How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field
Abstract
:1. Introduction
2. Hydrothermalism: Early Earth and Present-Day
3. Hydrothermalism: Martian Environments
4. Los Géiseres del Tatio
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brock, T.D. Life at high temperatures. Science 1967, 158, 1012–1019. [Google Scholar] [CrossRef]
- Brock, T.D. Thermophilic Microorganisms and Life at High Temperatures; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1978. [Google Scholar]
- Stetter, K.O.; Fiala, G.; Huber, G.; Huber, G.; Segerer, A. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 1990, 75, 117–124. [Google Scholar] [CrossRef]
- Stetter, K.O. Hyperthermophiles in the history of life. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?); Bock, G.R., Goode, J.A., Eds.; Wiley: Chichester, UK, 1996; pp. 1–18. [Google Scholar]
- Stetter, K.O. Hyperthermophiles in the history of life. Phil. Trans. R. Soc. 2006, B361, 1837–1843. [Google Scholar] [CrossRef]
- Lowell, R.P. Modeling continental and submarine hydrothermal systems. Rev. Geophys. 1991, 29, 457–476. [Google Scholar] [CrossRef]
- Arndt, N.T.; Nisbet, E.G. Processes on the young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 2012, 40, 521–549. [Google Scholar] [CrossRef]
- Delaye, L.; Becerra, A.; Lazcano, A. The nature of the last common ancestor. In The Genetic Code and the Origin of Life; de Pouplana, L.R., Ed.; Kluwer Academic: New York, NY, USA; Plenum Publishers: New York, NY, USA, 2004; pp. 34–47. [Google Scholar]
- Stetter, K.O. Volcanoes, hydrothermal venting, and the origin of life. In Volcanoes and the Environment; Martì, J., Ernst, G.G.J., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 175–206. [Google Scholar]
- Pace, N.R. Origin of life—Facing up to the physical setting. Cell 1991, 65, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Lazcano, A. The origin of life—Did it occur at high temperatures? J. Mol. Evol. 1995, 41, 689–692. [Google Scholar] [CrossRef]
- Gribaldo, S.; Forterre, P. Looking for the most “primitive” life forms: Pitfalls and progresses. In Lectures in Astrobiology; Gargaud, M., Barbier, B., Martin, H., Reisse, J., Eds.; Springer: Berlin, Germany, 2006; Volume 1, pp. 195–215. [Google Scholar]
- Waring, G.A. Thermal Springs of the United States and Other Countries of the World, A Summary. US Geological Survey: Reston, VA, USA, 1965. [Google Scholar]
- Rowe, J.J.; Fournier, R.O.; Morey, G.W. Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960–1965. Geol. Surv. Bull. 1973, 1303, 1–31. [Google Scholar]
- Cortecci, G.; Boschetti, T.; Mussi, M.; Herrera Lameli, C.; Mucchino, C.; Barbieri, M. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem. J. 2005, 39, 547–571. [Google Scholar] [CrossRef]
- Darrah, T.H.; Tedesco, D.; Tassi, F.; Vaselli, O.; Cuoco, E.; Poreda, R.J. Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift. Chem. Geol. 2012, 339, 16–29. [Google Scholar] [CrossRef]
- Cavalazzi, B.; Barbieri, R.; Hagos, M.; Capaccioni, B.; Agangi, A.; Gasparotto, G.; Palazzo, Q.; Kiros, K.; Glamoclija, M.; Rossi, A.P. Extreme among Extremes: Salt and Sulphur Springs of the Dallol (Danakil Depression, Ethiopia) and Their Astrobiological Role. In Proceedings of the 14th European Astrobiology Conference (EANA 2014), Edinburgh, UK, 13–16 October 2014.
- Porco, C.C.; Helfenstein, P.; Thomas, P.C.; Ingersoll, A.P.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R.; Roatsch, T.; et al. Cassini observes the active south pole of Enceladus. Science 2006, 311, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Iess, L.; Stevenson, D.J.; Parisi, M.; Hemingway, D.; Jacobson, R.A.; Lunine, J.I.; Nimmo, F.; Armstrong, J.W.; Asmar, S.W.; Ducci, M.; et al. The gravity field and interior structure of Enceladus. Science 2014, 344, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Soderblom, L.A.; Kieffer, S.W.; Becker, T.L.; Brown, R.H.; Cook, A.F.; Hansen, C.J.; Johnson, T.V.; Kirk, R.L.; Shoemaker, E.M. Triton’s geyser-like plumes: Discovery and basic characterization. Science 1990, 250, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Burch, J.L.; Goldstein, J.; Lewis, W.S.; Young, D.T.; Coates, A.J.; Dougherty, M.K.; André, N. Tethys and Dione as sources of outward-flowing plasma in Saturn’s magnetosphere. Nature 2007, 447, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Lipps, J.H.; Rieeboldt, S. Habitats and taphonomy of Europa. Icarus 2005, 177, 515–527. [Google Scholar] [CrossRef]
- Kieffer, H.H.; Christensen, P.R.; Titus, T.N. CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 2006, 442, 793–796. [Google Scholar] [CrossRef]
- Farmer, J.D. Hydrothermal systems on Mars: An assessment of present evidence. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?); Bock, G.R., Goode, J.A., Eds.; Wiley: Chichester, UK, 1996; pp. 273–295. [Google Scholar]
- Pirajno, F.; van Kranendonk, M.J. Review of hydrothermal processes and systems on Earth and implications for Martian analogues. Aust. J. Earth Sci. 2005, 52, 329–351. [Google Scholar] [CrossRef]
- Schulze-Makuch, D.; Dohm, J.M.; Fan, C.; Fairén, A.G.; Rodriguez, J.A.P.; Baker, V.R.; Fink, W. Exploration of hydrothermal targets on Mars. Icarus 2007, 189, 308–324. [Google Scholar] [CrossRef]
- Newsom, H.E. Heated lakes on Mars. In Lakes on Mars; Cabrol, N.A., Grin, E.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 93–110. [Google Scholar]
- Squyres, S.W.; Aharonson, O.; Clark, B.C.; Cohen, B.A.; Crumpler, L.; de Souza, P.A.; Farrand, W.H.; Gellert, R.; Grant, J.; Grotzinger, J.P.; et al. Pyroclastic activity at Home Plate in Gusev crater, Mars. Science 2007, 316, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Squyres, S.W.; Arvidson, R.E.; Ruff, S.W.; Gellert, G.; Morris, R.V.; Ming, D.W.; Crumpler, L.; Farmer, J.D.; des Marais, D.J.; Yen, A.; et al. Detection of silica-rich deposits on Mars. Science 2008, 320, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K.E.; Johnson, J.R.; Morris, R.V.; Rice, M.S.; Arvidson, R.E.; Bell, J.F., III; Christensen, P.R.; et al. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Ruff, S.W.; Niles, P.B.; Alfano, F.; Clarke, A.B. Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology 2014, 42, 359–362. [Google Scholar] [CrossRef]
- Morris, R.V.; Ruff, S.W.; Gellert, R.; Ming, D.W.; Arvidson, R.E.; Clark, B.C.; Golden, D.C.; Siebach, K.; Klingelhöfer, G.; Schröder, C.; et al. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 2010, 329, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F.; Howard, M.T. Atmospheric composition and climate on the early Earth. Phil. Trans. R. Soc. 2006, B361, 1733–1742. [Google Scholar] [CrossRef]
- Lunine, J.I. Physical conditions on the early earth. Phil. Trans. R. Soc. 2006, B361, 1721–1731. [Google Scholar] [CrossRef]
- Knauth, L.P. Origin and diagenesis of cherts: An isotopic perspective. In Isotopic Signatures and Sedimentary Records; Clauer, N., Chandhuri, S., Eds.; Springer: Berlin, Germany, 1992; pp. 123–152. [Google Scholar]
- Robert, F.; Chaudisson, M. A paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 2006, 443, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Sleep, N.H. The Hadean-Archean environment. Cold Spring Harb. Perspect. Biol. 2010, 2. [Google Scholar] [CrossRef]
- Pace, N.R. A molecular view of microbial diversity and the biosphere. Science 1997, 276, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.; Levison, H.F.; Tsiganis, K.; Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 2005, 435, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramov, O.; Mojzsis, S.J. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 2009, 459, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Corliss, J.B.; Dyamond, J.; Gordon, L.I.; Edmond, J.M.; von Herzen, R.P.; Ballard, R.D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; et al. Submarine thermal springs on the Galápagos rift. Science 1979, 203, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 308°N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.S.; Karson, J.A.; Früh-Green, G.L.; Yoerger, D.R.; Shank, T.M.; Butterfield, D.A.; Hayes, J.M.; Schrenk, M.O.; Olson, E.J.; Proskurowski, G.; et al. A serpentinite-hosted ecosystem: The Lost City Hydrothermal Field. Science 2005, 307, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Foustoukos, D.I.; Savov, I.P.; Janecky, D.R. Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30°N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2008, 72, 5457–5474. [Google Scholar] [CrossRef]
- Bradley, A.S.; Summons, R.E. Multiple origins of methane at the Lost City Hydrothermal Field. Earth Planet. Sci. Lett. 2010, 297, 34–41. [Google Scholar] [CrossRef]
- Van Kranendonk, M.J.; Webb, G.E.; Kamber, B.S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara craton, ans support for a reducing Archaean ocean. Geobiology 2003, 1, 91–108. [Google Scholar]
- Gaucher, E.A.; Kratzer, J.T.; Randall, R.N. Deep phylogenyhow a tree can help characterize early life on earth. Cold Spring Harb. Perspect. Biol. 2010, 2. [Google Scholar] [CrossRef]
- Klatt, C.G.; Inskeep, W.P.; Herrgard, M.J.; Jay, Z.J.; Rusch, D.B.; Tringe, S.G.; Parenteau, M.N.; Ward, D.M.; Boomer, S.M.; Bryant, D.A.; et al. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front. Microbiol. 2013, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Whitton, B.A. Ecology of Cyanobacteria II. Their Diversity in Space and Time; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Knoll, A.H. Cyanobacteria and earth history. In The Cyanobacteria. Molecular Biology, Genomics and Evolution; Herrero, A., Flores, E., Eds.; Caister Academic Press: Norfolk, UK, 2008; pp. 1–19. [Google Scholar]
- Schopf, J.W. The fossil record of cyanobacteria. In Ecology of Cyanobacteria II. Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 15–36. [Google Scholar]
- Billi, D.; Friedman, I.; Ocampo-Friedman, R. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 2000, 66, 1489–1492. [Google Scholar] [CrossRef] [PubMed]
- Baqué, M.; Viaggiu, E.; Scalzi, G.; Billi, D. Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles 2012, 17, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Stivaletta, N.; Barbieri, R.; Billi, D. Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig. Life Evol. Biosph. 2012, 42, 187–200. [Google Scholar] [PubMed]
- Friedmann, E.I.; Ocampo-Friedmann, R. A Primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv. Space Res. 1995, 15, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Gumerov, V.; Mardanov, A.; Beletsky, A.; Bonch-Osmolovskaya, E.; Ravin, N. Molecular analysis of microbial diversity in the Zavarzin spring, Uzon Caldera, Kamchatka. Microbiology 2011, 80, 244–251. [Google Scholar] [CrossRef]
- Skok, J.R.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Murchie, S.L. Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nat. Geosci. 2010, 3, 838–841. [Google Scholar] [CrossRef]
- Cousins, C.R.; Crawford, I.A.; Carrivick, J.L.; Gunn, M.; Harris, J.; Kee, T.P.; Karlsson, M.; Carmody, L.; Cockell, C.; Herschy, B.; et al. Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. J. Volcanol. Geoth. Res. 2013, 256, 61–77. [Google Scholar]
- Mangold, N.; Carter, J.; Poulet, F.; Dehouck, E.; Ansan, V.; Loizeau, D. Late Hesperian aqueous alteration at Majuro crater, Mars. Planet. Space Sci. 2012, 72, 18–30. [Google Scholar] [CrossRef]
- Marzo, G.A.; Davila, A.F.; Tornabene, L.L.; Dohm, J.M.; Fairen, A.G.; Gross, C.; Kneissl, T.; Bishop, J.L.; Roush, T.L.; McKay, C.P. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 2010, 208, 667–683. [Google Scholar] [CrossRef]
- Pondrelli, M.; Rossi, A.P.; Ori, G.G.; Van Gasselt, S.; Praeg, D.; Ceramicola, S. Mud volcanoes in the geologic record of Mars: The case of Firsoff crater. Earth Planet. Sci. Lett. 2001, 304, 511–519. [Google Scholar] [CrossRef]
- Franchi, F.; Cavalazzi, B.; Pierre, C.; Barbieri, R. New evidences of hydrothermal fluids circulation at the Devonian Kess Kess mounds, Hamar Laghdad (eastern Anti-Atlas, Morocco). Geol. J. 2014. [Google Scholar] [CrossRef]
- Franchi, F.; Rossi, A.P.; Pondrelli, M.; Cavalazzi, B. Geometry, stratigraphy and evidences for fluid expulsion within Crommelin crater deposits, Arabia Terra, Mars. Planet. Space Sci. 2014, 92, 34–48. [Google Scholar] [CrossRef]
- Mangold, N.; Poulet, F.; Mustard, J.F.; Bibring, J.-P.; Gondet, B.; Langevin, Y.; Ansan, V.; Masson, P.; Fassett, C.; Head, J.W., III; et al. Mineralogy of the Nili Fossae region with OMEGA/Mars. Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Mustard, J.F.; Ehlmann, B.L.; Murchie, S.L.; Poulet, F.; Mangold, N.; Head, J.W.; Bibring, J.-P.; Roach, L.H. Composition, morphology, and stratigraphy of Noachian crust around the Isidis Basin. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Michalski, J.R.; Niles, P.B. Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 2010, 3, 751–755. [Google Scholar] [CrossRef]
- Cabrol, N.A.; Wettergreen, D.; Warren-Rhodes, K.; Grin, E.A.; Moersch, J.; Diaz, G.C.; Cockell, C.S.; Coppin, P.; Demergasso, C.; Dohm, J.M.; et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Warren-Rhodes, K.; Weinstein, S.; Dohm, J.; Piatek, J.; Minkley, E.; Hock, A.; Cockell, C.; Pane, D.; Ernst, L.A.; Fisher, G.; et al. Searching for microbial life remotely: Satellite-to-rover habitat mapping in the Atacama Desert, Chile. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Jones, B.; Renaut, R.W. Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile. Sedimentology 1997, 44, 287–304. [Google Scholar]
- Fernandez-Turiel, J.L.; García-Vallés, M.; Gimeno, D.; Saavedra-Alonso, J.; Martínez-Manent, S. The hot spring and geyser sinters of El Tatio, Northern Chile. Sedim. Geol. 2005, 180, 125–147. [Google Scholar] [CrossRef]
- Barbieri, R.; Cavalazzi, B.; Stivaletta, N.; Lopez-Garcia, P. Silicified biota in high-altitude, geothermally influenced ignimbrites at El Tatio Geyser Field, Andean Cordillera (Chile). Geomicrobiol. J. 2014, 31, 493–508. [Google Scholar] [CrossRef]
- Glennon, J.A.; Pfaff, R.M. The extraordinary thermal activity of El Tatio geyser field, Antofagasta Region, Chile. GOSA Trans. 2003, 8, 31–78. [Google Scholar]
- Dohm, J.M.; Miyamoto, H.; Ori, G.G.; Fairén, A.G.; Davila, A.F.; Komatsu, G.; Mahaney, W.C.; Williams, J.-P.; Joye, S.B.; di Achille, G.; et al. An inventory of potentially habitable environments on Mars: Geological and biological perspectives. Geol. Soc. Am. Special Pap. 2011, 483, 317–347. [Google Scholar]
- Cady, S.L.; Farmer, J.D. Fossilization processes in siliceous thermal springs: Trends in preservation along thermal gradients. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?); Brock, G.R., Goode, J.A., Eds.; Wiley: Chichester, UK, 1996; pp. 150–173. [Google Scholar]
- Michalski, J.R.; Cuadros, J.; Niles, P.B.; Parnell, J.; Rogers, A.D.; Wright, S.P. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 2013. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral-Systems; Springer: Berlin, Germany, 2010. [Google Scholar]
- Baker, V.R. Water and the Martian landscape. Nature 2001, 412, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Jakosky, B.M.; Phillips, R.J. Mars’ volatile and climate history. Nature 2001, 412, 237–244. [Google Scholar] [CrossRef]
- Manga, M.; Patel, A.; Dufek, J.; Kite, E.S. Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Greeley, R.; Schneid, B.D. Magma generation on Mars: Amounts, rates, and comparisons with Earth, Moon, and Venus. Science 1991, 254, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Keszthelyi, L.; Mcewen, A. Comparison of flood lavas on Earth and Mars. In The Geology of Mars: Evidence from Earth-Based Analogs; Chapman, M.G., Ed.; Cambridge University Press: Cambridge, UK, 2007; pp. 126–150. [Google Scholar]
- Kerber, L.; Head, J.W.; Madeleine, J.-B.; Forget, F.; Wilson, L. The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits. Icarus 2012, 219, 358–381. [Google Scholar] [CrossRef]
- Grasby, S.E.; Londry, K.L. Biogeochemistry of hypersaline springs supporting a mid-continent marine ecosystem: An analogue for martian springs? Astrobiology 2007, 7, 662–683. [Google Scholar] [CrossRef]
- Tanaka, K.L. Dust and ice deposition in the martian geologic record. Icarus 2000, 144, 254–266. [Google Scholar] [CrossRef]
- Phoenix, V.R.; Bennett, P.C.; Engel, A.S.; Tyler, S.W.; Ferris, F.G. Chilean high-altitude hot-spring sinters: A model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 2006, 4, 15–28. [Google Scholar] [CrossRef]
- Phoenix, V.R.; Konhauser, K.O. Benefits of bacterial biomineralization. Geobiology 2008, 6, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C.S.; Catling, D.C.; Davis, W.L.; Snook, K.; Kepner, R.L.; Lee, P.; McKay, C.P. The ultraviolet environment of Mars: Biological implications past, present, and future. Icarus 2000, 146, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.E. Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: A phylogenetic dating approach. Geobiology 2004, 2, 1–20. [Google Scholar] [CrossRef]
- Barion, S.; Franchi, M.; Gallori, E.; di Giulio, M. The first lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales. Biosystems 2007, 87, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Evolution of Hydrothermal Ecosystems on Earth (and Mars?); Bock, G.R.; Goode, J.A. (Eds.) Wiley: Chichester, UK, 1996.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, R.; Cavalazzi, B. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field. Challenges 2014, 5, 430-443. https://doi.org/10.3390/challe5020430
Barbieri R, Cavalazzi B. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field. Challenges. 2014; 5(2):430-443. https://doi.org/10.3390/challe5020430
Chicago/Turabian StyleBarbieri, Roberto, and Barbara Cavalazzi. 2014. "How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field" Challenges 5, no. 2: 430-443. https://doi.org/10.3390/challe5020430
APA StyleBarbieri, R., & Cavalazzi, B. (2014). How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field. Challenges, 5(2), 430-443. https://doi.org/10.3390/challe5020430