An on-farm assessment. Soil Sci. Soc. Amer. J. 2008, 72, 693–701. [Google Scholar]
- Lal, R. A soil suitability guide for different tillage systems in the tropics. Soil Till. Res. 1985, 5, 179–196. [Google Scholar]
- Toliver, D.K.; Larson, J.A.; Roberts, R.K.; English, B.C.; Ugarte, T.D.G. Effects of no-till on yields as influenced by crop and environmental factors. Agron. J. 2012, 104, 530–541. [Google Scholar] [CrossRef]
- Labreuche, J.; Lellahi, A.; Malaval, C.; Germon, J.-C. Impact of no-tillage agricultural methods on the energy balance and the greenhouse gas balance of cropping systems. Cah. Agric. 2011, 20, 204–215. [Google Scholar]
- He, J.; McHugh, A.D.; Li, H.W.; Wang, Q.J.; Li, W.Y. Permanent raised beds improved soil structure and yield of spring wheat in arid north-western China. Soil Use Manage. 2012, 28, 536–543. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration in India. Climatic Change 2004, 65, 277–296. [Google Scholar]
- Lal, R. Offsetting China’s CO2 emissions by soil carbon sequestration. Climatic Change 2004, 63, 263–275. [Google Scholar] [CrossRef]
- Lal, R.; Follett, R.F.; Stewart, B.A.; Kimble, J.M. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci. 2007, 172, 943–956. [Google Scholar] [CrossRef]
- Batjes, N.H. Soil carbon stocks and projected changes according to land use and management: A case study for Kenya. Soil Use Manage. 2004, 20, 350–356. [Google Scholar] [CrossRef]
- Keay-Bright, J.; Boardman, J. The influence of land management on soil erosion in the sneeuberg mountains, central Karoo, South Africa. Land Degrad. Dev. 2007, 18, 423–439. [Google Scholar] [CrossRef]
- Savadaogo, P.; Sawadogo, L.; Tiveau, D. Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of burkina faso. Agr. Ecosyst. Environ. 2007, 118, 80–92. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Cordell, D.; Rosemarin, A.; Schroder, J.J.; Smit, A.L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef]
- Childers, D.L.; Corman, J.; Edwards, M.; Elser, J.J. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 2011, 61, 117–124. [Google Scholar] [CrossRef]
- Abelson, P.H. A potential phosphate crisis. Science 1999, 283, 2015. [Google Scholar] [CrossRef]
- Berkhout, E.D.; Schipper, R.A.; van Keulen, H.; Coulibaly, O. Heterogeneity in farmers’ production decisions and its impact on soil nutrient use: Results and implications from northern Nigeria. Agr. Syst. 2011, 104, 63–74. [Google Scholar] [CrossRef]
- Graham, R.D.; Welch, R.M.; Bouis, H.E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods, perspectives and knowledge gaps. Adv. Agron. 2001, 70, 77–142. [Google Scholar] [CrossRef]
- De Costa, W.; Sangakkara, U. Agronomic regeneration of soil fertility in tropical asian smallholder uplands for sustainable food production. J. Agric. Sci. 2006, 144, 111–133. [Google Scholar] [CrossRef]
- Van der Velde, M.; See, L.; You, L.; Balkovic, J.; Fritz, S. Affordable nutrient solutions for improved food security as evidenced by crop trials. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Beatty, P.H.; Good, A.G. Future prospects for cereals that fix nitrogen. Science 2011, 333, 416–417. [Google Scholar] [CrossRef]
- Kruppa, M.; Allan, A. Carbon Trading may be Ready for Its Next Act. Available online: http://www.nytimes.com/2011/11/14/business/energy-environment/carbon-trading-may-be-ready-for-its-next-act.html (accessed on 14 November 2011).
- Barthel, S.; Isendahl, C. Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecol. Econ. 2013, 86, 224–234. [Google Scholar] [CrossRef]
- Sahu, S.K. Localized food systems: The way towards sustainable livelihoods and ecological security—A review. J. Anim. Plant Sci. 2011, 21, 388–395. [Google Scholar]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Schuetze, C.F. Pursuing a Vision:Green and Livable; The New York Times: New York, NY, USA, 2011. [Google Scholar]
- Despommier, D. The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J. Consum. Prot. Food Saf. 2011, 6, 233–236. [Google Scholar]
- Drescher, A.W. Food for the Cities: Urban Agricultures in Developing Countries. Available online: http://www.actahort.org/books/643/643_29.htm (accessed on 22 August 2013).
- Ghosh, S. Food Production in Cities. Available online: http://www.actahort.org/books/643/643_30.htm (accessed on 22 August 2013).
- Whittinghill, L.J.; Rowe, D.B. The role of green roof technology in urban agriculture. Renew. Agric. Food Syst. 2012, 27, 314–322. [Google Scholar] [CrossRef]
- Diogo, R.V.C.; Schlecht, E.; Buerkert, A.; Rufino, M.C.; van Wijk, M.T. Increasing nutrient use efficiency through improved feeding and manure management in urban and peri-urban livestock units of a west African city: A scenario analysis. Agr. Syst. 2013, 114, 64–72. [Google Scholar] [CrossRef]
- Zhou, D.; Matsuda, H.; Hara, Y.; Takeuchi, K. Potential and observed food flows in a Chinese city: A case study of Tianjin. Agr. Hum. Values 2012, 29, 481–492. [Google Scholar] [CrossRef]
- Mason, D.; Knowd, I. The emergence of urban agriculture: Sydney, Australia. Int. J. Agr. Sustain. 2010, 8, 62–71. [Google Scholar] [CrossRef]
- Lee-Smith, D. Cities feeding people: An update on urban agriculture in equatorial Africa. Environ. Urban 2010, 22, 483–499. [Google Scholar]
- Guitart, D.; Pickering, C.; Byrne, J. Past results and future directions in urban community gardens research. Urban Urban Green 2012, 11, 364–373. [Google Scholar]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar]
- Buerkert, A.; Schlecht, E. The biofuel debate—Status quo and research needs to meet multiple goals of food, fuel and ecosystem services in the tropics and subtropics. J. Agric. Rural Dev. Trop. Subtro. 2009, 110, 1–8. [Google Scholar]
- Solomon, D.D. Biofuels and sustainability. Ann. N. Y. Acad. Sci. 2010, 1185, 119–134. [Google Scholar] [CrossRef]
- Stokstad, E. Could less meat mean more food? Science 2010, 327, 810–811. [Google Scholar]
- Gonzalez, A.D.; Frostell, B.; Carlsson-Kanyama, A. Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy 2011, 36, 562–570. [Google Scholar]
- McAlpine, C.A.; Etter, A.; Fearnside, P.M.; Seabrook, L.; Laurance, W.F. Increasing world consumption of beef as a driver of regional and global change: A call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Global Environ. Change 2009, 19, 21–33. [Google Scholar]
- Marlow, H.J.; Hayes, W.K.; Soret, S.; Carter, R.L.; Schwab, E.R. Diet and the environment: Does what you eat matter? Amer. J. Clin. Nutr. 2009, 89, S1699–S1703. [Google Scholar] [CrossRef]
- BBC. World’s First Lab-Grown Hamburger is Eaten in London. Available online: http://www.bbc.co.uk/news/science-environment-23576143 (accessed on 28 August 2013).
- Weber, C.L.; Matthews, H.S. Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol. 2008, 42, 3508–3513. [Google Scholar]
- Carlsson-Kanyama, A.; González, A.D. Potential contributions of food consumption patterns to climate change. Amer. J. Clin. Nutr. 2009, 89, S1704–S1709. [Google Scholar]
- Gerbens-Leenes, P.W.; Nonhebel, S. Consumption patterns and their effects on land required for food. Ecol. Econ. 2002, 42, 185–199. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Nonhebel, S; Ivens, W.P.P.F. A method to determine land requirements relating to food consumption patterns. Agr. Ecosyst. Environ. 2002, 90, 47–58. [Google Scholar] [CrossRef]
- Fedoroff, N.Z.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, R.V.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; FAO: Rome, Italy, 2011; p. 29. [Google Scholar]
- Ejeta, G. African green revolution needn’t be a mirage. Science 2010, 327, 831–832. [Google Scholar] [CrossRef]
- Nakhumwa, T.O.; Hassan, R.M. Optimal management of soil quality stocks and long-term consequences of land degradation for smallholder farmers in Malawi. Environ. Resour. Econ. 2012, 52, 415–433. [Google Scholar] [CrossRef]
- Sterk, G. Causes, consequences and control of wind erosion in Sahelian Africa: A review. Land Degrad. Dev. 2003, 14, 95–108. [Google Scholar] [CrossRef]
- Khan, S.; Hanjra, M.A. Footprints of Water and Energy Inputs in Food Production—Global perspectives. Food Policy 2009, 34, 130–140. [Google Scholar]
- Qureshi, A.S. Water management in the Indus basin in Pakistan: challenges and opportunities. Mt. Res. Dev. 2011, 31, 252–260. [Google Scholar] [CrossRef]
- Olsson, L.; Jerneck, A. Farmers fighting climate change-from victims to agents in subsistence livelihoods. Climate Change 2010, 1, 363–373. [Google Scholar]
- Hurni, H.; Herweg, K.; Portner, B.; Liniger, H. Soil Erosion and Conservation in Global Agriculture; Braimoh, A.K., Vlek, P.L.G., Eds.; Springer: Verlag, Netherlands, 2009; pp. 41–71. [Google Scholar]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Obersteiner, M.; Penuelas, J.; Ciais, P.; van der Velde, M.; Janssens, I.A. The phosphorous trilemma. Nat GeoSci 2013, 6, 897–898. [Google Scholar] [CrossRef]
- Gunders, D. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. Available online: http://www.nrdc.org/food/files/wasted-food-ip.pdf (accessed on 22 August 2013).
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Johnston, M.; Licker, R.; Foley, J.; Holloway, T.; Mueller, N.D. Closing the gap: Global potential for increasing biofuel production through agricultural intensification. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Kayombo, B.; Lal, R. Tillage systems and soil compaction in Africa. Soil Till. Res. 1993, 27, 35–72. [Google Scholar] [CrossRef]
- Kayombo, B.; Lal, R. Effects of soil compaction by rolling on soil structure and development of maize in no-till and ploughing systems in a tropical alfisol. Soil Till. Res. 1986, 7, 117–134. [Google Scholar] [CrossRef]
- Mekuria, W.; Veldkamp, E.; Halle, M.; Nyssen, J.; Muys, B. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J. Arid Environ. 2007, 69, 270–284. [Google Scholar] [CrossRef]
- Ford, J.D. Vulnerability of inuit food systems to food insecurity as a consequence of climate change: A case study from igloolik, nunavut. Reg. Environ. Change 2009, 9, 83–100. [Google Scholar] [CrossRef]
- Soussana, J.F.; Fereres, E.; Long, S.P.; Mohren, F.G.M.J.; Pandya-Lorch, R. A European science plan to sustainably increase food security under climate change. Glob. Change Biol. 2012, 18, 3269–3271. [Google Scholar]
- Bows, A.; Dawkins, E.; Gough, C.; Mander, S.; Thom, L.; Thornley, P.; Wood, R. What’s Cooking: Adaptation & Mitigation in the UK Food System; Sustainable Consumption Institute, University of Manchester: Manchester, UK, 2012. [Google Scholar]
- Blum, W.E.H.; Eswaran, H. Soils for sustaining global food production. J. Food Sci. 2004, 69, 37–42. [Google Scholar]
- Lal, R.; Safriel, U.; Boer, B. Zero Net Land Degradation. UNCCD Position Paper for Rio+20. Bonn, Germany 2012. Available online: http://www.unccd.int/Lists/SiteDocumentLibrary/Rio+20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf (accessed on 14 November 2011).
- Gower, J.W.; Palmer, M. Sustainable agricultural development in Sub-Saharan Africa: The case for a paradigm shift in land husbandry. Soil Use Manage. 2008, 24, 92–99. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Montanarella, L.; Vargas, R. Global governance of soil resources as a necessary condition for sustainable development. Curr. Opin. Environ. Sustain. 2012, 4, 559–564. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lal, R. Climate Strategic Soil Management. Challenges 2014, 5, 43-74. https://doi.org/10.3390/challe5010043
Lal R. Climate Strategic Soil Management. Challenges. 2014; 5(1):43-74. https://doi.org/10.3390/challe5010043
Chicago/Turabian StyleLal, Rattan. 2014. "Climate Strategic Soil Management" Challenges 5, no. 1: 43-74. https://doi.org/10.3390/challe5010043
APA StyleLal, R. (2014). Climate Strategic Soil Management. Challenges, 5(1), 43-74. https://doi.org/10.3390/challe5010043