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Abstract: Data fragmentation and allocation has for long proven to be an efficient technique
for improving the performance of distributed database systems’ (DDBSs). A crucial feature
of any successful DDBS design revolves around placing an intrinsic emphasis on minimizing
transmission costs (TC). This work; therefore, focuses on improving distribution performance based
on transmission cost minimization. To do so, data fragmentation and allocation techniques are utilized
in this work along with investigating several data replication scenarios. Moreover, site clustering
is leveraged with the aim of producing a minimum possible number of highly balanced clusters.
By doing so, TC is proved to be immensely reduced, as depicted in performance evaluation. DDBS
performance is measured using TC objective function. An inclusive evaluation has been made in
a simulated environment, and the compared results have demonstrated the superiority and efficacy
of the proposed approach on reducing TC.
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1. Introduction

Despite the fact that numerous distributed database systems’ (DDBS) design methods have been
broadly presented in the recent years, there still exist many challenges that need to be addressed
for improving the quality of DDBS design, particularly those concerned with transmission costs
(TC). An increasing interest is still directed towards finding an efficient DDBS design that guarantees
a maintainable high performance in DDBSs. One of the crucial components of performance evaluation
in a distributed environment is the amount of data being transmitted over network sites while
queries are being addressed. Several previous works addressed this issue (known in literature as
transmission cost); however, very few have come up with a clear and decisive measure for DDBS
performance evaluation.

As a matter of fact, the challenging task of finding an efficient DDBS design is steadily driving
research in this field. On one extreme, this intriguing trend in research has led to the production of
a variety of different methods/techniques with the basic aim of promoting distribution productivity.
On the other extreme, the proliferation of these techniques has led to more confusion as it comes to select
which one is more effective than the other, at least from the distribution point of view. Nevertheless,
there has been also constant consensus on the principles and concepts, which underlie these methods
and techniques, by which each technique is to be evaluated [1]. Researchers, from DDBS design and
distributed computing domains, have been presenting several approaches to tackle the challenges of
the design of distributed systems. Some of these approaches are extended and enhanced to integrate
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different combination of tools to improve DDBS performance [2–8]. The findings of these approaches
are reinforced by testing them on either synthetized data, verified in a simulated environment, or on
real datasets, or even on both. In this work, we propose a data fragmentation and allocation approach
with the sole emphasis on reducing transmission cost (TC) to the minimum. The suggested approach
is oriented on developing data fragmentation, utilizing a site clustering algorithm, and suggesting
new data allocation scenarios. Moreover, an extensive evaluation has been made in comparison with
the work of [8], as it is the closest work for the present work of this paper. The evaluation results show
the undeniable enhancement on DDBS performance based on TC minimization.

The contributions of this paper include: (1) Developing a data fragmentation algorithm based on
an agglomerative hierarchical clustering, with the aim of reducing the number of iterations needed to
perform hierarchical clustering and finding solution space; (2) developing a site clustering technique
that seeks to produce a minimum number of high-balanced clusters; (3) introducing advanced scenarios
for data allocation and examining them in detail to find the best fitting one; and (4) finally, examining
the effectiveness of the data replication impact on DDBS performance through profoundly-done
internal and external evaluations.

The remainder of the paper is structured as follows. Section 2 provides a thorough investigation of
the recent closely-related works. Section 3 presents the proposed methodology. A practical experiment
is vividly illustrated in Section 4. Section 5 draws in-depth performance evaluation and vigorous
discussion on the obtained results. Finally, conclusions and future work directions are summarized in
Section 6.

2. Related Work

In DDBS design, it is consensually agreed-upon that the more precise the data partitioning and
allocation techniques, the better the performance and the lower the response time are likely to be
obtained [8]. In [8], a comprehensive taxonomy was given. This taxonomy was fine-grained and
comprehensively analyzed in both static and dynamic environments. The main issues addressed in
this taxonomy includes data fragmentation, data allocation, and replication. These issues have been
examined to classify and analyze a huge number of previously-made DDBSs works. The observation
of earlier works’ drawbacks was the drive aim of this taxonomy to produce more productive methods
to improve DDBS performance. It was found that TC minimization (including communication costs)
has been the key objective, for which most of old and recent works have been striving to achieve by
maximizing data locality and minimizing remote data access. Nevertheless, it was noted in taxonomy
that most of these works failed to provide a clear definition for TC as a performance metric, which is
considered as a huge shortcoming.

An improved system to fragment data at the initial stage of DDBS design and allocate fragmented
data at runtime over the cloud environment was presented in [4]. A Cloud Based Distributed
Database System (CB-DDBS) architecture over a cloud environment was developed. CB-DDBS adopted
a replication scenario so that DDBSMs are allowed to work in parallel to meet the client’s orders.
Even though the proposed algorithm of CB-DDBS was hugely driven by the Performance Optimality
Enhancement Algorithm (POEA) [9], authors had never indicated this inspiration. Moreover, selecting
a cluster leader was not practical enough to work in a real-world environment as most DDBSs have
the same specification for all of its members (nodes), specifically in the Peer-2-Peer network. On the
other hand, the data replication problem (DRP) was deeply addressed by [6] and formulated as
an integer linear problem, with an assumption of having overlapping horizontally-divided data.
In fact, the replication problem was looked at as an optimization problem to gain the intended aim of
having fragments’ copies and sites kept at a minimum. On the other extreme, [10] drew a method based
on the particle swarm optimization (PSO) algorithm to shorten TC. The core of this study was to solve
a data allocation problem (DAP) by utilizing the PSO algorithm. Fragments allocation over sites had
been done with the PSO algorithm, and its performance was evaluated on 20 different tested problems.
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On the same line, in [2], an enhanced version of [3] was developed. The work sought to incorporate
a site clustering algorithm, for network sites, and a mathematical replication model for cost-effective
data allocation [3]. A significant enhancement was observed in terms of overall DDBSs performance
through decreasing TC among network sites. The constraints of clusters and sites were also taken into
account to strengthen the proposed efficiency. In-depth experiments were carried out to solely prove
the effectiveness of this technique, with respect to minimizing TC and promoting DDBS performance.
As a matter of fact, an evidential reduction in TC and clear enhancement in DDBSs performance had
been demonstrated. Additionally, this work was profoundly evaluated against [3], with respect to the
objective function of [2]. Results positively proved that [2] far outperformed [3], in terms of decreasing
TC and significantly increasing the overall DDBS productivity.

On the other hand, [11] used a Genetic Algorithm (GA) with Mahalanobis distance along with
the K-means clustering algorithm as an influential combination to propose a two-phase clustering
algorithm for distributed datasets. In first phase, GA is utilized in parallel on fragments, which were
assigned to different sites. Mahalanobis distance was used as fitness value in GA. To draw a better
representation of initial data, covariance between data points were considered in Mahalanobis
distance. In second phase, to find final results, K-means with K-means++ initialization was applied
on intermediate output. To conduct experiments and measure performance, multiple real-life and
synthetic datasets were used to implement the technique in the framework of Hadoop.

On the same page, in [5], an enhanced vertical fragmentation approach was presented using the
K-means Rough (KR) clustering technique. Several experiments were conducted and results using KR
showed that: (1) the smaller the number of clusters K, the larger the total time and the satisfactory
error average cost and memory cost K-means algorithm were obtained; (2) the larger the number of
clusters of k, the more optimized were these three criteria in comparison with the normal k-Means
algorithm. Lastly, in [12,13], the authors proposed an approach of a greedy nature to fragment and
allocate fragments in DDBS. While they used an aggregated similarity to cluster similar queries and
find fragments, they were planning to use a greedy algorithm to assign resulted fragments into relative
sites. However, they neither demonstrated the approach mechanism nor conducted experiments to
verify the approach effectiveness.

In the proposed work of this paper, a comprehensive approach is released for the purpose of
finding the best fitting technique for DDBS design. The intended technique is meant to further minimize
TC while giving an obvious definition for TC. It is worth mentioning that the criteria involved in
taxonomy [7] are also considered in this paper. TC is being lessened by increasing data locality and
decreasing remote data access, while communication overhead is significantly reduced by adopting
replication scenarios.

3. Methodology

The proposed architecture and heuristics of this approach are clearly depicted in Figure 1.
A five-phase process was proposed as follows: In the first phase, for data fragmentation, queries (Qs)
under consideration were set to produce (N) disjointed fragments, using hamming distance based on
a hierarchical clustering process. The proposed refinement process, in second phase, was meant to draw
non-overlapping schemes from overlapping schemes produced from the first phase. The fragmentation
evaluator (FE) of [14] was employed with the aim of having the non-overlapping partitioning schema.
This schema is the survival schema as a result of applying FE on all disjoint schemes. In the third
phase, network sites were set to be grouped using the proposed clustering method. In the fourth
phase, a data allocation process was activated to work on the survival schema, so that schema was
set to be assigned to network clusters/sites in accordance with the data allocation model. The data
allocation process was bound to be activated competitively over (CN) clusters of sites, and (M) sites at
each cluster. These cluster were the results of applying the proposed clustering algorithm on network
sites, as will be explained in the site clustering section. Finally, in the fifth phase (as per the proposed
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data allocation model), all scenarios were thoroughly examined under different circumstances so that
the highest TC-reducing scenario was going to be selected and incorporated into the DDBS design.
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3.1. Fragmentation Cost Model

3.1.1. Objective Function

Where TFQ is the total frequency of each (k) query over all (M) sites, and XF is the binary
constant, which indicates 1 if the fragment (F) is placed in the site (S); and 0, otherwise. COM is
communication costs across clusters of sites (CCM) or within sites in each cluster (CSM). On the other
hand, selectivity (Q) is a rate of query k over fragment F, and is equal to (|Alij|/NAik), where |Alij|
is the attributes number in Fi, which are locally reached by Qk, and NAik is the entire number of
attributes in fragment Fi distantly accessed, in regard to Fj, by Qk. Finally, size (F) is the size of the
fragments under consideration in bytes.

Func(TC) = Minimize

(
q
∑

k=1

m
∑

j=1
TFQkf ∗ XFkj ∗COMsiSj ∗ {Selectivity (Qk)∗ size(Fk)}

)
, f = 1, .., n (1)

3.1.2. Cost Functions

Firstly, the model used a query set, supposedly taken from workload, to build an attribute query
matrix (AQM). Each aqmij refers to attribute Ai as it is contained by query Qk. A query frequency
matrix (QFM) was assumed to be given by the database administrator (DBA), so each qfmij provided
how many times each query was being released from its relevant site Sj. Using these requirements,
the model of vertical fragmentation was set to be working as per the following functions:

TFQkx =
q

∑
k=1

m

∑
j=1

QFMkj, x = 1 (2)
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AUMki =
m

∑
j=1

q

∑
k=1

TFQkx ∗AQMkj, x = 1 (3)

ASLk =
n

∑
i=1

q

∑
k=1

AUMki (4)

QACMik =
n

∑
i=1

q

∑
k=1

ASLk (5)

Sim (Q k1, Qk2) =
q

∑
k1=1

q

∑
k2=1

(1− dif(P((Q k1), Numerical Pattern(Qk2)) (6)

QDMk1k2 =
q

∑
k1=1

q

∑
k2=1

Sim (Q k1, Qk2) (7)

Where (Sim) stands for similarity. These functions; however, are further explained in the
self-explanatory steps in the results section.

3.1.3. Fragmentation Evaluator (FE)

To evaluate schemes, this work employs the FE, which was drawn in [14]. It has two metrics:
relevant remote access and irrelevant local access. The relevant remote access calculates the net access
costs of remote attributes stored at other sites, different from the site from which a query was issued.
On the other hand, the irrelevant local access associates with attributes that were observed by local
processing. Equation (8) computes the first term of FE, the square-error of the entire partition scheme
containing a certain number of “nf” fragments:

E2
nf =

nf

∑
i=1

Q

∑
q=1

[
TFQ∗ |Alik|

(
1− |Alik|

NAi

)]
(8)

where NA is the attributes number of the targeted relation. On the other hand, Equation (9) seeks to
provide the second term of FE, as it computes the ratio of remote attributes being accessed:

E2
ad =

nf

∑
i=1

Q

∑
q=1

[
m

∑
j=1

TFQi
qi∗ |Adik| ∗ (

|Adik|
NAiqk

)

]
(9)

where |AD| is the attributes number in Fi, which is remotely reached with regard to Fj, by Qk. Hence,
FE is given by its two metrics as follows:

FE = E2
nf + E2

Ad (10)

As a rule of thumb in FE evaluation, the lower the FE value is, the better the DDBS performance
is and vice versa.

3.2. Clustering Methodology

3.2.1. Query Merging

The numerical patterns of queries are used to merge queries carefully in clusters, using which,
fragments are bound to be produced. To calculate the differences between patterns as a similarity
function, hamming distance [15] was employed. These patterns are then gathered using the least
difference value (LDV) concept, Equations (6) and (7).
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3.2.2. Sites Grouping

In this work, sites were clustered by applying the concept of least difference value (LDV). In its
turn, LDV concept was used to group queries in [7], and, in fact, proved to be highly effective in
improving DDBS performance. LDV seeks to cluster points based on their least distance/difference.
Moreover, the LDV-based clustering was shown to outperform the threshold-based algorithm,
which was applied to cluster sites in [7]. Threshold-based clustering has sometimes been observed to
either shrink cluster numbers to an unpractical range or increase this number to an undesirable
extent [2], which leads, in both cases, to an unavoidable negative impact on DDBS rendering,
as described in the discussion section.

Problem Formulation

Given a set of sites S {S1, S2, . . . , Sm}, the clustering solution Cs is defined as a set of clusters C1,
. . . , Ct which draws the partitioning (clustering) of sites S. So, we can say that we had C ⊆ S, ∀ Ci ∈ C,
Ci ⊆ C; Ci t Ci+1 t Ci+2 t . . . t Ct = C; I = 1..t; ∀ Ci and Cj; Ci u Cj = �, where � is empty { }, as we
seek to produce disjointed clusters.

Clustering Algorithm

Initialization: Given a set of sites M, the communication costs matrix between sites, initial clusters
were initiated using the LDV concept.

Loop: For any new site, the following was done:

1. Calculate communication costs between the new site and each cluster using the average
communication costs. Average costs will be used as a decisive membership for each site with
respect to clusters under consideration.

2. The cluster of the lowest average cost is bound to be the candidate container for the site at hand.
3. If more than one candidate container is recorded, the container of the lowest distance to the

targeted site is the primary and sole container.
4. Repeat steps (1–3) until all sites are clustered successfully.

It is important to point out that, as opposed to a threshold-based algorithms [7,16], executing
a clustering algorithm, as per steps (1–4), ensured that no outliers could be produced due to the fact that
all sites were clustered. Consequently, this achievement of the proposed algorithm was observed to be
a great contribution, as no site/cluster could be lost. On the other hand, to perform a fair comparison
between the proposed work of this paper and [7], Table 1 provides the same communication costs
matrix, which is exclusively used for the first experiment in [7]. This experiment was done separately
for illustration purposes.

Table 1. Communication costs between sites [7].

Site# Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Site 1 0 10 8 2 4 6
Site 2 0 7 3 5 4
Site 3 0 3 2 5
Site 4 0 11 5
Site 5 0 5
Site 6 0

3.3. Allocation and Replication Model

3.3.1. Requirements

Given attribute set A = {A1, A2, ..., An} required by query set Q = {Q1, Q2, ..., Qk}, these queries
were bound to be grouped into (Q) query clusters {Cq1, Cq2, . . . ., CQcn}. Then query clusters were
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going to be allocated to M sites S = {S1, S2, . . . ., Sm}, which were already grouped into Cm clusters
of sites, Cs = {Cs1, Cs2, . . . ., CScm} in a fully-connected network. Let F = {F1, F2, ..., Fn} be the set of
disjointed partitions/fragments, which were obtained from fragmentation process. The allocation
model struggled to observe the optimal distribution of each partition/fragment (F) over clusters Cs,
and consequently on the sites of clusters individually.

3.3.2. Allocation Scenarios and Phases

Scenario 1 (Full Replication); Phase 1

Each fragment was going to be assigned to all clusters of sites. On the other hand, inside each
cluster, a fragment wass given for one single site.

Scenario 2 (Non-Replication); Phase 1

Each fragment was assigned to the cluster of the highest total access cost (TACC). This cost was
used as a controller to assign fragments over clusters. However, TACC is the maximum cost required
to reach fragments’ attributes separately.

Phase 2 for Both Scenarios 1 and 2

For each site, the net cost, which is a site’s total access cost (TACSij) to access Fi, was computed
and used as s decisive measure by which Fi’s allocation decision is taken. As per data cost
functions (Equation (12)), the TACS matrix is constructed using Attribute Access Matrix (AAM)
and Communication Cost Matrix (CMS). Using the TACS matrix, a fragment was set to be allocated to
the site of the highest access value, as shown in the results section.

Mixed Scenario 3 (Hybrid Replication, Full and Partial)

Each fragment is set to be assigned to all clusters as the full replication scenario is being adopted.
Fragments are given for more than one single site in each cluster as per the precisely calculated
threshold. This threshold; however, could be simply calculated by taking the average of maximum
and minimum transmission costs in each cluster. Then, each site that succeeds to surpass the threshold
is a candidate for holding a copy of the fragment in question. This scenario proves to be highly
efficient, mainly due the fact that updated queries grow slowly and slightly, reflecting the real-world
DDBS behavior. However, if update queries grow quickly and significantly (which is rare in the real
distribution environment), this scenario would be proven to be unsuitable.

3.3.3. Cost Functions

While Equation (11) computed the attribute access matrix of sites (AAMS), AAMS was used to
yield the total access cost matrix for all sites (TACS) with the help of Equation (11). In Equations (12)
and (13), the final allocation of fragments over the cluster of sites was decided when second and
third scenarios of allocation were being addressed. Finally, for data replication, this work adopted
the same model presented in [7]. Table 2 describes the site constraints, represented in virtual capacity
(in Megabyte), of the lower and upper allowed attribute limits for each site. LA and UA stand for
lower/Upper limit of attributes was allowed for each site to have.

AAMS =
q
∑

k=1

m
∑

j=1

n
∑

i=1
AQMik ∗ QFMji (11)

TACS =
m
∑

j1=1

n
∑

i=1

m
∑

j=1
AAMSij1 ∗ CMSji (12)

TACC =
m
∑

j1=1

n
∑

i=1

m
∑

j=1
AAMSij1 ∗ CCMji (13)
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Table 2. Site constraints.

Site S1 S2 S3 S4 S5 S6

Capacity
(MB) 15,500 12,200 9500 10,000 11,100 15,000

LA 1 1 1 1 1 1
UA 10 12 12 6 12 12

4. Practical Experiment

This experiment was conducted using a machine with a Intel core i3 duo processor, with a speed
of 2.80 GHz, 4 GB RAM, and a Windows 7, 32-bit operating system. C-sharp language was used to
analyze and interpret data given as initial input represented in the queries, query frequency matrix
(QFM) and communication costs matrix. To highlight the contribution of this work in terms of TC
reduction, we made an external evaluation with [7]. We created an environment that ensured a fair
comparison between our work of this paper and [7]. In other words, the same simulation environment
in which [7] was been implemented, was also adopted in this paper. To illustrate the mechanism of our
approach, one experiment was performed. The virtual network was assumed to be fully-connected
network of sites, as shown in Figure 2.
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It worth mentioning here that, in the first experiment, the proposed employee (Emp) dataset was
created in accordance with the description provided in Table 3. For the first experiment, the dataset
had six attributes and 300 rows. For the sake of simplifying computation and completeness, the schema
and attributes were re-drawn in this work. The Emp-no, Emp-name, Job-id, Salary, Location and
Dept-id, were referred to as A1, A2, A5, A6, A5, and A6, respectively.

Table 3. Emp database description.

Attributes Symbol Type Length (Bytes)

Emp-no A1 Nominal 4
Emp-name A2 Categorical 30

Job-id A3 Categorical 4
Salary A4 Numerical 3

Location A5 Categorical 5
Dept-id A6 Nominal 4
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For this experiment, it was assumed that the queries under consideration were eight queries
running against the dataset, say 50% to 85% of all queries.

Q1: Select A1, A2, A5, A6 from Emp where A1 in (1234, 261, 1239) and A3 = “Mang222”;
Q2: Select A3, A5 from Em where A5 in (‘site 1’, ‘site 3’, ‘site 6’);
Q3: Select A2, A4, A5 from Em;
Q4: Select A1, A3, A6 from Em where A6 = ‘dept2’;
Q5: Select A1, A2, A5 from Emp where A2 = “Jane” and A5 in (‘site 2’,‘site 5’);
Q6: Select A3, A4, A6 from Emp where A4 > 4500;
Q7: Select A2, A6 from Emp where A1 > 1234;
Q8: Select A1, A3, A5, A6 from Emp;

4.1. Implementation

To activate the clustering process, attribute incidences were taken as the initial input. The attribute
query matrix (AQM) was formed so that each AQMkj, Table 4, showed in which query (Qk) the attribute
(Aj) was contained.

Table 4. Attribute incidence matrix (AIM).

Query/Attribute A1 A2 A3 A4 A5 A6

Q1 1 1 0 0 1 1
Q2 0 0 1 0 1 0
Q3 0 1 0 1 1 0
Q4 1 0 1 0 0 1
Q5 1 1 0 0 1 0
Q6 0 0 1 1 0 1
Q7 0 1 0 0 0 1
Q8 1 0 1 0 1 1

Additionally, QFM (Table 5) was needed to perform clustering, presumably provided by DB
administrator. Each value (QFMkj) indicated the number of times each query Qk was issued from its
original site Sj.

Table 5. Query frequency matrix (QFM).

Query/Site S1 S2 S3 S4 S5 S6 TQF

Q1 2 0 0 0 1 3 6
Q2 2 2 0 0 3 0 7
Q3 0 0 3 3 0 0 6
Q4 0 0 0 1 0 3 4
Q5 0 2 0 0 0 2 4
Q6 0 1 1 3 0 0 5
Q7 2 0 0 1 0 0 3
Q8 0 1 1 0 2 1 5

Where TQF stands for total of query frequency. Then, using the fragmentation cost model, drawn
above, the query difference matrix (QDM) was produced as shown (Table 6). Each QDMij represented
the difference value between numerical patterns of Qi and Qj. A number of initial clustering was
undertaken in the algorithm in every phase of its cycle.
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Table 6. Query difference matrix (QDM).

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 0 4 3 3 1 5 2 2
Q2 4 0 3 3 3 3 4 2
Q3 3 3 0 6 2 4 3 5
Q4 3 3 6 0 4 2 3 1
Q5 1 3 2 4 0 6 3 3
Q6 5 3 4 2 6 0 3 3
Q7 2 4 3 3 3 3 0 4
Q8 2 2 5 1 3 3 4 0

4.2. Hierarchical Clustering Process

QDM, in its turn, was used as basic values for the clustering process. Tables 7 and 8 exhibit the
final results of applying the hierarchical clustering on QDM.

Table 7. QDM (final results).

Query Q1573 Q4826

Q1573 0 2
Q4826 2 0

Table 8. Final distribution of queries on clusters.

Cluster/Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

CQ1357 1 1 1 1
CQ2468 1 1 1 1

It was obvious that the clustering process needs four, |eight/two|, loops to have all solutions
added to the solution space, (Table 9).

Table 9. Solution space.

Solution # Cluster # Queries Contained

Solution 1 Cq1 Q1573 Q2468
Solution 2 Cq2 Q12357 Q468
Solution 3 Cq3 Q13578 Q246
Solution 4 Cq4 Q13567 Q248

4.3. Refinement Process

The overlapping partitioning schemes (PS) produced in the fragmentation phase were further
refined. A process was used to properly examine each PS attribute, attribute by attribute, to decide their
belonging within the PS, in which it would be allocated, Table 10. As the decisive factor for allocating
attributes over query clusters, the attribute allocation decision (AAD) was drawn in Equation (14).

AAD =

{
Ck, Ai highly accessed by Ck for each Ck, k = 1, . . . , NC cluster
Otherwise Ai replicated interchangeably over partitions

(14)

As mentioned earlier, in this phase, the refinement process looked to to secure non-overlapping
schemes from those overlapping, which were already drawn in the solution space. For each partitioning
schema (PS), each shared attribute Ai, such as A1, A4, A5, and A6 in solution QC1, was examined
among all partitions of the same solution. Normally, attributes will be assigned to the partition with
the highest access to it on the basis of its call in the query set. However, if Ai is equally required by
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more than one partition, it shall be assigned interchangeably to all partitions in the same partitioning
schemes (PSs). That accounts for yielding four schemes from QC1. In doing such placement iteratively,
all schemes combinations were set to be generated, as given in Table 10. On the other hand, for each
non-shared attribute Ai, such as A1 in QC1, this attribute would be kept to its container, as produced
from the fragmentation process. Moreover, during the refinement process, it seemed that we may have
had a schema duplication, thus only one copy was set to be kept. The rationale behind performing this
process in such a pattern is to maintain all possible schemes that could lead to optimal survival schema.

Table 10. Refinement process results.

PS Number Over-Lapping PS Non-Overlapping PS

1
QC1

(A1,A2,A4,A5,A6) (A1,A3,A4,A5,A6)

(A1,A2,A4,A5) (A3,A6)
2 (A2,A5) (A1,A3,A4,A6)
3 (A1,A2,A5) (A3,A4,A6)
4 (A2,A4,A5) (A1,A3,A6)

5 QC3
(A1,A2,A5,A6,A4,A3) (A3,A5,A1,A6,A4)

(A1,A2,A4,A5,A6) (A3)
6 (A1,A2,A5,A6) (A3,A4)

7 QC4
(A1,A3,A5,A6,A4,A2) (A3,A5,A6,A1) (A2,A4,A5,A6) (A1,A3)

4.4. Fragmentation Evaluator (FE)

To decide which schema is the optimal, all non-overlapping PS under consideration were fed into
FE. Figure 3 depicts, briefly, the results of the FE process.
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From Figure 3, the successful schema was PS5, and its attribute allocation to query clusters is
given in Table 11.

Table 11. Attribute allocation over query clusters.

Cluster/Attribute A1 A2 A3 A4 A5 A6

CQ1 1 1 1 1 1
CQ2 1
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The next SQL statements were set to in order to produce the final fragments:

DataF1 = C1: Select A1,A2,A4,A5,A6 from Employee; size (DataF1) = 13,800 bytes.
DataF2 = C2: Select A3 from Employee; size (DataF2) = 1200 bytes.

4.5. Allocation Process

The first step was to produce the attribute access matrix of sites (AAMS) using QFM and AIM
along with Equation (11). Every AAMSij gave the net access cost of each site Sj, to reach Attribute Ai,
Table 12.

Table 12. Attribute access matrix of sites (AAMS).

Site/Attribute A1 A2 A3 A4 A5 A6

S1 2 4 2 0 4 4
S2 3 2 3 1 5 2
S3 1 3 2 4 4 2
S4 1 4 4 6 3 5
S5 3 1 5 0 5 2
S6 9 5 4 0 6 7

Using Equation (12), AAMS was multiplied with the communication cost matrix between sites to
form the total access cost matrix (TACS), Table 13.

Table 13. Total access cost matrix (TACS).

Site/Attribute A1 A2 A3 A4 A5 A6

S1 106 86 98 54 144 96
S2 81 98 87 46 126 107
S3 91 85 79 25 116 100
S4 94 59 94 15 120 77
S5 81 101 91 79 112 120
S6 49 72 79 54 104 77

4.6. Data Allocation: Scenario (1), (Fragments are Replicated over Site Clusters)

For [7], Table 14 briefs the fragment allocation over all clusters.

Table 14. Decision allocation matrix, [7].

Sites’
Cluster/Fragment F1 F2

Sites/Attributes A1 A2 A5 A4 A6 Total Cost
(F1) A3 Total Cost

(F2)

CS1
S1 106 86 144 54 96 486 98 98
S2 81 98 126 46 107 458 87 87
S3 91 85 116 25 100 417 79 79

CS2
S4 94 59 120 15 77 365 94 94
S5 81 101 112 79 120 493 91 91

CS3 S6 49 72 104 54 77 356 79 79

For the proposed work of this paper, Table 15 briefs the fragment allocation over all clusters.
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Table 15. Decision allocation matrix of this work.

Sites’
Cluster/Fragment F1 F2

Sites/Attributes A1 A2 A5 A4 A6 Total Cost
(F1) A3 Total Cost

(F2)

CS1
S6 49 72 104 54 77 356 79 79
S2 81 98 126 46 107 458 87 87

CS2
S4 94 59 120 15 77 365 94 94
S1 106 86 144 54 96 486 98 98

CS3
S3 91 85 116 25 100 417 79 79
S5 81 101 112 79 120 493 91 91

4.6.1. The Second Allocation Scenario (No Fragment Replication)

For [7], Table 16, holds total of Communication Access for Clusters (TACC), and 17 brief the
fragment allocation over all clusters.

Table 16. TACC decision allocation matrix, [7].

Cluster # A1 A5 A2 A4 A6 Total Cost of F1 A3 Total Cost of F2
C1 857.5 920 1332 546 1074.5 4730 1042.5 1042.5
C2 1218 1301.5 8171 770.5 1445.5 12,906.5 1319 1319
C3 2265 2146 3090 1135 2500 11,136 2245 2245

After that, the competitive process was activated in order to have fragments assigned to sites in
each cluster. As drawn in the data allocation model, each fragment would be allocated to the site of
the highest access cost, Table 17.

Table 17. Fragment allocation over sites (Scenario 2), [7].

Sites’
Cluster/Fragment F1 F2

Sites/Attributes A1 A2 A5 A4 A6 Total Cost
(F1) A3 Total Cost

(F2)

CS1
S1 106 86 144 54 96 486 98 98
S2 81 98 126 46 107 458 87 87
S3 91 85 116 25 100 417 79 79

CS2
S4 94 59 120 15 77 365 94 94
S5 81 101 112 79 120 493 91 91

CS3 S6 49 72 104 54 77 356 79 79

For the proposed work of this paper, Tables 18 and 19 brief the fragment allocation over all clusters.

Table 18. TACC fragments allocation over site clusters of our proposed work.

Cluster # A1 A2 A4 A5 A6 Total Cost of F1 A3 Total Cost of F2
C1 1460 1365 727 1932 1619 7103 1426 1426
C2 906 1068 612 1374 1212 5172 1008 1008
C3 1250 1285 707 1942 1439 6623 1406 1406
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Table 19. Decision allocation matrix of this work.

Sites’
Cluster/Fragment F1 F2

Sites/Attributes A1 A2 A5 A4 A6 Total Cost
(F1) A3 Total Cost

(F2)

CS1
S6 49 72 104 54 77 356 79 79
S2 81 98 126 46 107 458 87 87

CS2
S4 94 59 120 15 77 365 94 94
S1 106 86 144 54 96 486 98 98

CS3
S3 91 85 116 25 100 417 79 79
S5 81 101 112 79 120 493 91 91

4.6.2. The Hybrid (Mixed) Allocation Scenario (Full Fragment Replication over Clusters, Partially over
Sites in Each Cluster)

This technique is markedly used as an integrated set-up for both works. In Phase (1), data were
allocated to all clusters using the “full replication principal”. Each fragment had to be allocated to each
cluster, as shown in Table 20.

Table 20. Phase 1, final allocation over cluster of sites in both works.

Cluster # A1 A5 A2 A4 A6 Total Cost of F1 A3 Total Cost of F2
C1 857.5 920 1332 546 1074.5 4730 1042.5 1042.5
C2 1218 1301.5 8171 770.5 1445.5 12,906.5 1319 1319
C3 2265 2146 3090 1135 2500 11,136 2245 2245

In Phase (2), in each cluster, every site that exceeded (surpass) the threshold value was going to
contain the qualified fragments, as shown in Tables 21 and 22.

Table 21. Fragment allocation over sites (Scenario 3), [7].

Sites’
Cluster/Fragment F1 F2

Sites/Attributes A1 A2 A5 A4 A6 Total Cost (F1) A3 Total Cost (F2)

CS1
S1 106 86 144 54 96 486 -surpass 98 98-surpass
S2 81 98 126 46 107 458 -surpass 87 87 -surpass
S3 91 85 116 25 100 417 79 79

CS2
S4 94 59 120 15 77 365 94 94
S5 81 101 112 79 120 493 91 91

CS3 S6 49 72 104 54 77 356 79 79

Table 22. Fragment allocation over sites (Scenario 3) of this work.

Sites’
Cluster/Fragment F1 F2

Sites/Attributes A1 A2 A5 A4 A6 Total Cost
(F1) A3 Total Cost

(F2)

CS1
S6 49 72 104 54 77 356 79 79
S2 81 98 126 46 107 458 87 87

CS2
S4 94 59 120 15 77 365 94 94
S1 106 86 144 54 96 486 98 98

CS3
S3 91 85 116 25 100 417 79 79
S5 81 101 112 79 120 493 91 91
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In some cases, the process of assigning fragments over sites (in each cluster) was found to be very
similar in both works, as the full replication scenario and hybrid scenario were addressed as shown in
Tables 15 and 22. In other words, both scenarios had almost the same impact on DDBS performance.

5. Results and Discussion

We evaluated the performance of this work by conducting several experiments, among which
just eleven are presented in this section for demonstration purposes. Relation cardinality, number
of sites, number of queries, and rate of query types were all varied in each experiment. In doing
so, both our proposed work and that of [7] were set to be examined under different circumstances.
As mentioned earlier, this work had the aim of increasing data locality to the greatest possible extent
so that TC was going to be maximally reduced. In other words, data fragments were placed in the
cluster/site where it was highly and frequently required. As consequences, transmission costs (TC),
including communication costs, and response time were substantially mitigated. To validate and
verify these claims, internal and external evaluations were made. For the sake of ensuring a fair
comparison, we tried to create the same environment in which [7] had been tested. Thus, for first
part of this evaluation, the same five problems addressed in [7] were also considered in this work,
namely queries 8, 16, 24, 30, and 40, respectively. While the first problem was separately done in both
works, it was exclusively restricted for retrieval queries (read-type). The second and third problems
considered a mixture of retrieval and update queries, but with retrieval queries having a larger portion.
Finally, the last two problems also were a mixture, but with update queries taking a larger share.
The evaluation process was made in terms of many design-related performance factors. Among these
factors was (1) the TC reduction rate, which is of paramount importance to be investigated; and (2)
DDBS performance, which is calculated as (1—averaged TC), where averaged TC is the averaged
costs incurred as the query set of the certain experiment is being processed. That is, performance had
a inversely proportional relationship with TC in this work. For each problem, meeting the minimization
of (TC) along with the objective function was considered.

For the first problem, Figures 4–7 show the experiments that were carried out and which reflect
the clear contribution of work of this paper. While Figures 4 and 5 display TC rate for both works as
per site clustering of [8]; Figures 6 and 7 show results of TC rate when applying the new proposed
site clustering of this paper, on both [7] and our work of this paper. According to the results obtained,
our work proved to be highly efficient with respect to TC minimization. Every query, among those
under consideration, was tested on employee dataset in accordance to five data allocation scenarios:
(1) hybrid replication-based Scenario (HAS); (2) full replication Scenario (FAS); (3) no replication
over clusters of sites Scenario (NAS); (4) random allocation Scenario; and (5) random allocation for
the whole dataset. These experiments were done using C#, to determine which fragmentation and
allocation scenario gave better results for DDBS performance. It is worth indicating that we refer to
reference [7] as [7] and [Adel et al, 2017] interchangeably, and we refer to the proposed work of this
paper as “present” (in figures) to facilitate comparison and make it clearly understood.

It was clearly evident form Figures 4 and 5 that scenario (1) outperformed its peers, particularly
when communication cost between clusters was considered, Figure 7. While scenario (2), for the first
problem, came in second place with a slight difference followed by scenario (3). Scenario (5), on the
other hand, was recorded to be the worst for DDBS performance. Needless to say, it was possibly true
that scenario (1) was the best for the first three problems, since all data were available in all clusters
and were of read type queries that had the larger space of queries under consideration. These facts
were not surprising since it agreed with results observed in [7]. However, in the proposed work of this
paper, as per results on all drawn figures, TC reduction was clearly observed to be greatly lessened
when compared to [7]. In the sense that it can be confidently deduced that the enhancement of the
present work proved to be highly valuable and effective.
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In [7], communication costs between clusters were taken as the average of all points of intended
clusters. This justifies why [7] recorded great results in this work. In other words, comparing [7] in
Figure 4 with [7] in Figure 5, it was evidential that the LDV-based clustering process for network sites
showed to be highly effective in terms of TC reduction. On the other hand, in most cases, our work of
this paper showed to perform better than [7] in all scenarios of communication, as shown in Figures 6
and 7.

From the results shown in Figures 4–7, it can be concluded that data replication had a huge
impact on communication cost minimization, mainly when retrieval queries established the largest
portion of the considered queries. To emphasize this claim, four more experiments (P1, P2, P3, and P4)
were performed with 16, 24, 30, and 40 queries, respectively. The obtained results presented in
Figures 8 and 9 confirmed that scenarios (1) and (2) were the best scenarios, whereby retrieval queries
represented the largest portion of considered queries, as they were in P1, P2, and P3. However, scenario
(3), followed by scenario (4), were considered to be, by far, the best options when updated queries
constituted the largest percentage of the queries under consideration, as they were in P4 and P5.
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Our proposed site clustering technique played a key role in balancing clusters and thus in increasing
data compactness, locality, and availability in each cluster. These factors, in fact, contributed highly
in reducing TC and heightening DDBS performance, as revealed in Figures 10 and 11. All problems
described previously were evaluated in the same pattern in which problem (1) was examined. It was
clear from the results illustrated in Figures 10 and 11 that our proposed method performed better
than [7], for all problems tackled and all considered scenarios regarding TC minimization.
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Approach Complexity of Computation

Similarly, like [7] and [17], the complexity of time was bounded by O (NF*QN*M), at the best case,
and O (N2), at the worst case. Where NF, QN, M and N stand for Number of Fragments, Number of
Query clusters, number of sites and number of queries respectively.

6. Conclusions and Future Work Directions

In DDBSs, the issue of performance sustainability is an energetic issue that needs extra
investigation. As a matter of fact, several factors have been logged in literature that could have
a great impact on DDBS performance. Among these factors are data fragmentation, data allocation,
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replication, and site clustering, which are crucial factors in determining DDBS performance. However,
the objective of maintaining a high performance could effectively be achieved through clustering the
frequently-accessed attributes together, and placing them in closely-related sites/clusters so that they
significantly match the requirements of their corresponding queries/applications.

Therefore, in this work, a heuristic approach was elegantly introduced. The proposed approach
considerably reduced transmission costs of distributed queries, as verified in the results and discussion
section. The presented fragmentation procedure was accomplished based on a cost-effective model
that was set to be used in the context of a relational database, at initial and later stages of DDBS design.
On the other hand, the site clustering algorithm was made in such way that ensures the production of
highly-balanced clusters with proven significance and efficiency. Moreover, this work suggests several
advanced allocation scenarios that take data replication into consideration, including full replication,
partial replication, and non-replication.

During this work, several experiments were thoroughly conducted to reinforce the superiority
of the proposed approach, specifically the site clustering algorithm compared to previous similar
algorithms [7].

Five data allocation scenarios were considered in this work, three of them were replication-based
allocations. The five scenarios were: mixed replication-based data allocation scenario (MAS),
full-replication-based data allocation scenario (FAS), and non-replication data allocation scenario
(NAS). To show how considerable of a negative or positive impact data replication could have,
a workable method for these scenarios was performed using the proposed objective function. Several
experiments under different circumstances were carried out to select the best TC-reducing design in
DDBS environment. It was observed that data replication had an obvious negative impact on DDBS
productivity where update queries were growing. In comparison with [7], based on the obtained
results, the proposed work proved to behave better for about 76% of all experiments that were carried
out in this work. However, in some rare cases [7] was shown to perform better.

Our future work is going to be in the same direction with the aim of finding a better-response
time optimization technique in the cloud environment.
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