Content-Aware Retargeted Image Quality Assessment
Abstract
:1. Introduction
2. Image Quality Evaluation Technology
3. Content-Aware Retarget Quality Evaluation Method
3.1. Local Similarity
3.2. Content Loss Degree
3.3. The Area Ratio of Salient Region
3.4. Evaluation Factor Fusion Processing
4. Experimental Results and Analysis
4.1. Determination of the Evaluation Function Coefficient
4.2. Evaluation Criteria
4.3. Database Analysis
4.4. Verification of the Effectiveness of the Evaluation Algorithm
4.5. Classification Measurement Evaluation Method
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Avidan, S.; Shamir, A. Seam carving for content-aware image resizing. ACM Trans. Graph. 2007, 26, 10–18. [Google Scholar] [CrossRef]
- Rubinstein, M.; Shamir, A.; Avidan, S. Improved seam carving for video retargeting. ACM Trans. Graph. 2008, 27, 16. [Google Scholar] [CrossRef]
- Zhao, D.F.; Wang, B.; Yang, D.W. Content-aware image resizing based on random permutation. J. Jilin Univ. Eng. Technol. Ed. 2015, 4, 1324–1328. [Google Scholar]
- Dong, W.; Zhou, N.; Paul, J.; Zhang, X. Optimized image resizing using seam carving and scaling. ACM Trans. Graph. 2009, 28, 125. [Google Scholar] [CrossRef]
- Oliveira, S.A.F.; Rocha Neto, A.R.; Bezerra, F.N. A novel Genetic Algorithms and SURF-Based approach for image retargeting. Expert Syst. Appl. 2016, 44, 332–343. [Google Scholar] [CrossRef]
- Wolf, L.; Guttmann, M.; Cohenor, D. Non-homogeneous Content-driven Video-retargeting. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; Volume 2007, pp. 1–6. [Google Scholar]
- Xu, J.; Kang, H.; Chen, F. Content-aware image resizing using quasi-conformal mapping. Vis. Comput. 2018, 34, 431–442. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Z. Fast genetic multi-operator image retargeting. In Proceedings of the 2016 Visual Communications and Image Processing (VCIP), Chengdu, China, 27–30 November 2016; pp. 1–4. [Google Scholar]
- Liang, Y.; Liu, Y.; Gutierrez, D. Objective Quality Prediction of Image Retargeting Algorithms. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fang, Z.; Yuan, F.; Yang, Y.; Yang, S.; Xiong, N.N. Optimized Multioperator Image Retargeting Based on Perceptual Similarity Measure. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2956–2966. [Google Scholar] [CrossRef]
- Wang, Y.; Tai, C.; Sorkine, O.; Lee, T. Optimized scale-and-stretch for image resizing. ACM Trans. Graph. 2008, 27, 118. [Google Scholar] [CrossRef]
- Lang, M.; Hornung, A.; Gross, M. A system for retargeting of streaming video. ACM Trans. Graph. 2009, 28, 126. [Google Scholar] [Green Version]
- Gao, H.; Tang, Y.; Jing, L.; Li, H.; Ding, H. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images. Sensors 2017, 17, 2427. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, S. A No Reference Image Quality Assessment Metric Based on Visual Perception. Algorithms 2016, 9, 87. [Google Scholar] [CrossRef]
- Li, L.; Xia, W.; Fang, Y.; Gu, K.; Wu, J.; Lin, W.; Qian, J. Color image quality assessment based on sparse representation and reconstruction residual. J. Vis. Commun. Image Represent. 2016, 38, 550–560. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, L.; Wang, X. No reference Screen content image quality assessment. J. Softw. 2018, 4, 973–986. [Google Scholar]
- Kamble, V.; Bhurchandi, K.M. No-reference image quality assessment algorithms: A survey. Optik Int. J. Light Electron Opt. 2015, 126, 1090–1097. [Google Scholar] [CrossRef]
- Charles, A.S.; Bertrand, N.P.; Lee, J.; Rozell, C.J. Earth-Mover’s distance as a tracking regularizer. In Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curaçao, Dutch Antilles, 10–13 December 2017; pp. 1–5. [Google Scholar]
- Kerouh, F.; Ziou, D.; Serir, A. Histogram modelling-based no reference blur quality measure. Signal Process. Image Commun. 2018, 60, 22–28. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Y.; Gu, K.; Lin, W.; Wang, S. Quality Assessment of DIBR-Synthesized Images by Measuring Local Geometric Distortions and Global Sharpness. IEEE Trans. Multimed. 2018, 20, 914–926. [Google Scholar] [CrossRef]
- Karimi, M.; Samavi, S.; Karimi, N.; Soroushmehr, S.R.; Lin, W.; Najarian, K. Quality assessment of retargeted images by salient region deformity analysis. J. Vis. Commun. Image Represent. 2017, 43, 108–118. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, L.; Chen, Z.; Chen, X. Objective quality assessment for image retargeting based on hybrid distortion pooled model. In Proceedings of the 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX), Pilos, Greece, 26–29 May 2015; pp. 1–6. [Google Scholar]
- Zhang, Y.; Fang, Y.; Lin, W.; Zhang, X.; Li, L. Backward Registration Based Aspect Ratio Similarity (ARS) for Image Retargeting Quality Assessment. IEEE Trans. Image Process. 2016, 25, 4286–4297. [Google Scholar] [CrossRef]
- Zhang, Y.; Ngan, K.N.; Ma, L.; Li, H. Objective Quality Assessment of Image Retargeting by Incorporating Fidelity Measures and Inconsistency Detection. IEEE Trans. Image Process. 2017, 26, 5980–5993. [Google Scholar] [CrossRef]
- Fu, Z.; Shao, F.; Jiang, Q.; Fu, R.; Ho, Y.S. Quality assessment of retargeted images using hand-crafted and deep-learned features. IEEE Access 2018, 6, 12008–12018. [Google Scholar] [CrossRef]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-Aware Saliency Detection. IEEE Trans. Pattern Anal. 2012, 34, 1915–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Lin, W.; Deng, C.; Ngan, K.N. Image Retargeting Quality Assessment: A Study of Subjective Scores and Objective Metrics. IEEE J. Sel. Top. Signal Process. 2012, 6, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, M.; Gutierrez, D.; Sorkine, O.; Shamir, A. Retarget-Me—A Benchmark for Image Retargeting. Available online: http://people.csail.mit.edu/mrub/retargetme/ (accessed on 22 February 2019).
- Karni, Z.; Freedman, D.; Gotsman, C. Energy-Based Image Deformation. Comput. Graph. Forum 2009, 28, 1257–1268. [Google Scholar] [CrossRef] [Green Version]
Database | MIT | CUHK |
---|---|---|
Number of original images | 37 | 57 |
Number of scaled images | 296 | 171 |
25% of scaled images | 184 | 46 |
50% of scaled images | 112 | 125 |
Number of scaling operations | 8 | 10 |
Subjective score | 210 | 64 |
Subjective scoring type | Pair-wise | MOS |
Contrast Algorithms | PLCC | SROCC | OR |
---|---|---|---|
EH | 0.3422 | 0.3288 | 0.2047 |
EMD | 0.2760 | 0.2904 | 0.1696 |
SIFT-flow | 0.3141 | 0.2899 | 0.1462 |
Fusion algorithm | 0.4361 | 0.4203 | 0.1462 |
HDPM | 0.6712 | 0.6897 | 0.1423 |
(Q Q’) | 0.5042 | 0.4224 | 0.1473 |
ARS-IRQA | 0.6835 | 0.6693 | 0.1401 |
BNSSD | 0.7422 | 0.7648 | 0.1373 |
Proposed algorithm | 0.7528 | 0.7754 | 0.1331 |
Contrast Algorithms | PLCC | SROCC | OR |
---|---|---|---|
EH | 0.3533 | 0.3278 | 0.2147 |
EMD | 0.2862 | 0.2984 | 0.1706 |
SIFT-flow | 0.3241 | 0.2799 | 0.1492 |
Fusion algorithm | 0.4463 | 0.4202 | 0.1471 |
HDPM | 0.6815 | 0.6687 | 0.1523 |
(Q Q’) | 0.6428 | 0.4669 | 0.1718 |
ARS-IRQA | 0.6835 | 0.6553 | 0.0916 |
BNSSD | 0.752 | 0.7608 | 0.1475 |
Proposed algorithm | 0.7758 | 0.7654 | 0.1435 |
Contrast Algorithm | MIT Attribute | Total | ||||||
---|---|---|---|---|---|---|---|---|
L/E | F/P | T | FO | GS | S | Mean | Std | |
EH | 0.040 | 0.190 | 0.060 | 0.167 | −0.004 | −0.012 | 0.083 | 0.268 |
EMD | 0.220 | 0.262 | 0.107 | 0.226 | 0.053 | 0.150 | 0.251 | 0.272 |
SIFT-flow | 0.097 | 0.252 | 0.119 | 0.218 | 0.085 | 0.071 | 0.145 | 0.262 |
Fusion algorithm | 0.431 | 0.390 | 0.286 | 0.389 | 0.438 | 0.523 | 0.415 | 0.296 |
HDPM | — | — | — | — | — | — | 0.471 | — |
(Q Q’) | 0.351 | 0.271 | 0.304 | 0.381 | 0.415 | 0.548 | 0.399 | — |
ARS-IRQA | 0.463 | 0.519 | 0.330 | 0.444 | 0.505 | 0.464 | 0.452 | 0.283 |
BNSSD | 0.448 | 0.552 | 0.423 | 0.494 | 0.497 | 0.471 | 0.473 | 0.257 |
Proposed algorithm | 0.674 | 0.680 | 0.522 | 0.602 | 0.621 | 0.497 | 0.599 | 0.076 |
Contrast Algorithm | Attribute | Score | ||||||
---|---|---|---|---|---|---|---|---|
Natural Scene | People | Texture | Foreground Objects | Geometric Objects | Symmetry | Mean | Std | |
EH | 0.0025 | −0.0006 | −0.0043 | −0.0343 | −0.0003 | 0.2423 | 0.0342 | 0.0938 |
EMD | 0.0037 | −0.0012 | −0.0057 | −0.0237 | 0.0008 | 0.2144 | 0.0313 | 0.0823 |
SIFT-flow | 0.0052 | 0.2121 | 0.1150 | 0.0273 | 0.0530 | −0.0392 | 0.0622 | 0.0817 |
Fusion algorithm | 0.0062 | 0.2213 | 0.1110 | 0.0120 | 0.0721 | 0.0752 | 0.0829 | 0.0719 |
HDPM | Null | 0.0865 | ||||||
(Q Q’) | 0.0059 | 0.2182 | 0.1350 | 0.0197 | 0.0659 | 0.0772 | 0.0870 | 0.0790 |
ARS-IRQA | 0.0063 | 0.3002 | 0.1428 | 0.0384 | 0.0784 | 0.0684 | 0.1058 | 0.1056 |
BNSSD | 0.0058 | 0.3223 | 0.2260 | 0.0422 | 0.0676 | 0.0692 | 0.1222 | 0.1237 |
Proposed algorithm | 0.0078 | 0.3714 | 0.2403 | 0.0637 | 0.0853 | 0.0943 | 0.1438 | 0.1356 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yu, M.; Guo, Y.; Liu, Y. Content-Aware Retargeted Image Quality Assessment. Information 2019, 10, 111. https://doi.org/10.3390/info10030111
Zhang T, Yu M, Guo Y, Liu Y. Content-Aware Retargeted Image Quality Assessment. Information. 2019; 10(3):111. https://doi.org/10.3390/info10030111
Chicago/Turabian StyleZhang, Tingting, Ming Yu, Yingchun Guo, and Yi Liu. 2019. "Content-Aware Retargeted Image Quality Assessment" Information 10, no. 3: 111. https://doi.org/10.3390/info10030111
APA StyleZhang, T., Yu, M., Guo, Y., & Liu, Y. (2019). Content-Aware Retargeted Image Quality Assessment. Information, 10(3), 111. https://doi.org/10.3390/info10030111